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Prologue

This report contains the final small area developments of thepartners of the WP2 in the SAMPLE project.
The target of the report is to present the statistical methodology that has been developed within the
SAMPLE project. The manuscript is organized in ten chapters.

Chapter 1 introduces the basic theory of linear mixed models(LMMs). Special attention is given to
the model fitting methods and algorithms, to the calculationof EBLUP estimates and to the estimation
of their mean squared errors.

Chapter 2 describes a methodology for obtaining empirical best predictors of general, possibly non-
linear, domain parameters using unit level linear regression models. The proposed method (called EB
method) is particularized to FGT poverty measures as particular cases of non-linear parameters. The
mean squared error of the proposed estimators is obtained bya parametric bootstrap for finite popula-
tions.

Chapter 3 proposes a modification of the EB method, called fast EB method, which reduces drasti-
cally the computing time, making feasible the estimation ofcomplex non-linear quantities under large
populations, whereas loosing little efficiency.

Chapter 4 introduces an area-level linear mixed model with spatial correlation. For this model,
the EBLUP, called here Spatial EBLUP, is introduced and ML and REML model fitting methods are
described. Analytical approximations of the mean squared error (MSE) of the Spatial EBLUP are dis-
cussed, and parametric and nonparametric bootstrap procedures for estimating the MSE are proposed.

Chapter 5 treats the problem of specifying the weight matrixin area-level linear mixed model with
spatial correlation, which is one of the challenges in analyzing spatial data. The literature on spatial
econometrics and statistics specifies mainly two ways of modeling this matrix.

Chapter 6 gives a semiparametric version of the basic Fay-Herriot model that is based on P-splines
and can also handle situations where the functional form of the relationship between the variable of in-
terest and the covariates cannot be specified a priori. This is often the case when the data are supposed to
be affected by spatial proximity effects. In these cases P-spline bivariate smoothing can easily introduce
spatial effects in the area level model.

Chapter 7 deals with area-level time models. Two basic models are presented. The first one contains
time random effects following an auto-regressive process AR(1) and the second one is a simplification
where these effects are independent. Complete theoreticaldevelopments are presented as well as some
simulations to study the behavior of the fitting algorithms and to investigate when it is worthwhile to
employ AR(1) random effects. Extension of the basic models for partitioned populations are also given.
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Chapter 8 introduces two area-level linear mixed models with time and spatial correlations. For
these models, the EBLUP is introduced and the REML model fitting methods are described. Parametric
bootstrap procedures for estimating the MSE are proposed.

Chapter 9 describes two unit-level time models. As in the case of area-level models, two models are
presented. The first one contains time random effects following an auto-regressive process AR(1) and
the second one is a simplification where these effects are independent.

Chapter 10 presents M-quantile regression, nonparametricM-quantile regression and M-quantile
Geographically Weighted regression and describes how quantile or M-quantile models can be employed
for measuring area effects and estimators of cumulative distribution function. This chapter also discusses
mean squared error estimation for M-quantile small area predictors. It also reports several simulation
studies and empirical evaluations of the introduced estimation methods.

This report has been coordinated by Domingo Morales (UMH). He has also been in charge of writing
Chapters 1, 7-9. Isabel Molina (UC3M) has been responsible for the elaboration of Chapters 2-5. Finally,
Nikos Tzavidis (CCSR) and Monica Pratesi (UNIPI-DSMAE) have coordinated the production of the
contents of Chapters 6 and 10.



Chapter 1

Linear mixed models

1.1 Linear mixed models with known variance

1.1.1 Introduction

We consider the model

y = Xβ+Zu +e, (1.1)

whereyn×1 is the vector of observations,βp×1 is the vector of fixed effects,uq×1 is the vector of random
effects,Xn×p andZn×q are the incidence matrices anden×1 is the vector of sampling errors. We assume
that sampling errors and random effects are independent andnormally distributed with mean equal to
zero and known matrices of variances,

var[u] = E[uu′] = Vu and var[e] = E[ee′] = Ve,

depending on a parameterθ containing the variance components. From (1.1) we obtain

V = var[y] = ZVuZ′ +Ve,

whereV is assumed to be not singular.

1.1.2 Least squared estimation ofβ

In this section we assume that the variance components of model (1.1) are known. The random term
is Zu + e, with variance var[Zu + e] = ZVuZ′ + Ve = V. We transform the model to have uncorrelated
random terms and common variance equal to 1, i.e.

V−1/2y = V−1/2Xβ+V−1/2(Zu +e).

Assuming thaty∗ = V−1/2y, e∗ = V−1/2(Zu +e) andX∗ = V−1/2X; the model is

y∗ = X∗β+e∗

3



4 Chapter 1. Linear mixed models

with var[e∗] = V−1/2var[Zu +e]V−1/2 = V−1/2VV−1/2 = In. Therefore, one can apply the ordinary least
squared method, i.e.

β̂ = argminβ(e∗′e∗).

We observe that

e∗′e∗ =
(

V−1/2y−V−1/2Xβ
)′(

V−1/2y−V−1/2Xβ
)

= (y−Xβ)′ V−1(y−Xβ) = y′V−1y−2β′X′V−1y+ β′X′V−1Xβ.

By taking derivatives, we obtain

∂e∗′e∗

∂β
= −2X′V−1y+2X′V−1Xβ.

The normal equations are

X′V−1Xβ = X′V−1y (1.2)

and the solution is
β̂ = (X′V−1X)−1X′V−1y, (1.3)

whenX′V−1X andV are invertible. Under normalitŷβ is also themaximum likelihood estimator(MLE)
of β, i.e.

β̂ = argmaxβ

(
−1

2
(y−Xβ)′V−1(y−Xβ)

)
.

1.1.3 Best linear unbiased prediction of a linear combination of effects

We look at the model (1.1) and defineτ = a′r(Xrβ+Zru), wherear (k×1), Xr (k× p) andZr (k×q) are
known vectors and matrices. Letτ̂ = g′y+g0 be a linear estimator (predictor) ofτ, whereg (n×1) and
g0 (1×1) are such that

1. τ̂ is unbiased, i.e.

E[τ] = a′rXrβ and E[̂τ] = g′Xβ+g0

are equal. Thusg0 = 0 anda′rXr = g′X.

2. τ̂ minimizes the prediction error

E[(̂τ− τ)2] = V (̂τ− τ) = V(g′y−a′rXrβ−a′rZru) = V(g′y−a′rZru)

= g′Vg+a′rZrVuZ′
rar −2g′CZ′

rar ,

whereC = cov(y,u) = ZVu.

Therefore, the problem to be solved is

minimize V (̂τ− τ), restricted toa′rXr = g′X.



1.1. Linear mixed models with known variance 5

Sincea′rZrVuZ′
rar does not depend ong, the Lagrangian function is

L(g,λ) = g′Vg−2g′CZ′
rar +2(g′X −a′rXr)λ.

By taking partial derivatives with respect tog andλ, we obtain

0 =
∂L(g,λ)

∂g
= 2Vg−2CZ′

rar +2Xλ ⇐⇒ Vg+Xλ = CZ′
rar

0 =
∂L(g,λ)

∂λ
= 2g′X −2a′rXr ⇐⇒ g′X = a′rXr

In matrix form, the above equations are
(

V X
X′ 0

)(
g
λ

)
=

(
CZ′

rar

X′
rar

)

If we apply the formula
[

A B
B′ C

]−1

=

[
A−1 0
0 0

]
+

[
−A−1B

I

](
C−B′A−1B

)−1[−B′A−1, I
]
,

with A = V, B = X, C = 0, then we obtain
[

V X
X′ 0

]−1

=

[
V−1 0

0 0

]
−
[
−V−1X

I

](
X′V−1X

)−1[−X′V−1, I
]

=

(
V−1−V−1X(X′V−1X)−1X′V−1 V−1X(X′V−1X)−1

(X′V−1X)−1X′V−1 −(X′V−1X)−1

)

Therefore (
g
λ

)
=

(
V X
X′ 0

)−1(
CZ′

rar

X′
rar

)
,

with
g = V−1CZ′

rar −V−1X(X′V−1X)−1X′V−1CZ′
rar +V−1X(X′V−1X)−1X′

rar .

The best linear unbiased predictor (BLUP) ofτ is

τ̂ = g′y = a′rXr{(X′V−1X)−1X′V−1y}+a′rZrC′V−1y

− a′rZrC′V−1X{(X′V−1X)−1X′V−1y}
= a′r

[
Xr β̂+ZrC′V−1(y−Xβ̂)

]
,

where
β̂ = (X′V−1X)−1X′V−1y

is the least squared estimator ofβ.
As C = cov(y,u) = ZVu, by takingXr = 0, ar = 1(i) = (0, . . . ,0,1(i),0, . . . ,0)′ andZr = I we obtain

ûi = 1′(i)VuZ′V−1(y−Xβ̂), i = 1, . . . ,q,

or equivalently
û = VuZ′V−1(y−Xβ̂).
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1.1.4 Best linear unbiased prediction of u

Thebest linear unbiased predictor(BLUP) of u is

û = VuZ′V−1
(

y−Xβ̂
)

. (1.4)

The predictor (1.4) has the following properties:

• “Best” in the sense that minimizesE[(û−u)′A(û−u)] for any given positive definite matrixA.

• Linear with respect toy.

• Unbiased:E[û−u] = 0.

For more details see Searle (1971), 458-462, or chapter 7 of Searle et al. (1992).

1.2 Linear mixed models with unknown variances

Let us consider the mixed model

y = Xβ+Z1u1+ . . .+Zmum+e, (1.5)

wherey = (y1, . . . ,yn)
′ is the vector of sample observations,β = (β1, . . . ,βp)

′ is the vector of fixed effects,
andui = (ui1, . . . ,uiqi

)′ is the vector containing the effects of theqi levels of thei-th random factor. The
expressioni-th random factor is used to denote the vectorui. Finally, e = (e1, . . . ,en)

′ is the vector
of sampling errors, andX, Z1, . . . ,Zm are design matrices with dimensionsn× p, n× q1, . . . ,n× qm

respectively.
The model (1.5) can be written in the form (1.1) if we define

Z = [Z1, . . . ,Zm] and u = [u′
1, . . . ,u

′
m]′, q =

m

∑
i=1

qi .

The following assumptions ensure that the model parametersare estimable.

(F1) u1, . . . ,um, eare independent, and

e∼ N n(0,σ2
0Σe), ui ∼ N qi (0,σ2

i Σui ), i = 1, . . . ,m,

with Σe andΣui , i = 1, . . . ,m, known.

(F2) r(X) = p.

Note The assumption (F2) always holds if an adequate re-parametrization of the model is made.

The next hypothesis states that the number of observations should be greater than the number of param-
eters.
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(F3) n≥ p+m+1 .

If assumption (F4) holds, then the fix effects are not confused with the random effects of any factors.

(F4) r(X : Z i) > p, i = 1, . . . ,m.

Assumption (F5) ensures that random effects of a factor are not confused with random effects of other
factors. LetG0 = Σe andGi = Z iΣui Z

′
i, i = 1, . . . ,m.

(F5) G0,G1, . . . ,Gm are linearly independent, then,

m

∑
i=0

αiGi = 0 =⇒ αi = 0, i = 0,1, . . . ,m.

Finally, assumption (F6) states thatZ i, i = 1, . . . ,m, are standard design matrices.

(F6) Z i has only 0’s and 1’s. In each row there is exactly one 1, and in each column there is at least one
1, i = 1, . . . ,m.

This assumption implies thatZ′
iZ i is a qi × qi nonsingular diagonal matrix, r(Z i) = qi andqi ≤ n, i =

1, . . . ,m.

Another consequence of the previous assumption is that

y ∼ N n(Xβ,V), with V =
m

∑
i=0

σ2
i Gi .

Let σ = (σ2
0,σ2

1, . . . ,σ2
m)′. When necessary, we will emphasize the dependency ofV on σ by writing

V(σ). LetM = p+m+1 and letθ′ = (β′,σ′) be the vector of unknown parameters. The parameter space
is

Θ = {θ′ = (β′,σ′);β ∈ Rp;σ2
0 > 0;σ2

i ≥ 0, i = 1, . . . ,m} . (1.6)

The likelihood ofθ, given a vector of observationsy, is denoted in the same way as the joint density
function ofy givenθ, i.e.

fθ(y) = (2π)−n/2|V|−1/2 exp

{
−1

2
(y−Xβ)′V−1(y−Xβ)

}
. (1.7)

1.3 Maximum likelihood estimation

1.3.1 Description of the method

The maximum likelihood estimator̂θ = (β̂1, . . . , β̂p, σ̂2
0, . . . , σ̂2

m)′ of θ is the vector satisfying

θ̂ = argmaxθ∈Θ fθ(y) = argmaxθ∈Θ log fθ(y) .
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Note thatl(θ) = log fθ(y). We denote the vector of derivatives asS(θ) = (Sβ,Sσ2
0
, . . . ,Sσ2

m
)′, where

S(θ) =
∂l(θ)

∂θ
=

(
∂l(θ)

∂β
,

∂l(θ)

∂σ2
0

, . . . ,
∂l(θ)

∂σ2
m

)′
.

If θ̂ exists in the interiorΘ, then it is the solution of the likelihood equations which are obtained by
equating to zero the components of the vector of scores. By deriving the log-likelihood with respect to
the parameters we obtain the score components of model (1.5), i.e.

Sβ = X′V−1(y−Xβ) , (1.8)

Sσ2
i
= −1

2
∂ log|V|

∂σ2
i

− 1
2
(y−Xβ)′

∂V−1

∂σ2
i

(y−Xβ), i = 0,1, . . . ,m.

We know that

∂ log|V|
∂σ2

i

= tr

{
V−1 ∂V

∂σ2
i

}
, (1.9)

∂V−1

∂σ2
i

= −V−1 ∂V
∂σ2

i

V−1 . (1.10)

Since∂V/∂σ2
i = Gi,we have

Sσ2
i
= −1

2
tr{V−1Gi}+

1
2
(y−Xβ)′V−1GiV−1(y−Xβ), i = 0,1, . . . ,m. (1.11)

When we equate (1.8) and (1.11) to zero, we obtain the likelihood equations

X′V−1Xβ = X′V−1y , (1.12)

tr{V−1Gi} = (y−Xβ)′V−1GiV−1(y−Xβ), i = 0,1, . . . ,m. (1.13)

These equations cannot be solved to obtain explicit expressions of the maximum likelihood estimators.
The Newton-Raphson or the Fisher-Scoring algorithms calculate them iteratively, starting with an initial
valueθ0. In each iteration, the Newton-Raphson method updates the estimator ofθ by using the formula

θi+1 = θi −H(θi)−1S(θi),

whereS(θi) is the vector of derivatives andH(θi) is the Hessian matrix ofl(θ), both calculated with the
estimator obtained at the last iterationθi . The elements of the Hessian matrix are obtained by taking new
derivatives, using (1.10) and applying the property that the derivative of the trace of a matrix is the the
trace of the derivative of the matrix, i.e.

∂2l(θ)

∂β∂β′ = −X′V−1X , (1.14)

∂2l(θ)

∂σ2
i ∂β

=
∂2l(θ)

∂β∂σ2
i

= −X′V−1GiV−1(y−Xβ) , (1.15)

∂2l(θ)

∂σ2
j σ2

i

=
1
2

tr{V−1G jV−1Gi}− (y−Xβ)′V−1G jV−1GiV−1(y−Xβ) , (1.16)
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for i, j = 0,1, . . . ,m. We illustrate the calculation of the second sum on (1.16). LetQ = 1
2y′A−1y, where

A−1 = V−1GiV−1. ThenA = VG−1
i V and ∂A

∂σ2
j
= VG−1

i G j +G jG−1
i V. Therefore

∂Q

∂σ2
j

= −1
2

y′A−1 ∂A
∂σ2

j

A−1y = −1
2

y′(V−1GiV−1)[VG−1
i G j +G jG−1

i V](V−1GiV−1)y

= −1
2

y′V−1G jV−1GiV−1y− 1
2

y′V−1GiV−1G jV−1y = −y′V−1G jV−1GiV−1y

The Fisher-scoring method replaces the Hessian matrix by its expectation with the sign changed, that is,
the information of Fisher matrix. The updating formula is

θi+1 = θi +F(θi)−1S(θi),

andF(θi) is the Fisher information matrix defined by

F(θ) = −E[H(θ)],

and evaluated inθi . Taking expectations in (1.14)-(1.16), changing the sign and using the result

E[(y−Xβ)′A(y−Xβ)] = tr{AV} ,

for any not random matrixA, we get the elements of the Fisher information matrix

Fββ = X′V−1X , (1.17)

Fσ2
i β = Fβσ2

i
= 0, i = 0,1, . . . ,m, (1.18)

Fσ2
j σ2

i
=

1
2

tr{V−1GiV−1G j}, i, j = 0,1, . . . ,m. (1.19)

We get

F(θ) =




Fββ 0 0 · · · 0
0 Fσ2

0σ2
0

Fσ2
0σ2

1
· · · Fσ2

0σ2
m

0 Fσ2
1σ2

0
Fσ2

1σ2
1

· · · Fσ2
1σ2

m
...

...
...

. . .
...

