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Description of WP2

The partners

1: Universita di Pisa

3: University of Manchester

4: Universidad Carlos III de Madrid

5: Universidad Miguel Hernández de Elche

The Tasks

2.1: Estimate the c.d.f of income at small area level (1, 3)

2.2: Small area estimates of poverty with spatial models (1, 3, 4)

2.3: SAE of poverty with temporal models (5)

2.4: SAE of poverty with spatio-temporal models (1, 4, 5)



Description of WP2

2.1: Estimation of c.d.f of income at small area level

• WP2 investigates method to estimate the Cumulative Distribution

Function of Income (CDFI) in each unplanned domain (total disposable

household income, equivalised total disposable income - EU definition

of income and modified OECD scale).

• WP2 intends to utilize M-quantile models for small area estimation.

• WP2 performs the estimation of the cumulative distribution function

of the variable of interest by combining both M-quantile and random

effects models with appropriate model unbiased and design consistent

estimators of the distribution function.



Description of WP2

2.1-2.4: Small area estimates of poverty indicators

2.1. WP2 proposes new methodologies for estimating poverty and

inequality indicators along with their accuracy measures in small areas.

(2.1a) WP2 develops small area estimates of poverty indicators that

take into account the spatial correlation between neighbour areas.

(2.1b) WP2 develops small area estimates of poverty indicators using

M-quantile Geographically Weighted Regression model.

2.2. WP2 develops small area estimates using data from different

periods through models that ”borrow strength from time”.

2.3. WP2 develops small area estimates through spatial-temporal mod-

els, which ”borrow strength from space and time”



Poverty measures

• Let Edj be a quantitative measure of welfare for unit j in area d.

• For example Edj = Rdj/Hdj, where

Rdj = total net monetary income of household j and area d,
Hdj = total number of normalized members of household j and area d,

Hdj = 1 + 0.5(Hdj≥14 − 1) + 0.3Hdj<14,

Hdj≥14 is the number of members aged 14 or more in (d, j),
Hdj<14 is the number of members aged 13 or less in (d, j).

• Let z be the poverty line; that is, the threshold for Edj under which

a person is considered as “under poverty”.

• The family of poverty measures of Foster, Greer and Thorbecke

(1984), called FGT poverty measures, for a small area d is

Fαd =
1

Nd

Nd∑

j=1

(
z − Edj

z

)α

I(Edj < z), α = 0,1,2, d = 1, . . . , D,



Poverty measures

• Note that

↪→ I(Edj < z) = 1 if Edj < z (person under poverty)

↪→ I(Edj < z) = 0 if Edj ≥ z (person not under poverty).

• For α = 0 we get the proportion of individuals under poverty in small

area d, also called poverty incidence or head count ratio.

• The measure for α = 1 is called poverty gap, and measures the small

area mean of the relative distance to non-poverty (the poverty gap) of

each individual.

• For α = 2 the measure is called poverty severity.



Direct estimators of poverty measures

• The direct estimators of the FGT measures are

fw
αd =

1

N̂d

∑

j∈sd

wdj

(
z − Edj

z

)α

I(Edj < z), α = 0,1,2, d = 1, . . . , D,

where

↪→ N̂d =
∑

j∈sd
wdj is the direct estimator of the population size Nd of

small area d.

↪→ wdj is the sampling weight (inverse of the probability of inclusion)

of individual j in the sample from small area d



EB method for poverty estimation

• Assumption: There exists a transformation Ydj = T(Edj) of the

welfare variables Edj which follows a normal distribution.

• Poverty measure as a function of transformed variables:

Fαd =
1

Nd

Nd∑

j=1

{
z − T−1(Ydj)

z

}α

I
{
T−1(Ydj) < z

}
= hα(yd),

where yd = (Yd1, . . . , YdNd
)′.

• Best estimator: The estimator of Fαd with minimum MSE is

F̂B
αd = Eydr [Fαd|yds] , Fαd = hα(yd),

where yds and ydr denote respectively sample and out-of-sample parts

of yd.



EB method for poverty estimation

• Empirical Best (EB) estimator: Expectation calculated with re-

spect to the distribution of ydr|yds with estimated unknown parameters.

• Nested error linear model:

Ydj = xdjβ + ud + edj, j = 1, . . . , Nd, d = 1, . . . , D.

ud
iid
∼ N(0, σ2

u), edj
iid
∼ N(0, σ2

e ).

