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Description of WP2

The partners

1: Universita di Pisa

3: University of Manchester

4: Universidad Carlos III de Madrid

5: Universidad Miguel Hernández de Elche

The Tasks

2.1: Estimate the c.d.f of income at small area level (1, 3)

2.2: Small area estimates of poverty with spatial models (1, 3, 4)

2.3: SAE of poverty with temporal models (5)

2.4: SAE of poverty with spatio-temporal models (1, 4, 5)



Description of WP2

2.1: Estimation of c.d.f of income at small area level

• WP2 investigates method to estimate the Cumulative Distribution

Function of Income (CDFI) in each unplanned domain (total disposable

household income, equivalised total disposable income - EU definition

of income and modified OECD scale).

• WP2 intends to utilize M-quantile models for small area estimation.

• WP2 performs the estimation of the cumulative distribution function

of the variable of interest by combining both M-quantile and random

effects models with appropriate model unbiased and design consistent

estimators of the distribution function.



Description of WP2

2.1-2.4: Small area estimates of poverty indicators

2.1. WP2 proposes new methodologies for estimating poverty and

inequality indicators along with their accuracy measures in small areas.

(2.1a) WP2 develops small area estimates of poverty indicators that

take into account the spatial correlation between neighbour areas.

(2.1b) WP2 develops small area estimates of poverty indicators using

M-quantile Geographically Weighted Regression model.

2.2. WP2 develops small area estimates using data from different

periods through models that ”borrow strength from time”.

2.3. WP2 develops small area estimates through spatial-temporal mod-

els, which ”borrow strength from space and time”



Poverty measures

• Let Edj be a quantitative measure of welfare for unit j in area d.

• For example Edj = Rdj/Hdj, where

Rdj = total net monetary income of household j and area d,

Hdj = total number of normalized members of household j and area d,

Hdj = 1+ 0.5(Hdj≥14 − 1) + 0.3Hdj<14,

Hdj≥14 is the number of members aged 14 or more in (d, j),

Hdj<14 is the number of members aged 13 or less in (d, j).

• Let z be the poverty line; that is, the threshold for Edj under which

a person is considered as “under poverty”.

• The family of poverty measures of Foster, Greer and Thorbecke

(1984), called FGT poverty measures, for a small area d is

Fαd =
1

Nd

Nd∑

j=1

(
z − Edj

z

)α
I(Edj < z), α = 0,1,2, d = 1, . . . , D,



Poverty measures

• Note that

→֒ I(Edj < z) = 1 if Edj < z (person under poverty)

→֒ I(Edj < z) = 0 if Edj ≥ z (person not under poverty).

• For α = 0 we get the proportion of individuals under poverty in small

area d, also called poverty incidence or head count ratio.

• The measure for α = 1 is called poverty gap, and measures the small

area mean of the relative distance to non-poverty (the poverty gap) of

each individual.

• For α = 2 the measure is called poverty severity.



Direct estimators of poverty measures

• The direct estimators of the FGT measures are

fwαd =
1

N̂d

∑

j∈sd

wdj

(
z − Edj

z

)α
I(Edj < z), α = 0,1,2, d = 1, . . . , D,

where

→֒ N̂d =
∑

j∈sd
wdj is the direct estimator of the population size Nd of

small area d.

→֒ wdj is the sampling weight (inverse of the probability of inclusion)

of individual j in the sample from small area d



EB method for poverty estimation

• Assumption: There exists a transformation Ydj = T (Edj) of the

welfare variables Edj which follows a normal distribution.

• Poverty measure as a function of transformed variables:

Fαd =
1

Nd

Nd∑

j=1

{
z − T−1(Ydj)

z

}α

I
{
T−1(Ydj) < z

}
= hα(yd),

where yd = (Yd1, . . . , YdNd
)′.

• Best estimator: The estimator of Fαd with minimum MSE is

F̂B
αd = Eydr [Fαd|yds] , Fαd = hα(yd),

where yds and ydr denote respectively sample and out-of-sample parts

of yd.



EB method for poverty estimation

• Empirical Best (EB) estimator: Expectation calculated with re-

spect to the distribution of ydr|yds with estimated unknown parameters.

• Nested error linear model:

Ydj = xdjβ + ud + edj, j = 1, . . . , Nd, d = 1, . . . , D.

ud
iid
∼ N(0, σ2u), edj

iid
∼ N(0, σ2e ).

• Distribution of yd:

yd
ind
∼ N(µd,Vd), d = 1 . . . , D,

where

µd = Xdβ and Vd = σ2u1Nd
1
′
Nd

+ σ2e INd
.



EB method for poverty estimation

• Decomposition in sample and out-of-sample:

µd =

(
µds
µdr

)
, Vd =

(
Vds Vdsr
Vdrs Vdr

)

• Distribution of ydr given yds:

ydr|yds ∼ N(µdr|ds,Vdr|ds),

where

µdr|ds = µdr +VdrsV
−1
ds (yds − µds),

Vdr|ds = Vdr −VdrsV
−1
ds Vdsr.