0 Fσ2
mσ2

0
Fσ2

mσ2
1

· · · Fσ2
mσ2

m




=

(
F(β) 0

0 F(σ)

)
.

The block structure of matrixF(θ) allows to separate the updating equation separately in two equations

βi+1 = βi +F(βi)−1S(βi), σi+1 = σi +F(σi)−1S(σi).

Finally

βi+1 = βi +(X′V−1(σi)X)−1X′V−1(σi)(y−Xβi) = (X′V−1(σi)X)−1X′V−1(σi)y.
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1.3.2 Maximum likelihood with alternative parametrization

We consider the model (1.5) and the parameters

σ2 = σ2
0, ϕi = σ2

i /σ2
0, i = 1, . . . ,m.

Let σ′ = (σ2,ϕ1, . . . ,ϕm), θ′ = (β′,σ′) andV = σ2(Σe+ ∑m
i=1 ϕiGi) = σ2Σ. The likelihood ofθ, for a

known observation vector, is

fθ(y) = (2π)−n/2(σ2)−n/2|Σ|−1/2 exp

{
− 1

2σ2(y−Xβ)′Σ−1(y−Xβ)

}
.

The likelihood function is

l(θ) = −n
2

log2π− n
2

logσ2− 1
2

log|Σ|− 1
2σ2(y−Xβ)′Σ−1(y−Xβ).

The components of the vector of scores are

Sβ =
1

σ2X′Σ−1(y−Xβ), (1.20)

Sσ2 = − n
2σ2 +

1
2σ4(y−Xβ)′Σ−1(y−Xβ), (1.21)

Sϕi = −1
2

tr(Σ−1Gi)+
1

2σ2(y−Xβ)′Σ−1GiΣ−1(y−Xβ), i = 1, . . . ,m. (1.22)

By makingSβ = 0 andSσ2 = 0 we obtain

β = (X′Σ−1X)−1X′Σ−1y and σ2 =
1
n
(y−Xβ)′Σ−1(y−Xβ).

Partial derivatives of the log-likelihood function are

Hββ = − 1
σ2 X′Σ−1X, Hβσ2 = − 1

σ4 X′Σ−1(y−Xβ),

Hβϕi = − 1
σ2 X′Σ−1GiΣ−1(y−Xβ), Hσ2σ2 = n

2σ4 − 1
σ6 (y−Xβ)′Σ−1(y−Xβ),

Hσ2ϕi
= − 1

2σ4 (y−Xβ)′Σ−1GiΣ−1(y−Xβ),

Hϕiϕ j = 1
2tr(Σ−1G jΣ−1Gi)− 1

σ2 (y−Xβ)′Σ−1G jΣ−1GiΣ−1(y−Xβ).

Taking expectations and changing the sign, we obtain the elements of the Fisher information matrix, i.e.

Fββ = 1
σ2 X′Σ−1X, Fβσ2 = 0, Fβϕi

= 0,

Fσ2σ2 = n
2σ4 , Fσ2ϕi

= 1
2σ2 tr(Σ−1Gi), Fϕiϕ j = 1

2tr(Σ−1G jΣ−1Gi).

1.4 Residual maximum likelihood estimation

1.4.1 Description of the method

Residual maximum likelihood estimation (REML) is introduced to reduce the bias of the maximum like-
lihood estimators of the variance components. For this sake, it transforms the vectory in two independent
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vectorsy⋆
1 = K1y andy⋆

2 = K2y, with the condition that the distribution ofy⋆
1 does not depend on the

fixed effectβ. Let K1 be a matrix such thatK1X = 0. Therefore

E[y⋆
1] = E[K1y] = E[K1(Xβ+Z1u1 + . . .Zmum+e)] = 0.

The vectory⋆
2 is selected to be independent ofy⋆

1. Then it has to satisfy

E[y⋆
1y⋆t

2 ] = K1E[yy′]K ′
2 = K1VK ′

2 = 0.

Rowsk ′ of matrix K1 are calledcontrasts, as they fulfillk ′X = 0. The maximum number of contrasts
linearly independent isn− r(X). We suppose thatX has full rankp, so that rank ofK1 is n− p. Matrix
K2 is selected with rankp.

To introduce matrixK1, we consider the model without random effects

y = Xβ+ ε, with ε ∼ N (0,Σε). (1.23)

The maximum likelihood estimator ofβ in (1.23) is

β̃ =
(
X′Σ−1

ε X
)−1

X′Σ−1
ε y.

We define the transformed vector (normalized residual)

y⋆
1 = Σ−1

ε (y−Xβ̃) = Σ−1
ε
(
y−X(X′Σ−1

ε X)−1X′Σ−1
ε y
)

= K1y,

whereK1 = Σ−1
ε −Σ−1

ε X(X′Σ−1
ε X)−1X′Σ−1

ε . Further we selectK2 = X′V−1.

SinceK1 = K ′
1, it holds that

E[y⋆
1] = E[K1y] =

(
Σ−1

ε −Σ−1
ε X(X′Σ−1

ε X)−1X′Σ−1
ε
)

Xβ = 0,

E[y⋆
2] = E[K2y] = X′V−1Xβ,

V[y⋆
1] = E[y⋆

1y⋆t
1 ] = K1VK 1,

V[y⋆
2] = K2VK ′

2 = X′V−1VV−1X = X′V−1X,

E[y⋆
1y⋆t

2 ] = K1E[yy′]K ′
2 = K1VK ′

2 = K1VV−1X = K1X = 0.

As the maximum number of columns linearly independent ofK1 is n− r(X), after the selection ofn−
r(X) of these columns we can construct a sub-matrixK with the ordern× (n− r(X)) and satisfying
K ′X = 0. We define the vectorsy1 = K ′y andy2 = y⋆

2. Since r(X) = p we have that

y1 ∼ N n−p(0,K ′VK ), y2 ∼ N p(X′V−1Xβ,X′V−1X) are independent.

We defineσ = (σ2
0,σ2

1, . . . ,σ2
m)′ andP = K(K ′VK )−1K ′. The likelihood function ofy1 is

l(σ) = −1
2
(n− p) log2π− 1

2
log|K ′VK |− 1

2
y′1(K

′VK )−1y1,
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whereV = ∑m
i=0σ2

i Gi andy1 = K ′y. By taking partial derivatives with respect toσ2
i , we obtain

Sσ2
i

=
∂l(σ)

∂σ2
i

= −1
2

∂
∂σ2

i

{
log|K ′VK |

}
− 1

2
∂

∂σ2
i

{
y′K (K ′VK )−1K ′y

}

= −1
2

tr
(
(K ′VK )−1K ′GiK

)
+

1
2

y′K(K ′VK )−1(K ′GiK)(K ′VK )−1K ′y

= −1
2

tr(PGi)+
1
2

y′PGiPy.

As
∂P
∂σ2

j

=
∂[K(K ′VK )−1K ′]

∂σ2
j

= −K(K ′VK )−1K ′G jK (K ′VK )−1K ′ = −PG jP,

the second order partial derivatives are

∂l(σ)

∂σ2
i ∂σ2

j

=
1
2

tr (PG jPGi)−y′PG jPGiPy.

If we take expectations and change the sign, we obtain the Fisher information matrix. To calculate this
matrix we use the relationsPX = 0 andPVP = P, and the following result.

If E[y] = µ and var[y] = V, then E[y′Ay] = tr(AV)+µ′Aµ. (1.24)

The elements of the Fisher information matrix are

Fσ2
j σ2

i
= −E

[
∂l(σ)

∂σ2
i ∂σ2

j

]
= −1

2
tr (PG jPGi)+ tr(PG jPGiPV)+ β′X′PG jPGiPXβ

= −1
2

tr (PG jPGi)+ tr(G jPGiPVP) =
1
2

tr (PG jPGi) .

To calculate the residual maximum likelihood estimators, the Fisher-scoring method uses the following
updating formula

σk+1 = σk +F(σk)
−1S(σk) ,

whereF(σk) is the Fisher information matrix calculated inσk. We observe thatF(σ) is a matrix(m+

1)×(m+1); however the Fisher information matrix needed to calculatemaximum likelihood estimators,
F(θ), is (p+m+1)× (p+m+1).

Fisher-scoring algorithm gives the estimate ofσ. If we plug that estimate in the likelihood function
of y2, we consider it as a constant, and we maximize onβ, we get the REML estimators ofβ. The
likelihood function ofy2 is

l(β) = − p
2

log2π− 1
2

log|X′V−1X|− 1
2

(y2−X′V−1Xβ)′
(
X′V−1X

)−1
(y2−X′V−1Xβ).

By taking partial derivatives with respect toβ, and equating to zero, we obtain

0 =
∂l(β)

∂β
= X′V−1X

(
X′V−1X

)−1
(y2−X′V−1Xβ) = X′V−1(y−Xβ).
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Therefore

β̂REML=
(

X′V̂−1X
)−1

y2 =
(

X′V̂−1X
)−1

X′V̂−1y.

whereV̂ = ∑m
i=0 σ̂2

i Gi andσ̂2
0, σ̂2

1, . . . , σ̂2
m are the REML estimators ofσ2

0,σ2
1, . . . ,σ2

m.
By taking again derivatives with respect toβ, we get

Fββ = −E
[
∂2l(β)/∂β∂β′]= X′V̂−1X,

that is the same value ofFββ obtained with the maximum likelihood procedure.

Theorem 1.4.1 implies that residual maximum likelihood method does not depend on the selected
matrix K (with K ′X = 0).

Theorem 1.4.1.Let K ′ be a full rank(n− r)×n matrix. LetV be a symmetric and positive definiten×n
matrix. LetX ann× p matrix with rankr ≤ p. If K ′X = 0, then

K(K ′VK )−1K ′ = P, with P = V−1−V−1X(X′V−1X)−1X′V−1.

1.4.2 Residual maximum likelihood with alternative parametrization

In the model (1.5), we consider the parameters

σ2 = σ2
0, ϕi = σ2

i /σ2
0, i = 1, . . . ,m.

Let ϕ′ = (σ2,ϕ1, . . . ,ϕm), θ′ = (β′,ϕ′) andV = σ2 (Σe+ ∑m
i=1 ϕiGi) = σ2Σ. For the REML method, the

log-likelihood associated to the this parametrization is

l(ϕ) = −1
2
(n− p) log2π− 1

2
(n− p) logσ2− 1

2
log|K ′ΣK |− 1

2σ2y′Py,

whereP= K(K ′ΣK)−1K ′ = Σ−1−Σ−1X(X′Σ−1X)−1X′Σ−1. The components of the vector of scores are

Sσ2 = −n− p
2σ2 +

1
2σ4 y′Py,

Sϕi = −1
2

tr(PGi)+
1

2σ2 y′PGiPy, i = 1, . . . ,m.

Second partial derivatives of the log-likelihood are

Hσ2σ2 = n−p
2σ4 − 1

σ6 y′Py, Hσ2ϕi
= − 1

2σ4 y′PGiPy,
Hϕiϕ j = 1

2tr(PG jPGi)− 1
σ2 y′PG jPGiPy.

By taking expectations, changing the sign and applyingPX = 0 andPΣP= P, we obtain the elements of
the Fisher information matrix

Fσ2σ2 = −n− p
2σ4 +

1
σ4 tr(PΣ) =

n− p
2σ4 , Fσ2ϕi

=
1

2σ2 tr(PGi), Fϕiϕ j =
1
2

tr(PG jPGi).
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Observation 1.4.1.From equationSσ2 = 0, we get

σ̂2 =
1

n− p
y′Py (1.25)

which allows to introduce an algorithm that updatesσ2 with (1.25) and the remaining componentes ofϕ
with

ϕi+1 = ϕi +F(ϕi)−1S(ϕi).

1.5 The Henderson 3 method

1.5.1 Description of the method

The maximum likelihood method gives at the same time the estimates of models coefficientsβ and
components of varianceσ2

1, . . . ,σ2
m. In this section we present themethod of fitting constantsto estimate

the components of variance. The regression parameterβ is estimated by the least squared method and
random effects are predicted by using the BLUP theory, but replacing the components of variance by
its obtained estimates. The predictor ofu is called EBLUP (empirical BLUP). The method of fitting
constants is also known asHenderson 3 methodsince its introduction by Henderson (1953). We write
the general linear mixed model,y = Xβ+e, in the form

y = X1β1 +X2β2 +e, (1.26)

wheree∼ N(0,σ2
0W−1) and W is a known symmetric and positive definite matrix. We assume that

X′WX andX′
1WX1 are invertible. The partition simply dividesβ in two groups of effectsβ1 andβ2,

without taking into account if they represent fixed or randomeffects. This issue will be considered later.
We apply the transformation

W1/2y = W1/2X1β1 +W1/2X2β2 +W1/2e

and we denotey∗ = W1/2y, X∗
1 = W1/2X1, X∗

2 = W1/2X2 ande∗ = W1/2e. The new model is

y∗ = X∗
1β1 +X∗

2β2 +e∗, (1.27)

with e∗ ∼ N(0,σ2
0In).

If we fit the model (1.27) under the assumption thatβ1 and β2 are fixed effects, the total sum of
squares is

SST= y∗′y∗ = y′Wy. (1.28)

The residual sum of squares is
SSE(β1,β2) = y′My , (1.29)

whereM = [In−X(X′WX)−1X′W]′W[In−X(X′WX)−1X′W]. The reduction of sum of squares (regres-
sion sum of squares) is

SSR(β1,β2) = SST−SSE(β1,β2) = y′Qy,
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whereQ = WX(X′WX)−1X′W.

If we fit the submodel

y∗ = X∗
1β1 +e∗,

under the assumption thatβ1 is a fixed effect, the residual sum of squares is

SSE(β1) = y′M1y, (1.30)

where M1 = [In − X1(X′
1WX1)

−1X′
1W]′W[In − X1(X′

1WX1)
−1X′

1W]. The reduction of the sum of
squares (regression sum of squares) is

SSR(β1) = SST−SSE(β1) = y′Q1y,

whereQ1 = WX1(X′
1WX1)

−1X′
1W. The reduction of the sum of squares because of the introduction of

X2 in the model, that only hadX1, is

SSR(β2|β1) = SSR(β1,β2)−SSR(β1) = SSE(β1)−SSE(β1,β2).

To introduce the Henderson 3 method, we first calculate the expectation ofSSR(β2|β1) andSSR(β1,β2).
In a second step we modify these statistics to make them unbiased. Note that all the considered sums
of squares are quadratic functions ofy, so that we will apply (1.24) systematically. For a general linear
modely = Xβ + e, whereβ may contain fixed or random effects, we haveE[y] = XE[β] and var[y] =

Xvar[β]X′ + σ2
0W−1. From (1.24), we obtain

E[y′Qy] = tr
(
Q
[
Xvar[β]X′ + σ2

0W
−1])+E[β]′X′QXE[β]

= tr
(
QXvar[β]X′)+ σ2

0tr
(
QW−1)+ tr

(
QXE[β]E[β]′X′)

= tr
(
QXE[ββ′]X′)+ σ2

0tr
(
QW−1)

= tr
(
X′QXE[ββ′]

)
+ σ2

0tr
(
QW−1) .

The expectation of the total sum of squares appearing in (1.28) is

E[SST] = E[y′Wy] = tr
(
X′WXE[ββ′]

)
+ σ2

0tr (In) = tr
(
X′WXE[ββ′]

)
+nσ2

0 (1.31)

The expectation of the sum of residual squares in (1.29) is

E[SSE(β1,β2)] = E[y′My ] = tr
(
X′MX E[ββ′]

)
+ σ2

0tr
(
MW −1) .

This expression can be simplified if we take into account that

X′MX = X′[In−X(X′WX)−1X′W]′W[In−X(X′WX)−1X′W]X = X′WX

− 2X′WX(X′WX)−1X′WX +X′WX(X′WX)−1X′WX(X′WX)−1X′WX

= 0
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and

MW −1 = [In−X(X′WX)−1X′W]′W[In−X(X′WX)−1X′W]W−1

= [In−X(X′WX)−1X′W]′[In−WX(X′WX)−1X′]

= In−2WX(X′WX)−1X′ +WX(X′WX)−1X′WX(X′WX)−1X′

= In−WX(X′WX)−1X′,

SinceX′WX(X′WX)−1 is equal to the identity, we obtain that

tr
(
MW −1) = tr

(
In−WX(X′WX)−1X′)= n− tr

(
X′WX(X′WX)−1)

= n− p = n− r(X) ,

where r(X) denotes the rank ofX. This result can be proved in the case r(X) < p too. Therefore

E[SSE(β1,β2)] = σ2
0 [n− r(X)] (1.32)

and also with (1.31) and (1.32) we obtain that

E[SSR(β1,β2)] = E[SST]−E[SSE(β1,β2)] = tr
(
X′WXE[ββ′]

)
+ σ2

0r(X).