• Distribution of yd:

yd
ind
∼ N(µd,Vd), d = 1 . . . , D,

where

µd = Xdβ and Vd = σ2
u1Nd

1
′
Nd

+ σ2
e INd

.



EB method for poverty estimation

• Decomposition in sample and out-of-sample:

µd =

(
µds
µdr

)

, Vd =

(
Vds Vdsr
Vdrs Vdr

)

• Distribution of ydr given yds:

ydr|yds ∼ N(µdr|ds,Vdr|ds),

where

µdr|ds = µdr + VdrsV
−1
ds (yds − µds),

Vdr|ds = Vdr − VdrsV
−1
ds Vdsr.



EB method for poverty estimation

• Monte Carlo approximation of best estimator:

(a) Generate L non-sample vectors y
($)
dr , $ = 1, . . . , L from the condi-

tional distribution of ydr|yds.

(b) Attach the sample elements to form a population vector y
($)
d =

(yds, y
($)
dr ), $ = 1, . . . , L.

(c) Calculate the poverty measure with each population vector F ($)
αd =

hα(y($)
d ), $ = 1, . . . , L. Then take the average over the L Monte

Carlo generations:

F̂B
αd = Eydr [Fαd|yds]

∼=
1

L

L∑

$=1

F ($)
αd .



Time mixed models

• Unit-level linear mixed models

ydtj = xdtjβ + u1,d + u2,dt + w
−1/2
dtj edtj,

d = 1, . . . , D,
t = 1, . . . , md,
j = 1, . . . , ndt.

(1)

where

(TM1) u1,d i.i.d. N(0, σ2
1), (u2,d1, . . . , u2,dmd

) i.i.d. AR(1;σ2
2, ρ) and

edtj i.i.d. N(0, σ2
0) are independent.

(TM2) u1,d i.i.d. N(0, σ2
1), u2,dt i.i.d. N(0, σ2

2) and edtj i.i.d. N(0, σ2
0)

are independent.



Time mixed models

• Area-level linear mixed models

ydt = xdtβ + udt + edt, d = 1, . . . , D, t = 1, . . . , md,

where

↪→ ydt is a direct estimator of the characteristic of interest and

↪→ xdt is a vector containing the population (aggregated) values of p

auxiliary variables.

(TM3) (ud1, . . . , u2dmd
) i.i.d. AR(1;σ2

u, ρ) and edt
ind
∼ N(0, σ2

dt)

are independent.

(TM4) udt i.i.d. N(0, σ2
u) and edt

ind
∼ N(0, σ2

dt) are independent.



Spatial mixed models

• Unit-level mixed models

ydj = xdjβ + vd + w
−1/2
dj edj, d = 1, . . . , D, j = 1, . . . , nd (2)

where

(SM1) (v1, . . . , vD) i.i.d. SAR(1; σ2
v , ρ,P) and edj i.i.d. N(0, σ2

e ) are

independent.

• Area-level linear mixed models

yd = xdβ + vd + ed, d = 1, . . . , D,

where

↪→ yd is a direct estimator of the characteristic of interest and

↪→ xd is a vector containing the population (aggregated) values of p

auxiliary variables.

(SM2) (v1, . . . , vD) i.i.d. SAR(1;σ2
v , ρ,P) and ed

ind
∼ N(0, σ2

d)

are independent.



spatio-temporal mixed models

• Area-level spatio-temporal linear mixed models

ydt = xdtβ + u1d + u2dt + edt, d = 1, . . . , D, t = 1, . . . , T,

where

↪→ ydt is a direct estimator of the characteristic of interest and

↪→ xdt is a vector containing the population (aggregated) values of p

auxiliary variables.

(STM1) {u1d}, {u2dt} and {edt} are independent with distributions

{u1d}
D
d=1 ∼ SAR(1), {u2dt} i.i.d N(0, σ2

2) and edt ∼ N(0, σ2
dt).

(STM2) {u1d}, {u2dt} y {edt} are independent with distributions

{u1d}
D
d=1 ∼ SAR(1), {u2dt}

T
t=1 i.i.d AR(1) and edt ∼ N(0, σ2

dt).



Semiparametric FH model

Semiparametric Fay-Herriot model

Extension of the Fay-Herriot model allowing non linearity in the relationship
between θ and X

x1: let us consider one covariate for simplicity
m̃(x1): nonparametric model with one covariate (x1), where m̃(·) is unknown
bu sufficiently well approximated by the function m(x1;η;γ)

m(x1;η;γ) = η0 + η1x1 + . . . + ηpx
p
1

+
�K

k=1
γk(x1 − κk)

p
+

η: is the (p + 1)× 1 vector of the coefficient of the polynomial function
γ: is the k × 1 vector of the truncated polynomial spline basis (P-spline with
degree p)
κk , k = 1, . . . ,K : is a set of fixed knots
define X1 and Z as the matrix of polynomial values and truncated polynomial
spline respectively:

X1 =




1 x11 · · · xp

11

...
...

