

## Variance Estimation for Measures of Change S.A.M.P.L.E. CONFERENCE

Stefan Zins and Ralf Münnich

University of Trier, Faculty IV, VWL Economic and Social Statistics

Siena, Wednesday, 06. October 2010

Siena, 06.10.2010 | Zins / Münnich | 1 (14)



## Evolution of Measures of Poverty and Income Inequality Indicators in the European Union

Introduction

Methodology of Interest

Results of the Study

Summary and Outlook

Siena, 06.10.2010 | Zins / Münnich | 2(14)







Advanced Methodology for European Laeken Indicators



- Project is funded by the European Commission within the seventh Framework Programme
- Social Sciences and Humanities. Area 6.2 – Developing better indicators for policy
- DG RTD in cooperation with DG ESTAT
- Project officer: Dr. Ian Perry
- EC contribution 1.089 M€

Co-ordinator: Ralf Münnich (muennich@uni-trier.de) Homepage: http://ameli.surveystatistics.net



## Aim of EU-SILC

To monitor the process towards agreed policy goals we are interested in the evolution of social indicators.



- Reading naively point estimator tables may lead to over-interpret the data.
- Was the change (in time) of an indicator value significant or not?
- ▶ How to *measure* significant changes of ARPR, GINI, and QSR?



- 1. The statistics in question (the Laeken indicators) are highly non-linear.
  - Basic variance estimation formulas cannot be applied directly.
- 2. The Surveys used to estimate the indicator values (EU-SILC) are often time dependent.
  - The correlation through time between indicators has to be taken into account.

Dell and d'Haultfoeuille (2007)



- 1. The statistics in question (the Laeken indicators) are highly non-linear.
  - Basic variance estimation formulas cannot be applied directly.
- 2. The Surveys used to estimate the indicator values (EU-SILC) are often time dependent.
  - The correlation through time between indicators has to be taken into account.

Dell and d'Haultfoeuille (2007)



- 1. The statistics in question (the Laeken indicators) are highly non-linear.
  - Basic variance estimation formulas cannot be applied directly.
- 2. The Surveys used to estimate the indicator values (EU-SILC) are often time dependent.
  - The correlation through time between indicators has to be taken into account.

Dell and d'Haultfoeuille (2007)



- 1. The statistics in question (the Laeken indicators) are highly non-linear.
  - Basic variance estimation formulas cannot be applied directly.
- 2. The Surveys used to estimate the indicator values (EU-SILC) are often time dependent.
  - The correlation through time between indicators has to be taken into account.

Dell and d'Haultfoeuille (2007)



- 1. The statistics in question (the Laeken indicators) are highly non-linear.
  - Basic variance estimation formulas cannot be applied directly.
- 2. The Surveys used to estimate the indicator values (EU-SILC) are often time dependent.
  - The correlation through time between indicators has to be taken into account.

Dell and d'Haultfoeuille (2007)



- 1. The statistics in question (the Laeken indicators) are highly non-linear.
  - Basic variance estimation formulas cannot be applied directly.
- 2. The Surveys used to estimate the indicator values (EU-SILC) are often time dependent.
  - The correlation through time between indicators has to be taken into account.

Dell and d'Haultfoeuille (2007)



## Variance estimation for non-linear statistics

- Resampling methods Kovačević and Yung (1997)
  - Balanced repeated replication
  - Jackknife
  - Bootstrap
- Linearization methods
  - Taylor's method
  - Woodruff linearization
    Woodruff (1971) or Andersson and Nordberg (1994)
  - Estimating equations Kovačević and Binder (1997)
  - Influence functions Deville (1999)



# Application to poverty and inequality indicators

Using the linearized values for the statistics ARPR, GINI, and QSR to approximated there variance:

$$\mathsf{V}(\widehat{\mathcal{I}}) \approx \mathsf{V}\Big(\sum_{i} \frac{1}{\pi_{i}} \cdot u_{i}\Big)$$

If the weights used in estimating  $\mathcal{I}$  are obtained by a calibration of design weights,  $u_i$  are the residuals of the regression of the linearized values on the auxiliary variables used in the calibration, (cf. Deville, 1999).

| Source                       |
|------------------------------|
| Deville (1999), Osier (2009) |
| Kovačević and Binder (1997)  |
| Hulliger and Münnich (2007)  |
|                              |

Siena, 06.10.2010 | Zins / Münnich | 7 (14)