From the model (1.26) it follows that

X′WX =

(
X′

1

X′
2

)
W (X1, X2) =

(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX2

)
,

consequently

E[SSR(β1,β2)] = tr

{(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX2

)
E[ββ′]

}
+ σ2

0r(X). (1.33)

From (1.30) and (1.24) we obtain

E[SSE(β1)] = tr
{

X′M1XE[ββ′]
}

+ σ2
0tr
{

M1W−1}

= tr
{

X′M1XE[ββ′]
}

+ σ2
0 [n− r{X1}] . (1.34)

From (1.31) and (1.34), we have that

E[SSR(β1)] = E[SST]−E[SSE(β1)] = tr
{

X′Q1XE[ββ′]
}

+ σ2
0r{X1} ,

whereQ1 = W −M1 = WX1(X′
1WX1)

−1X′
1W. If X′

1WX1 is invertible, then

X′Q1X =

(
X′

1

X′
2

)
WX1(X′

1WX1)
−1X′

1W (X1 X2)

=

(
X′

1WX1 X′
1WX1(X′

1WX1)
−1X′

1WX2

X′
2WX1(X′

1WX1)
−1X′

1WX1 X′
2WX1(X′

1WX1)
−1X′

1WX2

)

=

(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX1(X′
1WX1)

−1X′
1WX2

)
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and

E[SSR(β1)] = tr

{(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX1(X′
1WX1)

−1X′
1WX2

)
E[ββ′]

}
+ σ2

0r(X1). (1.35)

Therefore, applying (1.33) and (1.35), we obtain

E[SSR(β2|β1)] = E[SSR(β1,β2)]−E[SSR(β1)]

= tr

{(
0 0
0 X′

2W[W−1−X1(X′
1WX1)

−1X′
1]WX2

)
E[ββ′]

}
+ σ2

0[r(X)− r(X1)]

= tr
{

X′
2W[W−1−X1(X′

1WX1)
−1X′

1]WX2E[β2β2
′]
}

+ σ2
0[r(X)− r(X1)]. (1.36)

We observe thatE [SSR(β2|β1)] is simply a function ofE
[
β2β′

2

]
and σ2

0. It does not depend on
E
[
β1β′

1

]
andE

[
β1β′

2

]
. We also observe that (1.36) has been obtained without doingassumptions about

the form ofE
[
ββ′]. Therefore (1.36) holds for any structure of covariance matrix of β.

Let us consider again the model (1.5)

y = Xβ+Z1u1 + . . .+Zmum+e,

with e∼ N n(0,σ2
0W−1), andui ∼ N qi (0,σ2

i Iqi ), i = 1, . . . ,m. We define

β(i) = (β′,u′
1, . . . ,u

′
i−1)

′ y u(i) = (u′
i, . . . ,u

′
m)′ .

For i = 1, . . . ,m we consider the case

X1 = X(i)
1 = (X,Z1, . . . ,Z i−1), β1 = β(i),

X2 = X(i)
2 = (Z i , . . . ,Zm), β2 = u(i)

and define

M i = W −WX (i)
1 (X(i)t

1 WX (i)
1 )−1X(i)t

1 W,

L i = Z′
iW[W−1−X(i)

1 (X(i)t
1 WX (i)

1 )−1X(i)t
1 ]WZ i .

Then (1.32) and (1.36) becomes

E[SSE(β(i),u(i))] = E[SSE(β,u)] = σ2
0[n− r(X Z)] (1.37)

E[SSR(u(i)|β(i))] =
m

∑
k=i

tr{L k}σ2
k + σ2

0[r(X Z)− r(X,Z1, . . . ,Z i−1)] (1.38)

From (1.37) and (1.38), and applying the method of moments, we get the following linear and triangular
system of equations.

SSE(β,u) = σ2
0[n− r(X,Z1, . . . ,Zm)]

SSR(u(m)|β(m)) = σ2
0[r(X Z)− r(X,Z1, . . . ,Zm−1)]+σ2

mtr{Lm}
SSR(u(m−1)|β(m−1)) = σ2

0[r(X Z)− r(X,Z1, . . . ,Zm−2)]+σ2
mtr{Lm}+ σ2

m−1tr{Lm−1}
...

SSR(u(1)|β(1)) = σ2
0[r(X Z)− r(X)]+

m

∑
i=1

σ2
i tr{L i}
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From the first equation we obtain an unbiased estimator ofσ2
0,

σ̂2
0 =

SSE(β,u)

n− r(X Z)
= MSE(β,u). (1.39)

From the second equation we get an unbiased estimator ofσ2
m,

σ̂2
m =

SSR(u(m)|β(m))− σ̂2
0[r(X Z)− r(X,Z1, . . . ,Zm−1)]

tr{Lm}
. (1.40)

From the third equation we get an unbiased estimator ofσ2
m−1,

σ̂2
m−1 =

SSR(u(m−1)|β(m−1))− σ̂2
0[r(X Z)− r(X,Z1, . . . ,Zm−2)]− σ̂2

mtr{Lm}
tr{Lm−1}

,

and so on.
As SSR(u(i)|β(i)) = SSE(β(i))−SSE(β(i),u(i)) = SSE(β(i))−SSE(β,u), then the previous formula

can be expressed as a function of residual sum of squares. That is,

σ̂2
0 =

y′Mm+1y

n− r(X(m+1)
1 )

σ̂2
m =

y′Mmy−y′Mm+1y− σ̂2
0

[
r(X(m+1)

1 )− r(X(m)
1 )

]

tr(Lm)

...
...

σ̂2
i =

y′M iy−y′Mm+1y− σ̂2
0

[
r(X(m+1)

1 )− r(X(i)
1 )
]
−∑m

j=i+1 σ̂2
j tr(L j)

tr(L i)

...
...

σ̂2
1 =

y′M1y−y′Mm+1y− σ̂2
0

[
r(X(m+1)

1 )− r(X(1)
1 )
]
−∑m

j=2 σ̂2
j tr(L j)

tr(L1)

For more details see the Searle at al. (1992), 202-208, or Searle (1971), 443-445. If we replace the
variance componentsσ2

0,σ2
1, . . . ,σ2

m by their estimatorŝσ2
0, σ̂2

1, . . . , σ̂2
m in (1.3) and (1.4), we obtain the

estimator ofβ and the predictorsu1, . . . ,um.

Observation 1.5.1. If we use the alternative parametrization the system of equations is not linear any
more. Consequently, by solving the transformed system one does not obtain unbiased estimators.

1.6 The area-level Fay-Herriot model

1.6.1 The model

Let us introduce the following notations and assumptions:
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1. Let xd = (xd1, . . . ,xdp) be known vectors containing explanatory variables for the target variable
µd = Yd·, d = 1, . . . ,D, whereYd· is the domain mean of variabley.

2. Assume that theµd’s are independent with distributionN(xd β,σ2
u), whereβ is a vector of dimen-

sion p containing the regression parameters, i.e.µ= (µ1, . . . ,µD)′ ∼ N(Xβ,Σu) with Σu = σ2
uID.

3. Lety = (y1·, . . . ,yD·)
′ be a vector of direct estimators ofµ with distributionN(µ,Ve), whereVe =

diag(σ2
1, . . . ,σ2

D) and the diagonal elementsσ2
d are assumed to be known.

The area-level Fay-Herriot model is

yd· = µd +ed y µd = xd β+ud, d = 1, . . . ,D, (1.41)

wheree = (e1, . . . ,eD) and u = (u1, . . . ,uD) are independent with distributionN(0,Ve) and N(0,Σu)

respectively. If we write (1.41) in the formXβ+Zu +e, we get



y1·
...

yD·


=




x11 . . . x1p
...

...
...

xD1 . . . xDp







β1
...

βp


+




u1
...

uD


+




e1
...

eD


 .

It holds thatZ = ID, tr(Z′Z) = D, r(X,Z) = D, Cov[y,u] = ZΣu,

V = var(y) = ZΣuZ′ +Ve = Σu +Ve = diag(σ2
u + σ2

1, . . . ,σ
2
u + σ2

D),

and
V−1 = diag((σ2

u + σ2
1)

−1, . . . ,(σ2
u + σ2

D)−1).

If σ2
u is known, then the best linear unbiased estimator (BLUE) andpredictor (BLUP) ofβ = (β1, . . . ,βp)

′

andu = (u1, . . . ,uD)′ are

β̃ = (X′V−1X)−1X′V−1y and ũ = ΣuZ′V−1
(

y−Xβ̃
)

.

It is easy to check that the components ofũ are

ũd =
σ2

u

σ2
u+ σ2

d

(
yd·−xdβ̃

)
, d = 1, . . . ,D,

wherexd is the rowd of matrix X.
The BLUP ofµd = xdβ+ud is

Ŷ
blup

d = µ̃d = xdβ̃+ ũd = xdβ̃+
σ2

u

σ2
u+ σ2

d

(
yd·−xdβ̃

)
=

σ2
u

σ2
u+ σ2

d

yd· +
σ2

d

σ2
u + σ2

d

xdβ̃ (1.42)

Proposition 1.6.1.The best predictor ofµd is

E[µd|yd·] =
σ2

u

σ2
u+ σ2

d

yd· +
σ2

d

σ2
u + σ2

d

xdβ,
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so that the BLUP can be obtained from the BP substitutingβ by β̃.
Proof. As yd· ∼ N(xdβ,σ2

u + σ2
d), yd·|ud ∼ N(xdβ+ud,σ2

d) andud ∼ N(0,σ2
u), then

f (ud|yd·) ∝ f (yd·|ud) f (ud) =
1

σ2
d

√
2π

exp
{
− 1

2σ2
d

(yd −xdβ−ud)
2} 1

σ2
u

√
2π

exp
{
− 1

2σ2
u
u2

d

}

∝ exp



− 1

2
σ2

dσ2
u

σ2
d+σ2

u

[
u2

d −2
σ2

u

σ2
d + σ2

u
(yd·−xdβ)ud

]
 ,

which corresponds to a normal distribution with meanE[ud|yd·] =
σ2

u
σ2

d+σ2
u
(yd·−xdβ) and variance var[ud|yd·] =

σ2
dσ2

u

σ2
d+σ2

u
. Therefore

E[µd|yd·] = xdβ+E[ud|yd·] = xdβ+
σ2

u

σ2
d + σ2

u
(yd·−xdβ) =

σ2
u

σ2
u + σ2

d

yd· +
σ2

d

σ2
u + σ2

d

xdβ.

Definition 1.6.1. The empirical BLUP (EBLUP) of the domain meanYd, under the model (1.41) is
obtained plugging an estimatorσ̂2

u in the place ofσ2
u por un estimador̂σ2

u, i.e.

Ŷ
FH

d =
σ̂2

u

σ̂2
u + σ2

d

yd· +
σ2

d

σ̂2
u + σ2

d

xdβ̂ (1.43)

in the case that theσ2
d’s are known, or

Ŷ
FH

d =
σ̂2

u

σ̂2
u+ σ̂2

d

yd· +
σ̂2

d

σ̂2
u + σ̂2

d

xdβ̂, (1.44)

with σ̂2
d = V̂ (yd·), d = 1, . . . ,D, otherwise.

1.6.2 Random effect variance estimation

We consider three procedures for estimatingσ2
u: (1) Moments, (2) Maximum likelihood, and (3) residual

maximum likelihood.

The method of moments

An unbiased estimator ofσ2
u 1s

σ̂2
u =

1
D− p




D

∑
d=1

ũ2
d −

D

∑
d=1

σ2
d


1−xd

(
D

∑
d=1

x′dxd

)−1

x′d




 ,

whereũd = yd −xdβ̃ andβ̃ = (X′X)−1X′y =
(
∑D

d=1 x′dxd
)−1(

∑D
d=1 x′dyd

)
.

It may occur that̂σ2
u takes negative values, butPr(σ̂2

u ≤ 0) tends to 0 whena→ ∞. If σ̂2
u is negative,

we equate it to zero and we define
σ̃2

u = max
{

σ̂2
u, 0
}

(1.45)
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Maximum likelihood method

In what follows we particularize the results of Section 1.3 to the casem= 1, q1 = D, σ2
1 = σ2

u, Ω1 = ID.
It holds thaty ∼ N(Xβ,V), with covariance matrixV = diag1≤d≤D(σ2

u + σ2
d). The log-likelihood is

ℓ(σ2
u,β;y) = −D

2
ln2π− 1

2
ln |V|− 1

2
(y−Xβ)′V−1(y−Xβ).

The partial derivatives of the log-likelihood are

Sβ = X′V−1(y−Xβ) =
D

∑
d=1

x′d
1

σ2
u + σ2

d

(yd −xdβ),

Sσ2
u

= −1
2

tr(V−1Gu)+
1
2
(y−Xβ)′V−1GuV−1(y−Xβ)

= −1
2

D

∑
d=1

1

σ2
u+ σ2

d

+
1
2

D

∑
d=1

1

(σ2
u + σ2

d)
2
(yd −xdβ)2,

whereGu = ∂V/∂σ2
u = ID. To calculate the second order partial derivatives we use the formulas (1.14)-

(1.16) to obtain

Hββ = −X′V−1X, Hβσ2
u
= −X′V−2(y−Xβ),

Hσ2
uσ2

u
=

1
2

tr(V−2)− (y−Xβ)′V−3(y−Xβ).

The components of the Fisher information matrix are

Fββ = X′V−1X =
D

∑
d=1

1

σ2
u + σ2

d

x′dxd, Fβσ2
u
= Fσ2

uβ = 0,

Fσ2
uσ2

u
= −1

2
tr(V−2)+ tr(V−3V) =

1
2

tr(V−2) =
1
2

D

∑
d=1

1

(σ2
u + σ2

d)
2
.

Observation 1.6.1.Let
T = (V−1

e + σ−2
u ID)−1 = σ2

uID −σ4
uV

−1.

Applying the formula

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1

with A = σ−2
u ID, B = ID, C = V−1

e = diag1≤d≤D(σ−2
d ) andD = ID, we get

T = σ2
uID −σ4

uV−1 y V−1 =
σ2

uID −T
σ4

u
.

Therefore

Fσ2
uσ2

u
=

1
2σ8

u
tr
(
(σ2

uId −T)2)=
1

2σ4
u

(
D− 2

σ2
u
tr(T)+

1
σ4

u
tr(T2)

)
.
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The updating formulas of the Fisher-scoring algorithm are

σ2(k+1)
u = σ2(k)

u +F−1

σ2(k)
u σ2(k)

u
Sσ2(k)

u
, β(k+1) = β(k) +F−1

β(k)β(k)Sβ(k) .

Residual maximum likelihood method

In what follows we particularize the results of Section 1.4 to the casem= 1, q1 = D, ϕ1 = σ2
u, σ2 = 1,

Ω1 = ID. The REML log-likelihood is

ℓR(σ2
u;y) = −D− p

2
log2π+

1
2

log|X′X|− 1
2

log|V|− 1
2

log|X′V−1X|− 1
2

y′Py,

whereP = V−1−V−1X(X′V−1X)−1X′V−1. It holds that

y′
∂P
∂σ2

u
y = −(y−Xβ̂)′V−1V−1(y−Xβ̂) = −

D

∑
d=1

1

(σ2
u + σ2

d)
2
(yd −xdβ̂)2,

and

P =
1

σ2
u

(
ID − 1

σ2
u
R
)

, tr(P) =
1

σ2
u

[
D− 1

σ2
u
tr(R)

]
,

where

R = T +M , M = TV−1
e X(X′V−1X)−1X′V−1

e T,

T =
(
V−1

e + σ−2
u ID

)−1
= diag1≤d≤D

(
σ2

uσ2
d

σ2
u+ σ2

d

)
.

First order derivative of the log-likelihood is

∂ℓR

∂σ2
u

= −1
2

tr(P)− 1
2

y′
∂P
∂σ2

u
y = − 1

2σ2
u

[
D− 1

σ2
u
tr(R)

]
+

1
2

D

∑
d=1

1

(σ2
u + σ2

d)
2
(yd −xdβ̂)2.

Second order derivative of the log-likelihood is

∂2ℓR

∂σ2
u∂σ2

u
=

1
2

tr(P2)−y′P3y

As PVP = P, the Fisher amount of information associated toσ2
u is

Fσ2
u
= −1

2
tr(P2)+ tr(P3V) =

1
2

tr(P2) =
1

2σ4
u

[
D− 2

σ2
u
tr(R)+

1
σ4

u
tr(R2)

]
.

The REML estimators may be obtained by applying the following Fisher-scoring algorithm.