. . .
...

1 x1m · · · xp
1m



 ,Z =




(x11 − κ1)

p
+ · · · (x11 − κK )p+

...
. . .

...
(x1m − κ1)

p
+ · · · (x1m − κK )p+




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Semiparametric FH model

Semiparametric Fay-Herriot model

Mixed model representation of the semiparametric Fay-Herriot model

θ =

�
X
X1

�
[β,η] + Zγ + Du + �

α→ [β,η]

A→ [X,X1]

i.e. A = [x1, . . . , xq], X1 as expressed above, then

A =




1 x21 . . . xq1 x11 . . . xp

11

...
...

. . .
...

...
. . .

...
1 x2m . . . xqm x1m . . . xp

1m



 ,α = [η0, β2, . . . , βq, η1, . . . , ηp]
T

Semiparametric Fay-Herriot model

θ = Aα + Zγ + Du + �
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Semiparametric FH model

Semiparametric Fay-Herriot model

Model-based estimator of the small area mean (or total):

θ̂
E
(ψ̂) = Aα̂(ψ̂) + Λ̂(ψ̂)[θ̂ − Aα̂(ψ̂)]

Λ(ψ) = (ZΣγZ
T + DΣuD

T )Σ−1(ψ)

α(ψ) = (ATΣ−1(ψ)A)−1ATΣ−1(ψ)θ̂

Σ(ψ) = ZΣγZ
T + DΣuD

T + R

Σu = σ2

uIm
Σγ = σ2

γIK

ψ = [σ2

u, σ
2

γ ]T

REMARK: ·̂ means that the unknown parameter · has been replaced by REML estimator
REMARK: mean square error estimator for θ̂

E
can be obtained by Taylor approximation

(Prasad and Rao, 1990 and Opsomer et al., 2006) or by a bootstrap approach
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M-quantile models

• With regression models we model the mean of the variable of interest

(y) given the covariates (x)

• A more complete picture is offered by modeling not only the mean

of y given x, but also the quantiles.

• Examples include the median, the 25th, 75th percentiles.

• This is known as quantile regression

• An M-quantile regression model for quantile q is

Qq(y|X) = Xβ(q)

where q is a-priori chosen.



M-quantile models

• Estimate of β(q) is obtained via Iterative Weighted Least Squares:

β̂(q) = (Xt
WX)−1Xt

Wy

• W is an n × n diagonal weighting matrix that depends on both the

influence function and the quantile we are modeling

• Central Idea: Area effects can be described by estimating an area

specific q value (θ̂d) for each area (group) of a hierarchical dataset

• Estimate the area specific target parameter by fitting an M-quantile

model for each area at θ̂d

• A mixed model uses random effects ud to capture the dissimilarity be-

tween groups. M-quantile models attempt to capture this dissimilarity

via the group-specific M-quantile coefficients θ̂d



Estimation of cumulative distribution functions

• Estimation of the distribution function of income will be performed

using both M-quantile and random effects models (see Chambers and

Dunstan 1986 ; Rao, Kovar and Mantel 1990).

• The CDF estimator can be further used for estimating other quantiles

of the small area distribution function of the variable of interest.

• This is achieved by integrating the CDF estimator
∫ q

−∞
t dF̂d(t)



Small Area Estimation by Borrowing Strength over Space

• In applications involving economic, environmental and epidemiologi-

cal data observations that are spatially close may be more alike than

observations that are further apart .

• This creates a type of spatial dependency or spatial association in

the data that invalidates the assumption of independent and identically

distributed (iid) observations used by conventional regression models.

• One approach to accounting for spatial correlation in the data is

offered by specifying models with spatially correlated errors (Anselin

1992; Cressie 1993).

• Small area literature suggests that prediction of small area parameters

may be improved by borrowing strength over space (Saei & Chambers

2003; Singh et al. 2005; Petrucci & Salvati 2006; Pratesi & Salvati

2008; 2009; Molina et al. 2008).



Global Vs. Local Models for Modeling Spatial Dependency

• Regression models with spatially correlated errors are global models

i.e. they assume that the relationship we are modelling holds every-

where in the study area.