#### Ratio in time

$$\begin{split} \widehat{V}(\widehat{\mathcal{R}}_{\mathcal{I}}) &= \widehat{V}(\widehat{\mathcal{I}}_{t_{1}}/\widehat{\mathcal{I}}_{t_{0}}) \\ &= \frac{1}{\widehat{\mathcal{I}}_{t_{0}}^{2}} \cdot \left(\widehat{\mathcal{R}}_{\mathcal{I}}^{2} \cdot \widehat{V}(\widehat{\mathcal{I}}_{t_{0}}) + \widehat{V}(\widehat{\mathcal{I}}_{t_{1}}) - 2 \cdot \widehat{\mathcal{R}}_{\mathcal{I}} \cdot \widehat{Cov}(\widehat{\mathcal{I}}_{t_{0}}, \widehat{\mathcal{I}}_{t_{1}})\right) \end{split}$$

#### Covariance estimation for non-linear statistics

$$\begin{split} \widehat{Cov}(\widehat{\mathcal{I}}_{t_0}, \widehat{\mathcal{I}}_{t_1}) &= \widehat{Cov}\big(\sum_{i \in S_{t_0}} \frac{u_i}{\pi_i}, \sum_{j \in S_{t_1}} \frac{u_j}{\pi_j}\big) \\ &= \sum_{i \in S_{t_0}} \sum_{j \in S_{t_1}} \left(1 - \frac{\pi_i \cdot \pi_j}{\pi_{ij}^*}\right) \cdot \frac{u_i}{\pi_i} \cdot \frac{u_j}{\pi_j} \end{split}$$

$$\pi_i = P(i \in S_{t_1}); \quad \pi_{ij}^* = P(i \in S_{t_0}, j \in S_{t_1})$$

Siena, 06.10.2010 | Zins / Münnich | 8 (14)



### Rotational samples in EU-SILC

Survey Year



Selection Year

Actual Sampling Plan The population is partitioned into a rotational panel with 4 rotation groups (quarters).  $S_{CS}^{\gamma-1}$  A stratified sample drawn independently from groups  $U^{\gamma-4}$ ,  $U^{\gamma-3}$ ,  $U^{\gamma-2}$ , and  $U^{\gamma-1}$ .  $S_{CS}^{\gamma-0}$  A stratified sample drawn from  $U^{\gamma-4}$  plus the units in  $S_{CS}^{\gamma-1}$  without the units in  $S_4^{\gamma-4}$ , (assumes a static population). Households as PSUs



## Rotational samples in EU-SILC

Survey Year

| Y-1 | S <sub>4</sub> <sup>Y-4</sup> | S <sub>3</sub> <sup>Y-3</sup> | S <sub>2</sub> <sup>Y-2</sup> | S <sub>1</sub> <sup>Y-1</sup> |                               |
|-----|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Y-0 |                               | S <sub>4</sub> <sup>Y-3</sup> | S <sub>3</sub> <sup>Y-2</sup> | S <sub>2</sub> <sup>Y-1</sup> | S <sub>1</sub> <sup>Y-0</sup> |
|     | Y-4                           | Y-3                           | Y-2                           | Y-1                           | Y-0                           |

Selection Year

Actual Sampling Plan The population is partitioned into a rotational panel with 4 rotation groups (quarters).  $S_{CS}^{Y-1}$  A stratified sample drawn independently from groups  $U^{Y-4}$ ,  $U^{Y-3}$ ,  $U^{Y-2}$ , and  $U^{Y-1}$ .  $S_{CS}^{Y-0}$  A stratified sample drawn from  $U^{Y-4}$  plus the units in  $S_{CS}^{Y-1}$  without the units in  $S_4^{Y-4}$ , (assumes a static population). Households as PSUs







## Coverage Rates for the Different Sampling Fractions







Siena, 06.10.2010 | Zins / Münnich | 12 (14)



## Test of Significant Change: $H_0: \Delta = \Delta_0 = 0$



Hulliger (2005), Displays of indicators and of their accuracy, Conference on Visualising and Presenting Indicator Systems

Siena, 06.10.2010 | Zins / Münnich | 13 (14)



## Summary and outlook

- ARPR is less sensitive towards skewed distributions but more tends to be biased (density estimation)
- GINI and QSR are relatively non-robust against very skewed distributions
- Next steps
  - Non-linear calibration (on GINI or quantiles)
  - Estimation of the covariance between estimated totals in more complex dependent sampling surveys (Berger, 2004)
  - Introduction of robust methods for GINI and QSR