1. Set the seedŝσ2
u,0 = σ̃2

u = max{σ̂2
u,0} andβ̂0 = β̃, whereσ̂2

u andβ̃ are the moment estimators given
by (1.45).
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2. Fork = 1,2, . . ., do

β̂k =

(
D

∑
d=1

x′dxd

σ̂2
u,k−1 + σ2

d

)−1( D

∑
d=1

x′dyd

σ̂2
u,k−1 + σ2

d

)
, σ̂2

u,k = σ̂2
u,k−1 +F−1

k−1Sk−1,

whre

Sk = − 1

2σ̂2
u,k

(
D− tr(R̂k)

σ̂2
u,k

)
+

1
2

D

∑
d=1

1

(σ̂2
u,k + σ2

d)
2
(yd −xdβ̂k)

2,

Fk =
1

2σ̂4
u,k

(
D− 2

σ̂2
u,k

tr{R̂k}+
1

σ̂4
u,k

tr{R̂2
k}
)

,

tr{R̂k} = tr(T̂k)+ tr(M̂ k), tr{R̂2
k} = tr(T̂2

k)+2tr(T̂kM̂ k)+ tr(M̂2
k),

tr(T̂k) =
D

∑
d=1

σ̂2
u,kσ2

d

σ̂2
u,k + σ2

d

, tr(T̂2
k) =

D

∑
d=1

σ̂4
u,kσ4

d

(σ̂2
u,k + σ2

d)
2
,

tr(M̂ k) = tr



(

D

∑
d=1

σ̂4
u,kx

′
dxd

(σ̂2
u,k + σ2

d)
2

)(
D

∑
d=1

x′dxd

σ̂2
u,k + σ2

d

)−1

 ,

tr(T̂kM̂ k) = tr



(

D

∑
d=1

σ̂6
u,kσ2

dx′dxd

(σ̂2
u,k + σ2

d)
3

)(
D

∑
d=1

x′dxd

σ̂2
u,k + σ2

d

)−1

 ,

tr(M̂2
k) = tr








(
D

∑
d=1

σ̂4
u,kx

′
dxd

(σ̂2
u,k + σ2

d)
2

)(
D

∑
d=1

x′dxd

σ̂2
u,k + σ2

d

)−1




2

 .

3. Stop if |σ̂2
u,k − σ̂2

u,k−1| < ε and
[
(β̂k− β̂k−1)

′(β̂k− β̂k−1)
]1/2

< ε. Output: β̂ML = β̂k, ûd = ûd,k and

σ̂2
u,ML = σ̂2

u,k

Alternatively the following algorithm can be used.

1. Set the seedŝσ2
u,0 = σ̃2

u = max{σ̂2
u,0} andβ̂0 = β̃, whereσ̂2

u y β̃ are the moment estimators given
by (1.45).

2. Fork = 1,2, . . ., do

β̂k =

(
D

∑
d=1

x′dxd

σ̂2
u,k−1 + σ2

d

)−1( D

∑
d=1

x′dyd

σ̂2
u,k−1 + σ2

d

)
,

ûd,k =
σ̂2

u,k−1

(σ̂2
u,k−1 + σ2

d)
(yd −xdβ̂k−1), tr(T̂k) =

D

∑
d=1

σ̂2
u,kσ2

d

σ̂2
u,k + σ2

d

,

σ̂2
u,k =

∑D
d=1 û2

d,k

D− 1
σ̂2

u,k−1
tr(Tk−1))

.
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3. Stop when|σ̂2
u,k− σ̂2

u,k−1| < ε and
[
(β̂k− β̂k−1)

′(β̂k− β̂k−1)
]1/2

< ε. Output: β̂ML = β̂k, ûd = ûd,k

y σ̂2
u,ML = σ̂2

u,k

1.7 The EBLUP and its mean squared error

1.7.1 Introducción

Let us consider model (1.1) withN in the place ofn. Let s andr denote subsets of{1, . . . ,N} with sizes
n andk respectively. Subsets contains the indexes of observed componentes of vectory and subsetr
is used to define a linear combination of fixed and random effects. Note that we do not assume that
n+k = N holds. let us defineτ = a′r(Xrβ +Zru), wherear is a vector containing known constants. We
are interested in predictingτ by using the EBLUP.

We consider 3 cases:

1. β, θ0,θ1, . . . ,θm are known,

2. θ0,θ1, . . . ,θm are known,β is unknown,

3. All the model parameters are unknown.

All the model parameters are known

Assume thatβ andθ0,θ1, . . . ,θm are known. The BLUP ofτ is

τ̃ = a′r(Xrβ+Zr ũ), with ũ = C′
sV

−1
s (ys−Xsβ)

whereCs =Cov(ys,u) = ZsVu. The prediction error is thus̃τ−τ = a′rZr(ũ−u). The mean squared error
is

MSE(̃τ) = E[(̃τ− τ)2] = V (̃τ− τ) = a′rZrVar(ũ−u)Z′
rar

It holds that

Var(ũ−u) = Var(ũ)+Var(u)−2Cov(ũ,u) = C′
sV

−1
s VsV−1

s Cs+Vu−2C′
sV

−1
s Cs

= Vu−VuZ′
sV

−1
s ZsVu.

We know thatV−1
s = (Ves+ZsVuZ′

s)
−1. By using the inversion formula

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1, (1.46)

we get
V−1

s = V−1
es −V−1

es Zs(V−1
u +Z′

sV
−1
es Zs)

−1Z′
sV

−1
es .

We can writeVs as a function ofTs = (V−1
u +Z′

sV
−1
es Zs)

−1 in the following manner

V−1
s = V−1

es −V−1
es ZsTsZ′

sV
−1
es .
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Similarly, by applying (1.46) toTs we get

Ts = Vu−VuZ′
s(Ves+ZsVuZ′

s)
−1ZsVu = Vu−VuZ′

sV
−1
s ZsVu

Therefore

Var(ũ−u) = Ts.

and

MSE(̃τ) = a′rZrTsZ′
rar , g1(θ).

The variance components are known but the regression parameters are unknown

In this case we assume thatθ0,θ1, . . . ,θm are known, butβ is unknown. Let us defineQs = (X′
sV

−1
s Xs)

−1

andCs = Cov(ys,u) = ZsVu. The BLUP ofτ is

τ̂blup = a′r(Xr β̂+Zr û),

where

û = C′
sV

−1
s (ys−Xsβ̂) y β̂ = (X′

sV
−1
s Xs)

−1X′
sV

−1
s ys = QsX′

sV
−1
s ys.

It holds that

MSE(̂τblup) = g1(θ)+g2(θ),

g1(θ) = a′rZrTsZ′
rar ,

g2(θ) = [a′rXr −a′rZrTsZ′
sV

−1
es Xs]Qs[X′

rar −X′
sV

−1
es ZsTsZ′

rar ].

All the parameters are unknown

When the componentes ofθ = (θ0,θ1, . . . ,θm) are known, the BLUP ofτ is τ̂blup = τ(θ). If θ is unknown,
then it is replaced by an estimator to obtain the EBLUP ofτ, i.e.

τ̂eblup= τ(θ̂).

The mean squared error ofτ̂eblup is

MSE(̂τeblup) = E
[
(̂τeblup− τ̂blup+ τ̂blup− τ)2]

= MSE(̂τblup)+E
[
(̂τeblup− τ̂blup)

2]+2E [(̂τeblup− τ̂blup)(̂τblup− τ)] .

Kackar and Harville (1981) showed that ifE[τ(θ)] is finite andθ̂ is an even and translation invariante
(as the Henderson 3, Ml and REML estimators are), thenτ̂eblup= τ(θ̂) is unbiased. Further, under these
assumptions, Kackar and Harville (1984) proved that

E [(̂τeblup− τ̂blup)(̂τblup− τ)] = 0. (1.47)
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Here we assume that (1.47) holds, so that

MSE(̂τeblup) = MSE(̂τblup)+E
[
(̂τeblup− τ̂blup)

2] . (1.48)

In what follows an approximation to

E
[
(̂τeblup− τ̂blup)

2] .

is given. For this sake, consider an admisible valueγ = (γ0,γ1, . . . ,γm) of θ and defined(θ)= (d0(θ),d1(θ), . . . ,dm(θ))′,
where

d j(θ) =
∂τ(γ)
∂γ j

∣∣∣∣∣
θ

, j = 0,1, . . . ,m.

A first order Taylor series expansion ofτ(γ) aroundθ yields to

τ(γ) ≈ τ(θ)+
m

∑
j=0

d j(θ)(γ j −θ j).

By doing the substitutionγ = θ̂, we get

τ̂eblup≈ τ̂blup+
m

∑
j=0

d j(θ)(θ̂ j −θ j) = τ̂blup+d′(θ)(θ̂−θ).

Let us now assume thatθ̂ is asymptotically unbiased, i.e.

E
[
θ̂ j −θ j

]
−→ 0
n→∞

, j = 0,1, . . . ,m.

Then

E
[
(̂τeblup− τ̂blup)

2]≈ E
[
(d′(θ)(θ̂−θ))2

]
=

m

∑
i=0

m

∑
j=0

E
[
di(θ)(θ̂i −θi)d j(θ)(θ̂ j −θ j)

]
. (1.49)

Further, it holds

E [d j(θ)] = 0, j = 0,1, . . . ,m.

As d(θ) = d(θ,u) is a random vector, the summand(i, j) in (1.49) is

E
[
di(θ)d j(θ)(θ̂i −θi)(θ̂ j −θ j)

]
= Eθ̂

[
(θ̂i −θi)(θ̂ j −θ j)Ed

[
di(θ)d j(θ) | θ̂

]]
.

Now we have

Ed

[
di(θ)d j(θ) | θ̂

]
= Cov

(
di(θ),d j(θ) | θ̂

)
.

In the case that̂θ is obtained from data independent of the data used to calculate τ̂blup = τ̂(θ), we have
that

Cov
(

di(θ),d j(θ) | θ̂
)

= Cov(di(θ),d j(θ))
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and therefore

E
[
di(θ)d j(θ)(θ̂i −θi)(θ̂ j −θ j)

]
= Cov(di(θ),d j (θ))E

[
(θ̂i −θi)(θ̂ j −θ j)

]

= Cov(di(θ),d j (θ))Cov(θ̂i , θ̂ j)

The second summand in (1.48) can be written as

E
[
(̂τeblup− τ̂blup)

2]=
m

∑
j=0

m

∑
i=0

Cov(di(θ),d j(θ))Cov(θ̂i , θ̂ j) = tr{G(θ)B(θ)} ,

whereG(θ) andB(θ) are the covariance matrices ofd(θ) andθ̂ respectively.

In the case that̂θ and τ̂blup = τ̂(θ) are calculated from the same data, Kackar and Harville (1984)
propose the approximation

E
[
(̂τeblup− τ̂blup)

2]≈ tr{G(θ)B(θ)} .

Therefore an approximation of the MSE ofτ̂eblup is

MSE(̂τeblup) ≈ MSE(̂τblup)+ tr{G(θ)B(θ)} .

Prasad and Rao (1990) gave the new approximation

tr{G(θ)B(θ)} ≈ tr
{
(∇b′)Vs(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
, (1.50)

whereb′ = (b1, . . . ,bn) = a′rZrVuZ′
sV

−1
s ,

∂b′

∂θ j
=

(
∂b1

∂θ j
, . . . ,

∂bn

∂θ j

)
and ∇b′ =




∂b′
∂θ0

∂b′
∂θ1
...

∂b′
∂θm




=




∂b1
∂θ0

. . . ∂bn
∂θ0

∂b1
∂θ1

. . . ∂bn
∂θ1

... . . .
...

∂b1
∂θm

. . . ∂bn
∂θm




(m+1)×n

.

Finally, if the componentes of the vector of variancesθ = (θ0,θ1, . . . ,θm) are know, we have the
approximation

MSE(̂τeblup) = g1(θ)+g2(θ)+g3(θ),

g1(θ) = a′rZrTsZ′
rar .

g2(θ) = [a′rXr −a′rZrTsZ′
sV

−1
es Xs]Qs[X′

rar −X′
sV

−1
es ZsTsZ′

rar ],

g3(θ) ≈ tr
{
(∇b′)Vs(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
.
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1.7.2 Mean squared error estimation

A simple estimator ofMSE(̂τ) is obtained by plugginĝθ in the placeθ to obtain

mse1(̂τeblup) = g1(θ̂)+g2(θ̂)+g3(θ̂). (1.51)

If consistent estimatorŝθ of θ are used, thenE[g2(θ̂)] ∼= g2(θ), E[g3(θ̂)] ∼= g3(θ). However this property
does not hold for forg1.

To evaluate the bias ofg1(θ̂), we expandg1(θ̂) in Taylor series aroundθ. We get

g1(θ̂) ≈ g1(θ)+ (θ̂−θ)′∇g1(θ)+
1
2
(θ̂−θ)′∇2g1(θ)(θ̂−θ) , g1(θ)+ ∆1+ ∆2,

where∇g1(θ) is the vector of first order derivatives ofg1(θ) with respect toθ and∇2g1(θ) is the matrix
of second order derivatives. If̂θ is unbiased forθ, thenE[∆1] = 0. In general, if the termE[∆1] ≈
b′

θ̂
(θ)∇g1(θ) is of inferior order thanE[∆2], wherebθ̂(θ) is an approximation to the biasE[θ̂− θ], then

the following approximation toE[g1(θ̂)] is obtained

E[g1(θ̂)] ≈ g1(θ)+
1
2

tr
(

∇2g1(θ)V[θ̂]
)

, (1.52)

whereV[θ̂] is the asymptotic variance covariance matrix ofθ̂. Further, ifV has a linear structure inθ,
then (1.52) becomes

E[g1(θ̂)] ≈ g1(θ)−g3(θ). (1.53)

From (1.51) and (1.53) we have that the bias ofmse1(̂τeblup) is

E[mse1(̂τeblup)]−MSE(̂τeblup) ≈ (g1(θ)−g3(θ)+g2(θ)+g3(θ))− (g1(θ)+g2(θ)+g3(θ)) = −g3(θ).

ThereforeMSE(̂τeblup) can be estimated with

mse(̂τeblup) = g1(θ̂)+g2(θ̂)+2g3(θ̂). (1.54)

Formula (1.54) is valid if̂θ is estimated by using the Henderson 3 or the REML method, which produces
unbiased or quasi-unbiased estimatorsθ̂ of θ. However for MLE estimatorŝθ we have thatE[∆1] ≈
b′

θ̂
(θ)∇g1(θ) 6= 0. In this caseMSE(̂τeblup) is estimated with

mse(̂τeblup) = g1(θ̂)+g2(θ̂)+2g3(θ̂)−b′
θ̂(θ)∇g1(θ). (1.55)

The termbθ̂(θ) can be calculated more easily ifV is a block diagonal matrix

V = diag(V1, . . . ,Vm)

with

V i = Z iVuiZ′
i +Vei, i = 1, . . . ,m.
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In this case the components of model (1.1) can be written in the formy = (y′1, . . . ,y
′
m)′, X =(X′

1, . . . ,X
′
m)′,

Z = diag(Z1, . . . ,Zm)′, u = (u′
1, . . . ,u

′
m)′, e= (e′1, . . . ,e

′
m)′, whereX i esni × p, Z i esni ×qi , yi esni ×1,

n = ∑m
i=1 ni y q = ∑m

i=1qi . A model of this type can be decomposed inmsubmodels

yi = X iβ+Z iui +ei, i = 1, . . . ,m. (1.56)

Under the model (1.56), if̂θ is the MLE ofθ, an approximation to the bias is (see e.g. Rao (2003))

bθ̂(θ) =
1

2m

{
I −1(θ) col

1≤ j≤m

[
tr

[
m

∑
i=1

(X′
iV

−1
i X i)

−1

(
m

∑
i=1

X′
iV

( j)
i X i

)]]}
,

where col
1≤ j≤m

[a j ] is a column vector with elementsa j , j = 1, . . . ,m,

V( j)
i =

∂V−1
i

∂θ j
= −V−1

i
∂V i

∂θ j
V−1

i and I jk(θ) =
1
2

m

∑
i=1

tr

[(
V−1

i
∂V i

∂θ j

)(
V−1

i
∂V i

∂θk

)]
.

Prasad and Rao (1990) obtained the estimator of ECM given in (1.54) for moments estimators and
special cases of the general linear mixed model with block diagonal covariance matrix. Harville and Jeske
(1992) proposed (1.54) for a more general linear mixed model(1.1), under the hypothesisE[θ̂−θ] = 0.
Das, Jiang and Rao (2001) gave rigorous proofs of approximations (1.54) and (1.55) for ML and REML
estimators. Finally Lahiri and Rao (1995) have studied the robustness of the above cited approximations.
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Chapter 2

EB prediction of non-linear domain
parameters with unit level models

This chapter describes a methodology for obtaining empirical best predictors of general, possibly non-
linear, domain parameters using unit level linear regression models. The proposed method is particu-
larized to FGT poverty measures (Foster et al., 1984) as particular cases of non-linear parameters. The
mean squared error of the proposed estimators is obtained bya parametric bootstrap for finite popula-
tions. This chapter is based on the results of Molina and Rao (2010). The chapter is organizes as follows.
Section 2.1 describes the empirical best predictor of a non-linear population parameter. Section 2.2 is
devoted to the estimation of domain parameters. This is doneunder normality and using a Monte Carlo
approximation of the empirical best predictor. Section 2.3introduces the nested-error model and gives a
fast way for generating multivariate normal vectors for thedomains. This method makes feasible the ap-
plication of the proposed empirical best prediction methodin real situations with large domains. Section
2.4 describes the parametric bootstrap for mean squared error estimation. Section 2.5 particularizes de
proposed method to the estimation of domain FGT poverty measures. Section 2.6 describes the method
of Elbers et al. (2003) for the estimation of domain parameters, and it discusses its properties when
estimating domain means in comparison with the method proposed here. Sections 2.7 and 2.8 describe
the results of model-based and design-based simulation experiments respectively, conducted to analyze
and compare the performance of empirical best predictors, direct estimators and estimators obtained by
the method of Elbers et al. (2003) for the FGT poverty measures.