• Another approach to modelling a spatially non-stationary process is

offered via Geographically Weighted Regression (GWR) (Brunsdon et

al. 1996; Fotheringham et al. 1997).

• GWR models attempt to capture the spatial association in the data

by allowing local, rather than global parameters, to be estimated.



GWR Models

• Assume that we have n observations on (yj,xj) at a set of Locations

(uj).

•A GWR model is defined as follows

yj = x
T
j β(uj) + e(uj)

• GWR models allow for local rather than global parameters to be

estimated and will produce estimated local surfaces of the relationship

between y and x.

• GWR models work by assuming that observed data near to loca-

tion j will have a greater influence on the estimation of β(uj) than

observations farther from j.

• Weighted Least Squares (WLS) is used for estimating the GWR

parameters.



Extend GWR to outlier robust GWR

• M-quantile Geographically Weighted Models (Salvati, Tzavidis, Pratesi

& Chambers 2007.

• We first propose a robust GWR model namely an M-quantile GWR

model. This is a locally robust to outliers model

• With this model we attempt to model locally the different quantiles

of the conditional distribution accounting at the same time for the

spatial non-stationarity in the data

• For estimating the parameters of the M-quantile GWR model we use

an Iterative Weighted Least Squares algorithm



Semiparametric and Nonparametric SAE Models

M-quantile GWR

The M-quantile GWR model is defined as follows

Qq(y |X, u) = XTβ(u; q)

The model parameters β(ui ; q) are estimated by solving

L�

l=1

w(ul , u)

nl�

i=1

ψq

�
yil − xT

il β(ui ; q)

�
xil = 0

Solution depends on distance function, bandwidth and influence

function

Estimates of β(ui ; q)’s via IWLS

β̂(u; q) = (XTW∗X)
−1XTW∗Y
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Semiparametric and Nonparametric SAE Models

M-quantile GWR SAE

Achieved via an extension of the M-quantile SAE algorithm

Step 1: Estimate unit level M-quantile coefficients θ̂ij , using

M-quantile GWR. θ̂ij ’s are accounting for the spatial structure

Step 2: Recognize the area structure and estimate area M-quantile

coefficients, θ̂j , using θ̂ij

Step 3: Estimate the area target parameter using an M-quantile GWR

model for each area at θ̂j

Qθ̂j
(y |X, u) = XT β̂(u; θ̂j)

() October 6, 2010 14 / 37



Semiparametric and Nonparametric SAE Models

M-quantile GWR SAE

The ’näıve’ small area estimator is

m̂MQGWR
j = N−1

j {
�

i∈sj

yij +

�

i∈rj

xT
ij β̂(ui ; θ̂j)}

A bias-corrected small area estimator is

m̂MQGWR/CD
j = N−1

j {
�

i∈sj

yij +

�

i∈rj

xT
ij β̂(ui ; θ̂j) +

Nj − nj

nj

�

i∈sj

[yij − ŷij ]}

() October 6, 2010 15 / 37



Semiparametric and Nonparametric SAE Models

Reflections on the use of M-quantile SAE models

Less parametric - No assumptions on the random effects

Outlier robust

Approximates Qq(y |X) with a local linear function

Larger number of parameters to be estimated compared to SAR

Improved estimation for in and out of sample area estimation

() October 6, 2010 16 / 37



Semiparametric and Nonparametric SAE Models

Motivating the use of nonparametric models in SAE

Random effects models are higly structured and parametric

M-quantile models impose fewer assumptions about the structure of

the data and are less parametric allowing for outlier robust inference

All models, however, assume linearity between y and x

What if the linearity assumption fails?

Two possibilities:

Nonparametric random effects models(Opsomer et al., 2008)

Nonparametric M-quantile models (Pratesi et al., 2008)

() October 6, 2010 17 / 37



Semiparametric and Nonparametric SAE Models

Nonparametric M-quantile SAE models

Proposed by Pratesi et al.(2008) for relaxing the linearity of the

M-quantile SAE model

Qq(y |X) = m(X;β(q),ν(q))

where m(X;β(q),ν(q)) = Xβ(q) + δTν(q) where ν(q) denotes the

spline function at quantile q

Borrow strength over space in the spirit of Opsomer et al.(2008): use

a bivariate spline on the spatial coordinates

Naive and biased adjusted small area estimators under the

nonparametric M-quantile model can be defined

m̂NPMQ
j = N−1

j

� �

i∈sj

yij +

�

i∈rj

ŷij

�
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