EB method for poverty estimation

• Monte Carlo approximation of best estimator:

(a) Generate L non-sample vectors y
(ℓ)
dr , ℓ = 1, . . . , L from the condi-

tional distribution of ydr|yds.

(b) Attach the sample elements to form a population vector y
(ℓ)
d =

(yds,y
(ℓ)
dr ), ℓ = 1, . . . , L.

(c) Calculate the poverty measure with each population vector F
(ℓ)
αd =

hα(y
(ℓ)
d ), ℓ = 1, . . . , L. Then take the average over the L Monte

Carlo generations:

F̂B
αd = Eydr [Fαd|yds]

∼=
1

L

L∑

ℓ=1

F
(ℓ)
αd .



Time mixed models

• Unit-level linear mixed models

ydtj = xdtjβ + u1,d + u2,dt + w
−1/2
dtj edtj,

d = 1, . . . , D,
t = 1, . . . ,md,
j = 1, . . . , ndt.

(1)

where

(TM1) u1,d i.i.d. N(0, σ21), (u2,d1, . . . , u2,dmd
) i.i.d. AR(1;σ22, ρ) and

edtj i.i.d. N(0, σ20) are independent.

(TM2) u1,d i.i.d. N(0, σ21), u2,dt i.i.d. N(0, σ22) and edtj i.i.d. N(0, σ20)

are independent.



Time mixed models

• Area-level linear mixed models

ydt = xdtβ + udt + edt, d = 1, . . . , D, t = 1, . . . ,md,

where

→֒ ydt is a direct estimator of the characteristic of interest and

→֒ xdt is a vector containing the population (aggregated) values of p

auxiliary variables.

(TM3) (ud1, . . . , u2dmd
) i.i.d. AR(1;σ2u, ρ) and edt

ind
∼ N(0, σ2dt)

are independent.

(TM4) udt i.i.d. N(0, σ2u) and edt
ind
∼ N(0, σ2dt) are independent.



Spatial mixed models

• Unit-level mixed models

ydj = xdjβ + vd + w
−1/2
dj edj, d = 1, . . . , D, j = 1, . . . , nd (2)

where

(SM1) (v1, . . . , vD) i.i.d. SAR(1;σ2v , ρ,P) and edj i.i.d. N(0, σ2e ) are

independent.

• Area-level linear mixed models

yd = xdβ + vd + ed, d = 1, . . . , D,

where

→֒ yd is a direct estimator of the characteristic of interest and

→֒ xd is a vector containing the population (aggregated) values of p

auxiliary variables.

(SM2) (v1, . . . , vD) i.i.d. SAR(1;σ2v , ρ,P) and ed
ind
∼ N(0, σ2d)

are independent.



spatio-temporal mixed models

• Area-level spatio-temporal linear mixed models

ydt = xdtβ + u1d + u2dt + edt, d = 1, . . . , D, t = 1, . . . , T,

where

→֒ ydt is a direct estimator of the characteristic of interest and

→֒ xdt is a vector containing the population (aggregated) values of p

auxiliary variables.

(STM1) {u1d}, {u2dt} and {edt} are independent with distributions

{u1d}
D
d=1 ∼ SAR(1), {u2dt} i.i.d N(0, σ22) and edt ∼ N(0, σ2dt).

(STM2) {u1d}, {u2dt} y {edt} are independent with distributions

{u1d}
D
d=1 ∼ SAR(1), {u2dt}

T
t=1 i.i.d AR(1) and edt ∼ N(0, σ2dt).



M-quantile models

• With regression models we model the mean of the variable of interest

(y) given the covariates (x)

• A more complete picture is offered by modeling not only the mean

of y given x, but also the quantiles.

• Examples include the median, the 25th, 75th percentiles.

• This is known as quantile regression

• An M-quantile regression model for quantile q is

y = Xβ(q) + e(q)

where q is a-priori chosen.



M-quantile models

• Estimate of β(q) is obtained via Iterative Weighted Least Squares:

β̂(q) = (Xt
WX)−1Xt

Wy

• W is an n × n diagonal weighting matrix that depends on both the

influence function and the quantile we are modeling

• Central Idea: Area effects can be described by estimating an area

specific q value (θ̂d) for each area (group) of a hierarchical dataset

• Estimate the area specific target parameter by fitting an M-quantile

model for each area at θ̂d

ydj = xdjβ̂(θ̂d) + edj(θ̂d)

• A mixed model uses random effects ud to capture the dissimilarity be-

tween groups. M-quantile models attempt to capture this dissimilarity

via the group-specific M-quantile coefficients θ̂d



Estimation of cumulative distribution functions

• Estimation of the distribution function of income will be performed

using both M-quantile and random effects models (see Chambers and

Dunstan 1986 ; Rao, Kovar and Mantel 1990).

• The CDF estimator can be further used for estimating other quantiles

of the small area distribution function of the variable of interest.

• This is achieved by integrating the CDF estimator
∫ q

−∞
t dF̂d(t)
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