2.1 Empirical best predictor under a finite population

Let y be a random vector containing the values of a random variablein the units of a finite population.
Let ys be the sub-vector ofy corresponding to sample elements andyr the sub-vector of out-of-sample
elements and consider without loss of generality that the elements ofy are sorted asy = (y′s,y

′
r )

′. Now
consider a real measurable functionδ = h(y) of the random vectory. The target is to predictδ = h(y)

31
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using the sample datays. Let δ̂ denote a predictor ofδ. The mean squared error (MSE) ofδ̂ is defined as

MSE(δ̂) = Ey[(δ̂−δ)2], (2.1)

whereEy denotes expectation with respect to the joint distributionof the population vectory. The BP of
δ is the function ofys that minimizes (2.1). Consider the conditional expectation δ0 = Eyr (δ|ys), where
the expectation is taken with respect to the joint distribution of yr givenys and the result is a function of
sample datays. Subtracting and addingδ0 in the MSE, we obtain

MSE(δ̂) = Ey[(δ̂−δ0+ δ0−δ)2]

= Ey[(δ̂−δ0)2]+2Ey[(δ̂−δ0)(δ0−δ)]+Ey[δ0−δ)2]

In this expression, the last term does not depend onδ̂. For the second term, observe that

Ey[(δ̂−δ0)(δ0−δ)] = Eys

{
Eyr

[
(δ̂−δ0)(δ0−δ)|ys

]}

= Eys

{
(δ̂−δ0)

[
δ0−Eyr(δ|ys)

]}

= 0.

Thus, the BP ofδ is the predictor̂δ that minimizesEy[(δ̂−δ0)2]. Since this quantity is non-negative and
its minimum value is zero, the BP ofδ is

δ̂B = δ0 = Eyr (δ|ys). (2.2)

Note that the BP is unbiased in the sense thatEy(δ̂B−δ) = 0 because

Eys(δ̂
B) = Eys{Eyr (δ|ys)} = Ey(δ).

Typically, y follows a distribution depending on an unknown parameter vector θ. This parameter is
previously estimated using the sample datays. Then, the empirical best predictor (EBP) ofδ, denoted
δ̂EB, is equal to (2.2), with the expectation taken with respect to the distribution ofyr |ys with θ replaced
by an estimator̂θ. The EBP is not exactly unbiased, but the bias coming from theestimation of the
parameterθ is typically negligible.

Observation 2.1.1.Assume thaty = (y′s,y
′
r)

′ follows a Normal distribution with mean vector µ= Xβ,
for a known matrixX, with sample and out-of-sample decompositionX = (X′

s,X
′
r)
′, and positive definite

covariance matrixV decomposed accordingly as

V =

(
Vss Vsr

Vrs Vrr

)
.

Assume also that the target parameterδ is a linear function ofy, that is,δ = a′y, wherea = (a′s,a
′
r)

′.
Then, the BP ofδ = a′sys+a′ryr is given by

δ̂B = a′sys+a′r
[
Xrβ+VrsV−1

ss (ys−Xsβ)
]
. (2.3)

Replacingβ by the weighted least squares estimatorβ̂ = (X′
sV

−1
ss Xs)

−1X′
sV

−1
ss ys in in (2.3), we obtain

the best linear unbiased predictor (BLUP) ofδ = a′y as defined by Royall (1976).
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2.2 Empirical best predictors of small domain non-linear parameters

The BP of a non-linear measurable functionδ = h(y) can be obtained as soon as the population vectory
follows a distribution such that the distribution ofyr |ys is known. Under this condition, the EB method
allows the estimation of practically any characteristic ofa finite population. Here we concentrate on the
estimation of domain characteristics. For this, letyd = (y′ds,y

′
dr)

′ be the subvector ofy for d-th domain
and letδd = h(yd) be the target parameter, for a real measurable functionh. Then the BP ofδ is given by

δ̂B
d = Eydr(δd|yds). (2.4)

When the domain vectorsyd, d = 1, . . . ,D, are independent following a Normal distribution, the
distribution ofydr|yds is also Normal and then the expectation in (2.4) can be easilyderived. Thus, we
consider that

yd ∼ ind N(µd,Vd), d = 1, . . . ,D, (2.5)

where the mean vectorµd and the covariance matrixVd can be partitioned in submatrices corresponding
to sample and out-of-sample elements

µd =

(
µds
µdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
. (2.6)

Then, the distribution ofydr|yds is

ydr|yds∼ N(µdr|s,Vdr|s), (2.7)

where

µdr|s = µdr −VdrsV−1
ds (yds−µds) and Vdr|s = Vdr −VdrsV−1

ds Vdsr.

For complex non-linear domain parametersδd = h(yd), the expectation in (2.19) cannot be calculated
analytically, but an empirical Monte Carlo approximation is easy to obtain. For this, generate a large
numberL of vectorsydr from (2.7). Lety(ℓ)

dr be the vector generated in theℓ-th replication. Attach this

vector to the sample vectoryds to obtain the population vector ford-th domain,y(ℓ)
d = (y′ds,(y

(ℓ)
dr )′)′. Let

δ(ℓ)
d = h(y(ℓ)

d ) be the target parameter for the corresponding domain obtained fromy(ℓ)
d . A Monte Carlo

approximation to the BP ofδd is simply the average ofδ(ℓ)
d = h(y(ℓ)

d ), ℓ = 1, . . . ,L, that is,

δ̂B
d = Eyr [h(yd)|yds] ≈

1
L

L

∑
ℓ=1

h(y(ℓ)
d ). (2.8)

Typically, the mean vectors and covariance matrices in (2.5) involve an unknown parameter vector
θ, that is,µd = µd(θ) andVd = Vd(θ). An estimatorθ̂ of θ is replaced in (2.7). Then the EBP ofδd,
denoted̂δEB

d , is obtained by generating out-of-sample vectorsy(ℓ)
dr from the distribution ofydr|yds, with θ

replaced bŷθ, and applying (2.8).
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2.3 Empirical best predictor under a nested error model

A possible model for the elements of the population vectory that can be used to evaluate the EBP is the
nested error regression model, introduced by Battese, Harter and Fuller (1988). This model relates the
population variablesYd j (e.g., log-earnings) to a vector ofp explanatory variablesxd j for all domains,
and includes random domain-specific effectsud along with the usual individual errorsed j:

Yd j = xd jβ+ud +ed j, j = 1, . . . ,Nd, d = 1, . . . ,D,

ud ∼ iid N(0,σ2
u), ed j ∼ iid N(0,σ2

e). (2.9)

where the domain effectsud and the errorsed j are independent. Let us define vectors and matrices
obtained by stacking the elements for domaind

yd = col
1≤ j≤Nd

(Yd j), Xd = col
1≤ j≤Nd

(xd j), ed = col
1≤ j≤Nd

(ed j).

Then, the domain vectorsyd are independent and follow the model

yd = Xdβ+ud1Nd +ed, ed ∼ ind N(0,σ2
eINd), d = 1, . . . ,D,

whereud is independent ofed. Under this model, the mean vector and the covariance matrixof yd are
given by

µd = Xdβ and Vd = σ2
u1Nd1′Nd

+ σ2
eIN.

Consider the decomposition ofyd into sample and out-of-sample elementsyd = (y′dr,y
′
ds)

′, and the
corresponding decomposition ofµd = E(yd) andVd = Var(yd) as in (2.6). The distribution of the out-
of-sample vectorydr given the sample datayds is given by (2.7) where, for this particular model, the
conditional mean vector and covariance matrix are given by

µdr|s = Xdrβ+ σ2
u1Nd−nd1′nd

V−1
ds (yds−Xdsβ), (2.10)

Vdr|s = σ2
u(1− γd)1Nd−nd1′Nd−nd

+ σ2
eINd−nd, (2.11)

with γd = σ2
u(σ2

u + σ2
e/nd)

−1. Observe that the application of the Monte Carlo approximation (2.8) in-
volves simulation ofD multivariate Normal vectors of sizesNd −nd, d = 1, . . . ,D, from (2.7). Then this
process has to be repeatedL times, something computationally unfeasible. This can be avoided by noting
that the conditional covariance matrixVdr|s, given by (2.7), corresponds to the covariance matrix of a
vectorydr generated by the model

ydr = µdr|s+vd1Nd−nd + εdr, (2.12)

with new random effectsvd and errorsεdr that are independent and satisfy

vd ∼ N(0,σ2
u(1− γd)) and εdr ∼ N(0Nd−nd ,σ

2
ε INd−nd).

Using model (2.12), instead of generating a multivariate normal vector of sizeNd − nd, we need to
generate only univariate normal variablesvd ∼ N(0,σ2

u(1− γd)) andεd j ∼ N(0,σ2
ε) independently, for
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j ∈ rd, and then obtain the corresponding out-of-sample elementsYd j from (2.12) using as means the
corresponding elements ofµdr|s given by (2.10). As mentioned before, in practice the model parame-

tersθ = (β′,σ2
u,σ2

e)
′ are replaced by suitable estimatorsθ̂ = (β̂

′
, σ̂2

u, σ̂2
e)

′, and then the variablesYd j are
generated from (2.12) withθ replaced bŷθ.

2.4 Parametric bootstrap for MSE estimation

The MSE of the EB estimator̂δEB
d with respect to the model is given by

MSE(δ̂EB
d ) = E

[
(δ̂EB

d −δd)
2
]
, (2.13)

Note that here the target parameterδd is a random variable, so the usual decomposition of the MSE in
terms of squared bias and variance ofδ̂EB

d does not hold. However, (2.13) can be decomposed as

MSE(δ̂EB
d ) =

[
E(δ̂EB

d −δd)
]2

+V(δ̂EB
d −δd). (2.14)

Thus, the MSE is equal to the sum of the squared model bias and the variance of the prediction error.
Since the model bias of the “best” estimatorδ̂B

d is exactly zero, the squared bias of the “empirical best”
estimatorδ̂EB

d in (2.14) is typically very small relative to the variance ofthe prediction error̂δEB
d − δd

whenm is large. In this case, the MSE is dominated by the variance term in (2.14).
Analytical approximations to the MSE are difficult to derivein the case of complex parameters such

as the FGT poverty measures. We therefore obtain a parametric bootstrap MSE estimator by following
the bootstrap method for finite populations of González-Manteiga et al. (2008). This bootstrap method
can be readily applied to other complex parameters. This parametric bootstrap method works as follows:

1. Fit model (2.9) to sample datays and obtain model parameter estimatesβ̂, σ̂2
u andσ̂2

e.

2. Generate bootstrap random domain effects asu∗d ∼ iid N(0, σ̂2
u), d = 1, . . . ,D.

3. Generate, independently of the random effectsu∗d, bootstrap random errorse∗d j ∼ iid N(0, σ̂2
e),

j = 1, . . . ,Nd, d = 1, . . . ,D. ,

4. Construct a bootstrap population vectory∗ = ((y∗1)
′, . . . ,(y∗D)′)′ using the estimated model,

Y∗
d j = xd j β̂+u∗d +e∗d j, j = 1, . . . ,Nd, d = 1, . . . ,D, (2.15)

and calculate the true domain quantities for this bootstrappopulation,δ∗d = h(y∗d), d = 1, . . . ,D.

5. Take the elementsY∗
d j of the population vectory∗ with indices contained in the samples, denoted

y∗s. Fit model (2.9) again to bootstrap datay∗s, obtaining new model parameter estimatesβ̂
∗
, σ̂2∗

u

andσ̂2∗
e .

6. Using the bootstrap sample datay∗s and the known matrixX, apply the EB method as described in
Section 2.2 and calculate bootstrap EBPs,δ̂EB∗

d , d = 1, . . . ,D.
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Observe that the bootstrap elementsY∗
d j, given the original sample datays, preserve properties of

the original population model. LetE∗ andVar∗ denote expectation and variance with respect to the
distribution defined by the bootstrap model (2.15) given sample datays. Then bootstrap random effects
u∗d and errorse∗d j are iid with

E∗(u
∗
d) = 0, Var∗(u

∗
d) = σ̂2

u, E∗(e
∗
d j) = 0, Var∗(e

∗
d j) = σ̂2

e. (2.16)

Observe also that the mean vectors and covariance matrices of the bootstrap domain vectorsy∗d are given
by

E∗(y∗d) = Xdβ̂ and Var∗(y∗d) = σ̂2
u1Nd1′Nd

+ σ̂2
eIN.

Thus, the distribution of the bootstrap populationy∗ (given the sample datays) imitates that of the original
populationy. Then an estimator ofMSE(δ̂EB

d ) is the bootstrap MSE of the bootstrap EBP, that is

MSE∗(δ̂EB∗
d ) = E∗

[
(δ̂EB∗

d −δ∗d)
2
]
.

In practice, this quantity is approximated through a Monte Carlo procedure. For this, repeat steps 2–6
a large number of times,B. Then we have generatedB bootstrap populations with their corresponding
true values of parameters and EBPs. An approximation for thebootstrap MSE is obtained then by
averaging the squared errors over theB replicates. More specifically, letδ∗(b)

d and δ̂EB∗(b)
d be the true

domain parameter and its corresponding EBP for the bootstrap replicateb, for b = 1, . . . ,B. Then the
final bootstrap estimator of the MSE is

mse(δ̂EB
d ) =

1
B

B

∑
b=1

(
δ̂EB∗(b)

d −δ∗(b)
d

)2
. (2.17)

It is possible to obtain a better MSE estimator, in terms of relative bias, by using a double bootstrap
method (Hall and Maiti, 2006). However, under the finite population setup, in which full populations are
generated in each bootstrap replication, the double bootstrap may be computationally infeasible.

2.5 Empirical best estimators of small domain FGT poverty measures

Consider the FGT family of poverty measures for domaind

Fαd =
1

Nd

Nd

∑
j=1

(
z−Ed j

z

)α
I(Ed j < z), α = 0,1,2, (2.18)

whereEd j is the value of a quantitative welfare measure forj-th individual withind-th domain andz is
the given poverty line. Forα = 0 we obtain the proportion of individuals under the poverty line, which is
called poverty incidence. Forα = 1 we obtain the domain mean of relative distances to the poverty line,
which is called poverty gap. While the poverty incidence accounts for the quantity of people under the
poverty line, the poverty gap measures the degree of povertyof the people under the poverty line.
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The BP of the FGT poverty measureδd = Fαd is given by

F̂B
αd = Eydr(Fαd|yds).

Thus, in order to obtain the BP ofFαd, we need to expressFαd in terms of a domain vectoryd, for
which the conditional distribution of the out-of-sample vector ydr given sample datayds is known. The
distribution of the welfare variablesEd j is seldom Normal due to the typical strong right-skewness of
these kind of economical variables. However, many times it is possible to find a transformation of the
Ed j’s whose distribution is approximately Normal. This transformation can be chosen from a suitable
family such that the Box-Cox power family of transformations.

Thus, here we suppose that there exists a one-to-one transformationYd j = T(Ed j) of the welfare
variablesEd j, which follows a Normal distribution. In particular, we will assume that theYd j ’s follow
the nested error model (2.9). Letyd = (y′ds,y

′
dr)

′ be the vector containing the values of the transformed
variablesYd j for the sample and out-of-sample units within domaind. ThenFαd is function ofyd, that is

Fαd =
1

Nd

Nd

∑
j=1

(
z−T−1(Yd j)

z

)α

I(T−1(Yd j) < z) =: hα(yd), α = 0,1,2.

Thus, the FGT poverty measure of orderα is a non-linear functionhα(yd) of yd. Then the BP ofFαd is
given by

F̂B
d j = Eydr [hα(yd)|yds] =

Z

IR
hα(yd) f (ydr |yds)dydr, (2.19)

where f (ydr|yds) is the joint density ofydr given the observed data vectoryds obtained from (2.7). Due to
the complexity of the functionhα(·), there is not explicit expression for the expectation in (2.19), but this
expectation can be approximated by Monte Carlo as explainedin Section 2.2. Then, an approximation
to the best predictor ofFαd is

F̂B
αd ≈

1
L

L

∑
ℓ=1

hα(y(ℓ)
d ).

Typically, the mean vectorµd and the covariance matrixVd depend on an unknown vector of pa-
rametersθ. Then the conditional densityf (ydr|yds) depends onθ, and we make this explicit by writing
f (ydr|yds,θ). We take an estimator̂θ of θ such as the maximum likelihood (ML) or restricted ML
(REML)estimator. Then the expectation can be approximatedby generating values from the estimated
density f (ydr|yds, θ̂). The result is the EBP, denoted̂FEB

αd .

2.6 ELL estimators of small domain non-linear parameters

The method of Elbers et al. (2003), called ELL or World Bank (WB) method, assumes a nested er-
ror model on the transformed population values,Yd j, similar to (2.9) but using random cluster effects,
where the clusters may be different from the small areas. In fact, the small areas are not specified in ad-
vance. They compute estimators of domain parametersδd by applying a method similar to the bootstrap
procedure described in Section 2.4. More concretely, the ELL method follows the steps below:
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1. With the original sample datays, fit a linear model with cluster random effects,

Yd j = xd jβ+uc +ed j, j = 1, . . . ,Nd, d = 1, . . . ,D, c = 1, . . . ,C,

uc ∼ iid N(0,σ2
c), ed j ∼ iid N(0,σ2

e). (2.20)

whereuc is the random effect of clusterc. Let β̂, σ̂2
c andσ̂2

e be the estimators ofβ, σ2
c andσ2

e in
this model.

2. Generate bootstrap cluster effectsu∗c ∼ iid N(0, σ̂2
c), c = 1, . . . ,C.

3. Independently of the cluster effects, generate bootstrap model errors
e∗d j ∼ iid N(0, σ̂2

e), j = 1, . . . ,Nd, d = 1, . . . ,D.

4. Construct a population vectory∗ from the bootstrap model

Y∗
d j = xd jβ+u∗c +e∗d j, j = 1, . . . ,Nd, d = 1, . . . ,D, c = 1, . . . ,C. (2.21)

5. Calculate the true bootstrap domain parametersδ∗d = h(y∗d), d = 1, . . . ,D.

6. The ELL estimator ofδd is then the bootstrap mean

δ̂ELL
d = E∗(δ∗d),

and the bootstrap variance is used as an estimator of the MSE of the ELL estimator̂δELL
d , that is,

the ELL method uses

mse(δ̂ELL
d ) = Var∗(δ∗d) = E∗[δ∗d −E∗(δ∗d)]

2,

Note thatE∗(δ∗d) is trackingE(δd) andVar∗(δ∗d) is trackingV(δd) = E[δd −E(δd)]
2. In practice,

ELL estimators are obtained from a Monte Carlo approximation by generating a large number,A, of
population vectorsy∗(a) = ((y∗(a)

1 )′, . . . ,(y∗(a)
D )′)′, a = 1, . . . ,A, calculating the bootstrap domain param-

eters for each populationa in the form δ∗(a)
d = h(y∗(a)

d ), d = 1, . . . ,D, and later averaging over theA
populations; that is, taking

δ̂ELL
d ≈ 1

A

A

∑
a=1

δ∗(a)
d =: δ∗(·)d and mse(δ̂ELL

d ) ≈ 1
A

A

∑
a=1

(
δ∗(a)

d −δ∗(·)d

)2
.

Note that ELL population vectorsy∗(a) do not contain the observed sample data in contrast to the EB
method described in Section 2.2.

To illustrate the ELL method and compare it with the EB method, consider the special case of esti-
mating the domain means, that is,δd = Ȳd, where

Ȳd = N−1
d

Nd

∑
d=1

Yd j, d = 1, . . . ,D.
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The ELL estimator of the domain mean̄Yd is the bootstrap mean

ˆ̄YELL
d = E∗(Ȳ

∗
d ), (2.22)

and the ELL estimator of the MSE ofˆ̄YELL
d is the bootstrap variance

mse( ˆ̄YELL
d ) = Var∗(Ȳ

∗
d ).

In many cases, as in some establishment surveys, there are noclusters. Then, the ELL method fits
the linear model

Yd j = xd jβ+ed j, ed j ∼ iid N(0,σ2
e), j = 1, . . . ,Nd, d = 1, . . . ,D, (2.23)

and uses this model to construct bootstrap populations. Letus consider, for simplicity of exposition, that
all the parameters involved in the model are known. The bootstrap mean ford-th domain is given by

Ȳ∗
d = N−1

d

Nd

∑
j=1

Y∗
d j =

1
Nd

Nd

∑
j=1

(xd jβ+e∗d j) = ˆ̄YSYN
d + Ē∗

d,

whereĒ∗
d = N−1

d ∑Nd
j=1e∗d j and ˆ̄YSYN

d is used to denote the synthetic estimatorX̄dβ, whereX̄d = N−1
d ∑Nd

j=1xd j.
The synthetic estimator is obtained by predicting all population elementsYd j through the linear model
(2.23) byŶd j = xd jβ and then taking the mean over thed-th domain, that is,

ˆ̄YSYN
d =

1
Nd

Nd

∑
j=1

Ŷd j.

By (2.22), the ELL estimator is given by

ˆ̄YELL
d = E∗(Ȳ

∗
d ) = E∗( ˆ̄YSYN

d + Ē∗
d) = ˆ̄YSYN

d +E∗(Ē
∗
d) = ˆ̄YSYN

d ,

due to property (2.16) of the bootstrap method. On the other hand, the EB estimator of̄Yd under the linear
model (2.23) is obtained by predicting only the out-of-sample observations and keeping the sample data,
that is,

ˆ̄YEB
d =

1
Nd

{
∑
j∈sd

Yd j + ∑
j∈rd

Ŷd j

}
.

Let us compare the MSEs of ELL and EB estimators. Taking the average of (2.23) over the elements
in d-th domain, we can express the true mean as

Ȳd = X̄dβ+ Ēd,

whereX̄d = N−1
d ∑Nd

j=1xd j andĒd = N−1
d ∑Nd

j=1ed j. Now let us express the ELL estimator asˆ̄YELL
d = X̄dβ.

Then, it holds that
ˆ̄YELL
d −Ȳd = X̄dβ−

(
X̄dβ+ Ēd

)
= Ēd,
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and then the MSE of ELL estimator is

MSE( ˆ̄YELL
d ) = E{( ˆ̄YELL

d −Ȳd)
2} = E(Ē2

d) =
Var(ed j)

Nd
=

σ2
e

Nd
.

On the other hand, for the MSE ofˆ̄YEB
d , observe that the difference between the EB estimator and the

true mean is equal to
ˆ̄YEB
d −Ȳd =

1
Nd

∑
j∈rd

ed j,

which implies that the MSE of̄̂YEB
d is given by

MSE( ˆ̄YEB
d ) = E[( ˆ̄YEB

d −Ȳd)
2] =

σ2
e

Nd

(
1− nd

Nd

)
<

σ2
e

Nd
= MSE( ˆ̄YELL

d ).

Thus, under model (2.23) with known model parameters, ifnd ≥ 1, the EB estimator has always smaller
MSE than the ELL estimator due to the more efficient use of the available information, namely the
sample data. When the sampling fractionnd/Nd is negligible, both estimators have a similar MSE.

Moreover, the ELL estimator of the MSE is

mse( ˆ̄YELL
d ) = E∗[(Ȳ

∗
d −E∗(Ȳ

∗
d ))2] = E∗[(Ē

∗
d)2] =

Var∗(e∗d j)

Nd
=

σ2
e

Nd
, (2.24)

which is the true MSE of the ELL estimator under model (2.23).Thus, when fitting a linear model
without cluster effects, the ELL estimator of a small area mean is essentially the synthetic estimator,
which is a good estimator when there are not domain effects and the true model is (2.23). In this case,
the ELL estimator of the MSE tracks the true MSE.

However, many times there is extra domain variation that is not fully explained by the auxiliary
variables; that is, the true model is (2.9). However, when there are no clusters, the ELL method fits
model (2.23). In this case, the true mean ford-th domain is given by

Ȳd = X̄dβ+ud + Ēd.

This means that the MSE of the ELL estimator under the true model is

MSE( ˆ̄YELL
d ) = E[(ud + Ēd)

2] = σ2
u +

σ2
e

Nd
. (2.25)

Summarizing, when the true model is (2.9), the ELL estimator, equal to the synthetic estimator, is not
accounting for the domain effects, and the ELL estimator of the MSE has a bias equal toσ2

u, compare
(2.24) with (2.25). Thus, this MSE estimator can lead to serious underestimation when the domain effects
have a substantial varianceσ2

u.
Now, if we take the clusters in the ELL method equal to the small domains, then due to (2.16), the

ELL estimator under the correct model is again the syntheticestimator, that is,

ˆ̄YELL
d = E∗( ˆ̄YSYN

d +u∗d + Ē∗
d) = ˆ̄YSYN

d .
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Moreover, the ELL estimator of the MSE is

mse( ˆ̄YELL
d ) = Var∗(Ȳ

∗
d ) = E∗[(Ȳ

∗
d −E∗(Ȳ

∗
d ))2] = E∗[(u

∗
d + Ē∗

d)2] = σ2
u+

σ2
e

Nd
,

which is equal to the true MSE given in (2.25). This indicatesthat when the clusters are equal to the
small areas, the ELL estimator remains essentially equal toa synthetic estimator, but in this case the
ELL variance estimator is unbiased. Actually, when the truemodel is the nested-error model (2.9), the
difference between ELL and EB methods is that the target quantities are not the same. The EB method
tries to estimate (or better predict) the actual domain means Ȳd, while the ELL method is estimating
instead the marginal expectationsE(Ȳd) along with the marginal variancesVar(Ȳd).

2.7 Model-based simulation experiment

We consider in this section a simulation study to check the EBP model in terms of measures (2.18) with
a poverty incidence and a poverty gap (α = 0 andα = 1 respectively). We simulated populations of size
N = 20000, composed ofD = 80 areas withNd = 250 elements in each aread = 1, . . . ,D. The response
variablesYd j we generated from (2.9) using two binary (auxiliary) variablesX1 andX2 plus an intercept.
The binary variables were simulated from Bernoulli distributions with

p1d = 0.3+0.5d/80;

p2d = 0.2,

d = 1, . . . ,D, namely wherep1d is directly proportional to the area index forX1 andp2d is constant. We
consider sample indicessd with nd = 50 drawn independently in each aread by simple random sampling
without replacement. VariablesX1 andX2 for population units and sample indices were the same for all
Monte Carlo simulations.

The transformationT(·) defined in Section 2.5 isT(x) = log(x), in this way, the welfare variables
Ed j are the exponential of the model responsesYd j

The intercept and the regression coefficients ofX1 andX2 wereβ = (3,0.03,−0.04)′ . By using this
values , In this way, the mean welfareEd j is larger from case(X1 = 0,X2 = 0) to (X1 = 1,X2 = 0), but
decreases from(X1 = 0,X2 = 0) to (X1 = 0,X2 = 1). It can be interpreted as the higher income level is
reached whenX1 = 1 andX2 = 0.

Note thatp1d of X1 = 1 increases with the area index butp2d of X2 = 1 is constant, then the last areas
will have more individuals with largerYd j and then the FGT poverty measures will decrease with the area
index.

We fixed the following values in the model:

(i) Random area effects variance,σ2
u = (0.15)2.

(ii) Error variance,σ2
e = (0.5)2.
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(iii) The poverty line,z= 12 (roughly 0.6 times the median of the welfare variablesEd j for a population
generated as mentioned above). Hence, the poverty incidence for the simulated populations is
approximately 16%.

Therefore, we generatedI = 10000 population vectorsy(i) from the true model and for each popula-
tion i, we considered these steps:

(a) The FGT measures forα = 0 andα = 1 (true area poverty incidences and gaps) for each area
d = 1, . . . ,D and each populationi are obtained as

F (i)
αd =

1
Nd

Nd

∑
j=1


z−E(i)

d j

z




α

I(E(i)
d j < z), E(i)

d j = exp(Y(i)
d j ).

(b) Using the sample part of thei-th population vector,y(i)
s , direct estimators ofF(i)

αd were calculated
as

F̂(i)
αd =

1
nd

∑
j∈sd


z−E(i)

d j

z




α

I(E(i)
d j < z).

(c) The nested-error model given in (2.9) was fitted to sampledata(y(i)
s ,Xs). Then, substituting the

estimated model parameters in (2.10) and (2.11),L = 50 out-of-sample vectorsy(iℓ)
r , ℓ = 1, . . . ,L

were generated from the conditional distribution (2.7) using (2.12) ford = 1, . . . ,D. The sample
datay(i)

s was attached to the generated out-of-sample datay(iℓ)
r to form a population vectory(iℓ).

The domain poverty measures forα = 0,1 andd = 1, . . . ,D were obtained for each population
vectory(iℓ) as

F(iℓ)
αd =

1
Nd

Nd

∑
j=1


z−E(iℓ)

d j

z




α

I(E(iℓ)
d j < z), E(iℓ)

d j = exp(Y(iℓ)
d j ), d = 1, . . . ,D.

Then the Monte Carlo approximations to the EBPs of poverty measures forα = 0,1 andd =

1, . . . ,D were calculated as

F̂EB(i)
αd =

1
L

L

∑
ℓ=1

F (iℓ)
αd .

(d) Finally, we compute the ELL estimators of the poverty measures. Therefore, we applied the model
(2.9) with the sample datays and generateA = 50 populations by means of a parametric bootstrap
(see Section 2.4). In each population the poverty measures were computed and then averaged over
theA = 50 populations, in order to find the ELL estimatorsF̂ELL(i)

αd for eachi (see Section 2.6).

Observation 2.7.1.Note that we used L= A= 50 for the EB and ELL methods in the simulation studies.
A limited comparison of EB estimators for L= 50 with the corresponding values for L= 1000showed
that the choice L= 50 gives fairly accurate results. In practice, however, when dealing with a given
sample data set, it is advisable to use larger values of L suchas L≥ 200.
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Means over Monte Carlo populationsi = 1, . . . , I of the true values of the FGT measures of order
α = 0,1 were computed as

E(Fαd) =
1
I

I

∑
i=1

F(i)
αd , d = 1, . . . ,D.

Similarly, biasesE(F̂EB
αd )−E(Fαd), E(F̂αd)−E(Fαd) and E(F̂ELL

αd )−E(Fαd), and MSEs over Monte
Carlo populationsE(F̂EB

αd −Fαd)
2, E(F̂αd−Fαd)

2 andE(F̂ELL
αd −Fαd)

2 of the three estimators were com-
puted.

Figures 2.1 a) and b) report respectively the biases and the MSEs of the estimators for the poverty
gap (α = 1). Figure 2.1 a) shows that the EB estimator has the smallestabsolute bias followed by ELL
estimator, but compared to the corresponding values of MSE (Figure 2.1 b)), the square of the model bias
is negligible for all the three estimators. Hence, the MSE ofthese estimators is dominated by the model
variance of the prediction error, as explained at the beginning of Section 2.4. It is clear from Figure 2.1 b)
that the EB estimator is significantly more efficient than ELLand direct estimators. Surprisingly, Figure
2.1 b) also reveals that, in these simulations, the ELL estimator is less efficient than the direct estimator,
showing that the prediction error variance is larger for theELL method. Results for the poverty incidence
(α = 0) were similar and are not reported here.
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Figure 2.1: a) Bias (×100) and b) MSE (×104) over simulated populations of EB, direct and ELL
estimators of the poverty gapF1d for each aread.

Turning to MSE estimation, the parametric bootstrap procedure described in Section 2.4 was imple-
mented withB= 500 replicates and the results are plotted in Figure 2.2 for the poverty gap (α = 1). The
number of Monte Carlo simulations wasI = 500 and the true values of the MSE were independently
computed withI = 50000 Monte Carlo simulations. Figure 2.4 shows that the bootstrap MSE estimator
tracks the pattern of the true MSE values. Similar results were obtained for the poverty incidence (α = 0).
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Figure 2.2: True MSE (×104) of EB predictor of poverty gap (α = 1) and bootstrap MSE estimate with
B = 500 for each aread.

2.8 Design-based simulation experiment

Now, we deal with the performance of the estimators when obtaining repeated samples drawn from a
given population. In this way, we generate a population withthe same parameters as showed in Section
2.7, and drawI = 1000 replicates. In each replicate another sample is taken based on a simple ran-
dom procedure without replacement within each area. We computed in each sample, the three types of
estimators of poverty measures: EBP, direct and ELL.

In Figures 2.3 a) and b) the design bias and design MSE of the estimators for poverty gap(α = 1)

are shown. As expected in Figure 2.3 it represented the almost zero value of the Monte Carlo design bias
of the direct estimator and a greater value of the EB estimator.

In Figure 2.3 b) it is shown that ELL estimators have small MSEs for some of the areas and large for
the other areas, while the MSE of EB and direct estimators aresmall for all areas. Morteover, for most
areas, the MSE of the EB estimator is smaller than the corresponding one of the direct estimator.
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Figure 2.3: a) Bias (×100) and b) MSE (×104) of EB, direct and ELL estimators of the poverty gapF1d

for each aread under the design-based setup.
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Chapter 3

Fast EB method for estimation offuzzy
poverty measures

3.1 Introduction

The traditional poverty measures for a population are obtained doing a simple dichotomization of the
population into poor and non poor. This is done in relation tosome chosen poverty line that represents
a percentage (generally 50%, 60% or 70%) of the median of the equivalised income distribution, see
e.g. Foster et al. (1984). On the one hand, this poverty line is arbitrary, and on the other, a more
appropriate measure based on some degree of poverty, would be desirable. Moreover, this approach
is unidimensional, that is, it refers to only one proxy of poverty, namely low income or consumption
expenditure. Here we consider the estimation of fuzzy monetary and fuzzy supplementary indicators.
The former are based on assigning a degree of poverty to the individuals using a ranking of the welfare
variable used as proxy. The latter does a ranking on a score variable that is obtained after applying a
multidimensional approach that takes into account a variety of non-monetary indicators of deprivation.

The EB method proposed by Molina and Rao (2009) for estimating small domain non-linear poverty
indicators requires generation of full populations. For very large populations or for complex indicators,
like those whose computation require sorting the data, the EB method might be unfeasible. Here we pro-
pose a modification of the EB method, called fast EB method, which reduces drastically the computing
time, making feasible the estimation of complex non-linearquantities under large populations, whereas
loosing little efficiency.

In simulations we compare the results of different small area estimation methods, including the orig-
inal and the fast EB method, of complex domain poverty indicators using a unit level linear regression
model. The indicators considered are the head count ratio (HCR) also called poverty incidence, the fuzzy
monetary (FM) indicator and the fuzzy supplementary (FS) index. Moreover, the proposed approach is
applied to the estimation of HCR, FM and FS indexes in Tuscanyprovinces.

3.2 Fuzzy monetary and supplementary indicators

Let U = {1, . . . ,N} be a finite population of sizeN, whereEi is the value of a welfare variable (e.g.
equivalised income) for individuali. Let us consider the empirical distribution function of{E1, . . . ,EN},

47
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defined as

FE(x) =
1
N

N

∑
j=1

I{E j ≤ x}, x∈ R,

whereI
{

E j ≤ x
}

= 1 if E j ≤ x and 0 otherwise. Consider also the (empirical) Lorenz curve, given by

LE(x) =

N
∑
j=1

E j I
{

E j ≤ x
}

N
∑
j=1

E j

, x∈ R.

Following the Integrated Fuzzy and Relative (IFR) approachof Betti et al. (2006), the Fuzzy Monetary
Index (FMI) for individuali is defined as

FMi =

{
N

N−1
(1−FE(Ei))

}α−1

{1−LE(Ei)}

=

{
1

N−1

N

∑
j=1

I
{

E j > Ei
}
}α−1





N
∑
j=1

E j I
{

E j > Ei
}

N
∑
j=1

E j





, i ∈U.

Here, 1−FE(Ei) is the proportion of individuals that are less poor than individual i. This gives a
degree of poverty of individuali and it was proposed by Cheli e Lemmi (1995) as a poverty indicator.
Observe thatN(1−FE(Ei))/(N−1) is equal to 1 when individuali is the poorest. Moreover, 1−LE(Ei)
is the share of the total welfare of all individuals that are less poor than this individual, indicator that was
proposed by Betti and Verma (1999). The average FMI for the population is given by

FM =
1
N

N

∑
i=1

FMi (3.1)

Observe that the FMI for individuali depends on the whole population of welfare values,{E1, . . . ,EN}.
Consider now a score variableSi for i-th individual defined using the IFR approach, instead of a

welfare variableEi. These scoresSi are obtained by applying a multidimensional approach that takes
into account a variety of non-monetary indicators of deprivation. Then the Fuzzy Supplementary Index
(FSI) for individuali is defined analogously to the FMI, but in terms of the scores{S1, . . . ,SN}, as

FSi =

{
N

N−1
(1−FS(Si))

}α−1

{1−LS(Si)}

=

{
1

N−1

N

∑
j=1

I
{

Sj > Si
}
}α−1





N
∑
j=1

Sj I
{

Sj > Si
}

N
∑
j=1

Sj





, i ∈U.

Here, FS(x) is the empirical distribution function andLS(x) the Lorenz curve of the score variables
{S1, . . . ,SN}. Similarly, 1−FS(Si) is the proportion of individuals who are less deprived than individual
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i and 1−LS(Si) is the share of the total lack of deprivation score assigned to all individuals less deprived
than individuali. The average FSI for the population is given by

FS=
1
N

N

∑
i=1

FSi (3.2)

Now consider that the populationU is partitioned intoD domains or areasU1, . . . ,UD of sizes
N1, . . . ,ND. Let Ed j be the welfare for individualj within domaind. The average fuzzy monetary
index for domaind is

FMd =
1

Nd

Nd

∑
j=1

FMd j, d = 1, . . . ,D, (3.3)

whereFMd j is the FMI for j-th individual fromd-th domain.
A random samples⊆U of sizen≤ N is drawn from the population. Letsd be the subsample from

domaind, d = 1, . . . ,D. A design-based estimator of the average FMI for domaind, FMd, is

F̂M
DB
d =

∑
j∈sd

wd j F̂M
DB
d j

∑
j∈sd

wd j
, d = 1, . . . ,D, (3.4)

wherewd j is the sampling weight for individualj within domaind and

F̂M
DB
d j =





D
∑

ℓ=1
∑

i∈sd

wℓi I{Eℓi > Ed j}

D
∑

ℓ=1
∑

i∈sd

wℓi





α−1


D
∑

ℓ=1
∑

i∈sd

wℓi Eℓi I{Eℓi > Ed j}

D
∑

ℓ=1
∑

i∈sd

wℓi Eℓi





. (3.5)

Observe that̂FM
DB
d j is not a direct estimators because it uses the sample data from the whole population

and not only from domaind. The average FSI for domaind is given by

FSd =
1

Nd

Nd

∑
j=1

FSd j, d = 1, . . . ,D. (3.6)

Finally, a design-based estimator ofFSd would be

F̂S
DB
d =

∑
j∈sd

wd j F̂S
DB
d j

∑
j∈sd

wd j
, d = 1, . . . ,D. (3.7)

where

F̂S
DB
d j =





D
∑

ℓ=1
∑

i∈sd

wℓi I{Sℓi > Sd j}

D
∑

ℓ=1
∑

i∈sd

wℓi





α−1


D
∑

ℓ=1
∑

i∈sd

wℓi Sℓi I{Sℓi > Sd j}

D
∑

ℓ=1
∑

i∈sd

wℓi Sℓi





. (3.8)

In these poverty indicators, the parameterα can be fixed to the value such that theFM and FS
indicators coincide with the head count ratio computed for the official poverty line (60% of the median).
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3.3 Fast Empirical Best Prediction

In order to apply the EB method of Molina and Rao (2010) to estimate the domain average FMI,FMd,
we need to express this indicator in terms of a population vector y = (y′s,y

′
r)

′, for which the conditional
distribution of the non-sampled partyr given the sample datays is known. The distribution of the welfare
variableEd j is seldom Normal. However, many times it is possible to find a transformation whose
distribution is approximately Normal. Suppose that there exists a one-to-one transformationYd j = T(Ed j)
of the welfare variableEd j, which follows a Normal distribution. Concretely, we assume thatYd j follows
the nested error linear regression model of Battese, Harterand Fuller (1988), defined as

Yd j = xd jβ+ud +ed j, j = 1, . . . ,Nd, d = 1, . . .D,
ud ∼ iid N(0,σ2

u), ed j ∼ iid N(0,σ2
e)

(3.9)

wherexd j is a row vector with the values ofp explanatory variables,ud is a random area-specific effect
and ed j are residual errors. Letyd = (Yd1, . . . ,YdND )′ be vector of responses for domaind and y =
(y′1, . . . ,y

′
D)′ be the full population vector. Then, observe that the individual FMIs can be expressed as

FMd j =

{
1

N−1

D

∑
ℓ=1

Nℓ

∑
i=1

I
{

T−1(Yℓi) > T−1(Yd j)
}
}α−1

×





D
∑

ℓ=1

Nℓ

∑
i=1

T−1(Yℓi)I
{

T−1(Yℓi) > T−1(Yd j)
}

D
∑

ℓ=1

Nℓ

∑
i=1

T−1(Yℓi)





, j = 1, . . . ,Nd, d = 1, . . . ,D.

This means that the average FMI for domaind is a non-linear function of the population vectory, that is,

FMd =
1

Nd

Nd

∑
j=1

FMd j = hd(y), d = 1, . . . ,D.

Let us separate the population vector of responsesy in the sample and non-sample parts, that is,y =
(y′s,y

′
r)

′, whereys corresponds to the sample andyr to the non-sample. Then the BP ofFMd is

F̂M
B
d = Eyr (FMd|ys) = Eyr (hd(y)|ys). (3.10)

This expectation can be empirically approximated by Monte Carlo simulation. For this, first fit the
nested-error model (3.9) to the sample datays, to obtain estimateŝβ, σ̂2

u andσ̂2
e of the model parameters

β, σ2
u andσ2

e respectively. Obtain also the EB predictor ˆud of ud, given byE(ud|ys) with unknown pa-
rameters replaced by estimated values. Then, using those estimates, generate a large numberL of vectors
yr from the estimated conditional distributionyr |ys. Let y(l)

r be the vector generated inl -th generation.

We attach this vector to the sample vector to obtain the full population vectory(l) = (y′s,(y
(l)
r )′)′. Using

the elements ofy(l), we calculate the domain parameter of interestFM(l)
d = hd(y(l)), d = 1, . . . ,D. Then,

a Monte Carlo approximation to the EB predictor ofFMd is given by

F̂M
EB
d ≈ 1

L

L

∑
l=1

FM(l)
d , d = 1, . . . ,D. (3.11)
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Observe that for each populationl = 1, . . . ,L, instead of generating a multivariate normal vector of size
N−n, we just need to generate univariate valuesYd j from

Yd j = xd jβ̂+ ûd +vd + εdi, vd ∼ N(0, σ̂2
u(1− γ̂d)), εd j ∼ N(0, σ̂2

e), j ∈Ud −sd, d = 1, . . . ,D, (3.12)

whereγd = σ2
u(σ2

u + σ2
e/nd)

−1 andnd is the sample size in domaind. Still, for large populations and/or
complex indicators, the EB method can be unfeasible. FMIs require sorting of all population elements,
and this needs to be repeated forl = 1, . . . ,L. This is too time consuming for largeN and largeL. Here
we propose a faster version the EB estimator that is based on replacing the true value of the domain

average FMI in populationl , FM(l)
d , by the design-based estimator given in (3.11). Since the design-

based estimator is obtained from a sample drawn froml -th population, this avoids the task of generation
of the full population of responses (we need to generate onlythe responses for the sample elements)
and the sorting of all the population elements. Concretely,for each Monte Carlo replicationl , we take a
samples(l) ⊆U using the same sampling scheme and the same sample size allocation as in the original
samples. We take the values of the auxiliary variables corresponding to the units ins(l), that is, we
takexd j, j ∈ sd(l), wheresd(l) is the subsample fromd-th domain. Then we generate the corresponding
responsesYd j, j ∈ sd(l), for d = 1, . . . ,D, as in (3.12). Let us denote the vector containing those values
asys(l). With ys(l), calculate the design-based estimator as in (3.4) and (3.5), that is, obtain

F̂M
DB
d (l) =

∑
j∈sd(l)

wd j F̂M
DB
d j (l)

∑
j∈sd(l)

wd j
, d = 1, . . . ,D, (3.13)

where

F̂M
DB
d j (l) =





D
∑

ℓ=1
∑

i∈sd(l)
wℓi I{Eℓi > Ed j}

D
∑

ℓ=1
∑

i∈sd(l)
wℓi





α−1


D
∑

ℓ=1
∑

i∈sd(l)
wℓi Eℓi I{Eℓi > Ed j}

D
∑

ℓ=1
∑

i∈sd(l)
wℓi Eℓi





.

Finally, the fast EB estimator ofFMd is given by

F̂M
FEB
d =

1
L

L

∑
l=1

F̂M
DB
d j (l), d = 1, . . . ,D.

As showed in the next section, a model-based simulation study has been carried out to study the
performance of the proposed method to estimate a traditional poverty measures, the HCR, and the average
FMI in small domains. Results indicate that the new method keeps similar properties of the standard EB,
but it allows to overcome computational problems due to large populations or to more complex poverty
measures such as the average FMI.

3.4 Model-based simulation experiment

A model based simulation experiment has been carried out to study the efficiency of the fast EB estimator
of the HCR in comparison with the EB estimator. On the other hand, we compared the behaviour of
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the fast EB estimator of the average FMI with that of design-based and ELL estimators (Elbers et al.,
2003). For this, we considered a population withN = 20000 units, partitioned intoD = 80 domains
with Nd = 250 units in each domaind, for d = 1, . . . ,D. The response variables for the population units
Yd j were generated from the nested-error model (3.9) using an intercept and two auxiliary variables,
that is,xd j = (1,xd j1,xd j2), where the values of the two auxiliary variables were generated fromxd j1 ∼
Binom(1,0.2) andxd j2 ∼ Binom(1, pd) and , where

pd = 0.3+0.5d/D, d = 1, . . . ,D.

We assume that the model responsesYd j are the logarithm of the welfare variablesEd j. Thus,
Ed j = exp(Yd j). A set of sample indicessd with nd = 50 was drawn independently from each do-
maind using simple random sampling without replacement (SRSWR).The values of the auxiliary vari-
ables for the population units and the sample indices were kept fixed over all Monte Carlo simulations.
The intercept and the regression coefficients associated with the two auxiliary variables were taken as
β = (3,0.03,−0.04)′. The random area effects variance was taken asσ2

u = (0.15)2 and the error variance
asσ2

e = (0.5)2. The poverty linezwas fixed asz= 12, which is equal to 0.6 times the median of the wel-
fare variables for a given generated population. We generated I = 1000 Monte Carlo population vectors
y(i) from the true model. For each populationi, for i = 1, . . . , I , the following quantities were computed:

1. The true domain HCRs,

HCR(i)
d =

1
Nd

Nd

∑
j=1

I(E(i)
d j < z) , E(i)

d j = exp(Y(i)
d j ), d = 1, . . . ,D,

and the true domain average FMIs obtained forα = 2, that is,

FM(i)
d =

1
Nd

Nd

∑
j=1

FM(i)
d j , d = 1, . . . ,D,

where

FM(i)
d j =

{
1

N−1

D

∑
ℓ=1

Nℓ

∑
k=1

I(E(i)
ℓk > E(i)

d j )

}




D
∑

ℓ=1

Nℓ

∑
i=1

E(i)
ℓk I(E(i)

ℓk > E(i)
d j )

D
∑

ℓ=1

Nℓ

∑
k=1

E(i)
ℓk





.

2. Lety(i)
s be the sample part of thei-th population vectory(i), which is obtained taking the elements

of y(i) whose index is contained in the original samples. Design-based estimators of the domain
HCR and of the FMI were calculated using the data fromy(i)

s .

3. The nested-error model (3.9) was fitted to sample datay(i)
s and model parametersβ, σ2

u and σ2
e

were substituted by their estimates.

4. L = 50 non-sampled vectorsy(il )
r , l = 1, . . . ,L were generated from the conditional distribution

yr |y(i)
s using (3.12). The population vectory(il ) was formed attaching the sample datay(i)

s to the

generated non-sample datay(il )
r . Then the Monte Carlo approximations to the EBPs of the domain

HCRs were calculated.
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5. L = 50 sampless(il ) were drawn from the population using the same sampling scheme as with the

original samples, that is, for eachl = 1, . . . ,L, a set of indexess(il )
d was drawn fromd-th domain

using SRSWR. The corresponding responsesYd j, j ∈ s(il )
d , d = 1, . . . ,D, were generated from (3.12)

and the fast EB estimators of the domain HCRs and of the average FMIs were calculated.

6. ELL estimators (Elberset al., 2003) of the domain HCRs were also calculated. For this, first model
(3.9) was fitted to sample datays and thenA = 50 censuses were generated using a parametric
bootstrap method (for details see Molina and Rao, 2009). Foreach population, the domain HCRs
were calculated and the results were averaged over theA populations.

7. Means over Monte Carlo populationsi = 1, . . . , I of true values and of design-based, EB, fast EB
and ELL estimators of domain HCRs and FMIs, were calculated.For the estimators, biases and
MSEs over Monte Carlo populationsi = 1, . . . , I were also computed.

Figures 3.1, 3.2 and 3.3 show respectively the mean values, biases and MSEs of the HCR for each
area. Observe in Figure 3.1 that the mean values of the fast EBestimators (labelled “EBnew”) are very
close to those of the EB estimators. However, the design-based estimators (labelled as “Sample”), are
more variable across areas, whereas the ELL estimators are less variable across areas, not tracking the
true values. Moreover, from Figure 3.2, we can appreciate that the biases of the fast EB estimators
are very similar to those of the EB estimators. Biases of all estimators are not significantly different.
However, observe in Figures 3.3 that the MSEs of the EB and fast EB estimators are considerably below
the MSEs of the other estimators for all areas, while the MSEsof the fast EB estimators are only slightly
greater than those of the EB estimators. These results suggest that the new fast EB estimators can gain a
lot in computational workload, while loosing little efficiency as compared to the EB estimators.

Analogously, Figures 3.4, 3.5 and 3.6 show respectively themean values, biases and MSEs of design-
based and fast EB estimators for the domain average FMI. Again, these figures show that the bias of the
fast EB estimator is preserved small, similar to that of the design-based estimator, while the MSE is
uniformly smaller for all areas.
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and fast EB estimators (labelled “EBnew”) of HCR for each area d.
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Figure 3.3: MSE (×1000) over simulated populations of EB, design-based (labelled “Sample”), ELL
and fast EB estimators (labelled “EBnew”) of HCR for each area d.
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Chapter 4

Spatial Fay-Herriot models

In this chapter, the small area quantities of interest (e.g.the FGT poverty measures for Spanish provinces)
are assumed to follow a Fay-Herriot model with spatial correlation. For this model, the EBLUP, called
here Spatial EBLUP, is introduced and ML and REML model fitting methods are described. Analytical
approximations of the mean squared error (MSE) of the Spatial EBLUP are discussed, and parametric and
nonparametric bootstrap procedures for estimating the MSEare proposed. A simulation study based on
the Italian Agriculture Census 2000 compares bootstrap andanalytical estimates of the MSE and studies
their robustness to non-normality. Results indicate good behavior of the non-parametric bootstrap under
specific departures from normality. This chapter is based onthe research of Molina and Rao (2009).

The contents of the chapter is the following. Section 4.2 presents the spatial Fay-Herriot model and it
describes how the Spatial EBLUP is obtained from the model. Section 4.3 describes the available model
fitting methods. Section 4.4 discusses the estimation of theMSE of the Spatial EBLUP, introducing some
heuristic analytical approximations of this quantity together with an estimator. Section 4.5 introduces
the mentioned parametric and nonparametric bootstrap methods for estimating the MSE. Section 4.6
describes the simulation study carried out for comparing the MSE estimators. The usefulness of the
bootstrap techniques is demonstrated through a simulationstudy based on a real data set in Section 4.7,
and finally, some conclusions are drawn in Section 4.8.

4.1 Introduction

Fay-Herriot (FH) models were introduced by Fay and Herriot (1979). to obtain small area estimators of
median income in small places in the U.S. These models are well known in the literature of small area
estimation (SAE) and are the basic tool when auxiliary data at the unit level are not available or there
are confidentiality reasons preventing their use, and then only aggregated data at the small area level can
be used. Even when unit-level auxiliary data are available,these models are still useful if the small area
target parameter is not a linear function of the values of theresponse variable in the small area units.
In the case of non-linear small area parameters, the BLUP andthe EBLUP under a unit level model are
not defined. However, in the FH models, this need for linearity is avoided by the fact that the model
response is the direct estimator of the target parameter. Moreover, when the target parameter is obtained
as an average over the area units of some quantities such as the FGT measures, then the Central Limit
Theorem ensures that the distribution of the direct estimators (obtained also as averages) will not be too
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far from the Normal distribution.
In many practical applications, data from neighboring small areas display spatial correlation. In these

cases, between-area correlation should be somehow represented in the covariance structure of the model
unless sufficiently explaining covariates are available. However, the introduction of a dependence struc-
ture among small areas entails a serious conceptual difference with respect to the traditional framework
of SAE, where the overall covariance matrix has a block-diagonal structure with block associated to the
small areas Prasad and Rao. (1990).

In the context of SAE, Cressie (1991) introduced a model withspatially correlated random effects.
More recently, an extension of the FH model through the Simultaneously Autoregressive (SAR) process
has been considered by Singh et al. (2005), Petrucci and Salvati (2006) and Pratesi and Salvati (2008).
When all parameters involved in the covariance matrix are known, Pratesi, M., Salvati, N. (2008) intro-
duced the Spatial BLUP.

Usually, the model covariance matrix contains unknown parameters, called here variance compo-
nents, which must be estimated from the available data. Replacing the derived estimates for the pa-
rameters in the Spatial BLUP leads to the so called Spatial EBLUP. Singh et al. (2005) proposed a
second order approximation of the MSE of the Spatial EBLUP. However, this approximation does not
tale into account the uncertainty due to estimation of the spatial autocorrelation parameter, and as shown
by Pratesi and Salvati (2008), it might produce too optimistic or conservative confidence intervals de-
pending on the strength of the spatial correlation and on thevalues of the sampling variances.

Resampling techniques are the alternative to heuristic analytical approximations. They are attractive
for practitioners because of their conceptual simplicity and their easy application to complex statisti-
cal models. Furthermore, they usually require less assumptions and their performance relies less in
the number of small areas. Some resampling procedures have been already proposed in the small area
framework, see e.g. the jackknife method of Jiang and Lahiri(2002), the more recent parametric boot-
strap approaches of González-Manteiga et al. (2007, 2008a, 2008b), Hall and Maiti (2006a) and Ugarte
et al. (2008), and the nonparametric bootstrap of Hall and Maiti (2006b).

Here the parametric bootstrap of González-Manteiga et al.(2007) is extended to the spatial FH
model. Moreover, a nonparametric approach is introduced that resamples both the random effects and
the errors from the empirical distribution of their respective estimators. A simulation study compares
the efficiency of the analytical and the bootstrap MSE estimators introduced in the paper for different
levels of spatial autocorrelation, and analyzes the robustness of the bootstrap procedures to the absence
of normality in the two random components of the model.

4.2 Spatial Fay-Herriot model

Consider a finite population partitioned intoD small areas. The basic FH model relates linearly the
quantity of inferential interest ford-th small area,θd, (e.g. thed-th area FGT poverty measure) to
a vector ofp area level auxiliary covariatesxd = (xd1,xd2, . . . ,xdp), and includes a random effectvd

associated to the area; that is,

θd = xdβ+vd, d = 1, . . . ,D. (4.1)

Hereβ is the p× 1 vector of regression parameters and the random effects{vd; d = 1, . . . ,D} are in-
dependent and identically distributed, each with mean 0 andvarianceσ2

v. Model (4.1) is called linking



4.2. Spatial Fay-Herriot model 59

model since all small areas are linked by the commonβ. Moreover, the FH model assumes that a design-
unbiased direct estimatoryd of θd is available for each small aread = 1, . . . ,D, and that these direct
estimators can be expressed as

yd = θd +ed, d = 1, . . . ,D, (4.2)

where{ed; d = 1, . . . ,D} are independent sampling errors, independent of the randomeffectsvd, and
whereed has mean 0 and varianceψd assumed to be known,d = 1, . . . ,D. See Ghosh and Rao (1994).
Model (4.2) is called sampling model. Combining both, the linking model (4.1) and the sampling model
(4.2), we obtain the linear mixed model

yd = xdβ+vd +ed, d = 1, . . . ,D. (4.3)

Let us define vectorsy = (y1, . . . ,yD)′, v = (v1, . . . ,vD)′ ande= (e1, . . . ,eD)′, and matricesX = (x′1, . . . ,x
′
D)′

andΨ = diag(ψ1, . . . ,ψD). Then the model in matrix notation is

y = Xβ+v+e. (4.4)

Model (4.4) can be extended to allow for spatially correlated area effects as follows. Letv be the
result of a SAR process with unknown autoregression parameter ρ and proximity matrixW (see Anselin
(1988) and Cressie(1993)), i.e.,

v = ρWv +u. (4.5)

We assume that the matrix(ID −ρW) is non-singular. Thenv can be expressed as

v = (ID −ρW)−1u. (4.6)

Here,u = (u1, . . . ,uD)′ is a vector with mean0 and covariance matrixσ2
uID, whereID denotes theD×D

identity matrix andσ2
u is an unknown parameter. We consider that the proximity matrix W is defined in

row standardized form; that is,W is row stochastic. Then,ρ ∈ (−1,1) is called spatial autocorrelation
parameter Banerjee et al.(2004). Hereafter, the vector of variance components will be denotedω =
(ω1,ω2)

′ = (σ2
u,ρ)′. Equation (4.6) implies thatv has mean vector0 and covariance matrix equal to

G(ω) = σ2
u[(ID −ρW)′(ID −ρW)]−1. (4.7)

Sincee is independent ofv, the covariance matrix ofy is equal to

V(ω) = G(ω)+ Ψ.

Combining (4.4) and (4.6) the model is

y = Xβ+(ID −ρW)−1u+e (4.8)

Under model (4.8), the Spatial BLUP of the quantity of interest θd = xdβ+vd is

θ̃d(ω) = xdβ̃(ω)+b′
dG(ω)V−1(ω)[y−Xβ̃(ω)], (4.9)

whereβ̃(ω) = [X′V−1(ω)X]−1X′V−1(ω)y is the generalized least squares estimator of the regression
parameterβ andb′

d is the 1×D vector(0, . . . ,0,1,0, . . . ,0) with 1 in thed-th position. The Spatial BLUP
θ̃d(ω) depends on the unknown vector of variance componentsω = (σ2

u,ρ)′. The two stage estimator
θ̃d(ω̂) obtained by replacingω in expression (4.9) by a consistent estimatorω̂ = (σ̂2

u, ρ̂)′ is called Spatial
EBLUP (see Singh et al.(2005) and Petrucci and Salvati(2006)).
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4.3 Fitting methods based on the likelihood

Assuming normality of the random effects and the errors, thevariance componentsω = (σ2
u,ρ)′ can be

estimated by ML or REML procedures. In fact, under regularity conditions, the estimators derived from
these two methods (and using the Normal likelihood) remain consistent at orderOp(D−1/2) even without
the Normality assumption, for details see Jiang(1996).

A maximum likelihood estimator (MLE) ofω = (σ2
u,ρ)′ is obtained maximizing the log-likelihood

of ω given the data vectory,

ℓ(ω;y) = c− 1
2

log|V(ω)|− 1
2

(y−Xβ)′V−1(ω)(y−Xβ),

wherec denotes a constant. In practice, an iterative algorithm such as the Fisher-scoring algorithm must
be applied to maximize the likelihood. LetS(ω) = (Sσ2

u
,Sρ)′ be the scores or derivatives of the log-

likelihood with respect toσ2
u andρ, and letI (ω) be the Fisher information matrix obtained fromℓ(ω;y),

with elements

I (ω) =

(
Iσ2

u,σ2
u
Iσ2

u,ρ2

Iρ,σ2
u
Iρ,ρ

)
.

Then the Fisher-scoring algorithm starts with an initial estimate ω(0) = (σ2(0)
u ,ρ(0))′ and then at each

iterationk, this estimate are updated with the equation

ω(k+1) = ω(k) + I −1(ω(k))S(ω(k)).

The ML equation forβ obtained by equating the corresponding score to zero yields

β̃(ω) = [X′V−1(ω)X]−1X′V−1(ω)y. (4.10)

Let us denote
C(ρ) = (ID −ρW)′(ID −ρW)

and
P(ω) = V−1(ω)−V−1(ω)X

[
X′V−1(ω)X

]−1
X′V−1(ω).

Then the derivative ofC(ρ) with respect toρ is

∂C(ρ)

∂ρ
= −W −W′+2ρW′W

and the derivatives ofV(ω) with respect toσ2
u andρ are respectively given by

∂V(ω)

∂σ2
u

= C−1(ρ),
∂V(ω)

∂ρ
= −σ2

uC−1(ρ)
∂C(ρ)

∂ρ
C−1(ρ) , A(ω).

The scores associated toσ2
u andρ, after replacing (4.10), are given by

Sσ2
u

= −1
2

trace
{

V−1(ω)C−1(ρ)
}

+
1
2

y′P(ω)C−1(ρ)P(ω)y,

Sρ = −1
2

trace
{

V−1(ω)A−1(ω)
}

+
1
2

y′P(ω)A(ω)P(ω)y.
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The elements of the Fisher information matrix are

Iσ2
u,σ2

u
=

1
2

trace
{

V−1(ω)C−1(ρ)V−1(ω)C−1(ρ)
}

,

Iσ2
u,ρ = Iρ,σ2

u
=

1
2

trace
{

V−1(ω)A(ω)V−1(ω)C−1(ρ)
}

,

Iρ,ρ =
1
2

trace
{

V−1(ω)A(ω)V−1(ω)A(ω)
}

.

A restricted maximum likelihood estimator (RMLE) ofω is obtained by maximizing the restricted
likelihood, which is the likelihood ofω after eliminating the vector of coefficientsβ. Let F be anD× p
matrix satisfyingF′X = 0. Then, the restricted log-likelihood is the likelihood of the transformed data
F′y and is given by

ℓR(ω;y) = c− 1
2

log|F′V(ω)F|− 1
2

y′F(F′V(ω)F)−1F′y.

It can be shown that
F
[
F′V(ω)F

]−1F′ = P(ω),

so that the restricted log-likelihood becomes

ℓR(ω;y) = c− 1
2

log|F′V(ω)F|− 1
2

y′P(ω)y.

Using the following properties of the matrixP(ω),

P(ω)V(ω)P(ω) = P(ω),
∂P(ω)

∂ω j
= −P(ω)

∂V(ω)

∂ω j
P(ω),

we obtain the scores corresponding to this restricted log-likelihood,

SR
σ2

u
= −1

2
trace

{
P(ω)C−1(ρ)

}
+

1
2

y′P(ω)C−1(ρ)P(ω)y,

SR
ρ = −1

2
trace{Pω)A(ω)}+

1
2

y′P(ω)A(ω)P(ω)y,

Finally, the elements of the Fisher information obtained from ℓR are

I Rσ2
u,σ2

u
=

1
2

tr{P(ω)C−1(ρ)P(ω)C−1(ρ)},

I Rσ2
u,ρ

= I Rρ,σ2
u
=

1
2

tr{P(ω)A(ω)P(ω)C−1(ρ)},

I Rρ,ρ =
1
2

tr{P(ω)A(ω)P(ω)A(ω)}.

4.4 Analytical approximation of the MSE

In practical applications, the Spatial EBLUP̃θd(ω̂) should be accompanied with its estimated MSE.
Under normality of random effects and errors, the MSE of the Spatial EBLUP can be decomposed as

MSE[θ̃d(ω̂)] = MSE[θ̃d(ω)] + E{[θ̃d(ω̂)− θ̃d(ω)]2}
= [g1d(ω)+g2d(ω)] + g3d(ω),

(4.11)
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whereg1d(ω) represents the uncertainty due to the prediction of the random effects and is of orderO(1)
for largeD, g2d(ω) is due to the estimation ofβ and is of orderO(D−1), and the last term measures the
uncertainty of the Spatial EBLUP arising from the estimation of the variance components and is of lower
order (see Singh et al.(2005)). Exact analytical expressions for the first two terms are easily calculated
because the Spatial BLUP̃θd(ω) is a linear function of the data vectory, and they are given by

g1d(ω) = b′
d[G(ω)−G(ω)V−1(ω)G(ω)]bd, (4.12)

g2d(ω) = b′
d[ID −G(ω)V−1(ω)]X(X′V−1(ω)X)−1X′[ID −V−1(ω)G(ω)]bd. (4.13)

However, for the last termg3d(ω) = E{[θ̃d(ω̂)− θ̃d(ω)]2}, an exact analytical expression does not ex-
ist due to the non-linearity of the EBLUP̃θd(ω̂) in the data vectory. Under the FH model (4.3) with
independent random effectsvd (diagonal covariance matrixV), Prasad and Rao(1990) obtained an ap-
proximation up too(D−1) terms ofg3d(ω) through Taylor linearization. Their formula can be taken as
a naive approximation of the trueg3d(ω) under model (4.4)–(4.5). Straightforward application of this
formula to model (4.4)–(4.5) yields

gPR
3d (ω) = trace

{
Ld(ω)V(ω)L ′

d(ω)I −1(ω)
}

,

where

Ld(ω) =

(
b′

d

[
C−1(ρ)V−1(ω)−σ2

uC−1(ρ)V−1(ω)C−1(ρ)V−1(ω)
]

b′
d

[
A(ω)V−1(ω)−σ2

uC−1(ρ)V−1(ω)A(ω)V−1(ω)
]

)
.

Then the full MSE can be approximated by

MSEPR[θ̃d(ω̂)] = g1d(ω)+g2d(ω)+gPR
3d (ω). (4.14)

Singh et al.(2005) arrived to the same formula (4.14) for thetrue MSE under a Fay-Herriot model with
random effects following a SAR process. However, this formula is not accounting for the extra uncer-
tainty of the Spatial EBLUP̃θd(ω̂) due to the estimation of the autocorrelation parameterρ.

Concerning MSE estimation, under FH models with diagonal covariance matrix, Prasad and Rao
(1990) obtained an approximately unbiased estimator of (4.14). Following the results of Harville and
Jeske (1992), Zimmerman and Cressie (1992) extended the Prasad-Rao MSE estimator to models with
more general covariance structure. The authors refer to geostatistical models, in which the correlation
matrix is directly specified, and they assume that the covariance function is linear in the parameters.
This situation is likely to occur under geostatistical models where the covariance function depends on
the distance between locations. Under SAR models, the covariance is assumed to depend on a proximity
matrix that specifies the proximity between the areas. Even so, SAR models lead to a covariance function
that is similar to the Bessel variogram model by Griffith and Csillag (1993). Then, following the results
of Zimmerman and Cressie (1992), whenω̂ is the REML estimator ofω, an approximately unbiased
estimator of the MSE is

msePR[θ̃d(ω̂)] = g1d(ω̂)+g2d(ω̂)+2gPR
3d (ω̂), (4.15)

which is the same estimator derived by Prasad and Rao (1990).In formula (4.15), the termgPR
3d (ω̂)

appears twice due to a bias correction ofg1d(ω̂). If ω̂ = (σ̂2
u, ρ̂)′ is obtained by ML, then an approximately

unbiased estimator of the MSE is

msePR
ML[θ̃d(ω̂)] = g1d(ω̂)+g2d(ω̂)+2g̃3d(ω̂)−bT

ML(ω̂)∇g1d(ω̂), (4.16)
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where∇g1d(ω) = ∂g1d(ω)/∂ω is the gradient ofg1d(ω) andbML(ω̂) is the bias of the ML estimator̂ω
up to ordero(D−1). This bias is equal tobML(ω̂) = I −1(ω̂)h(ω̂)/2 with h(ω̂) = (h1(ω̂),h2(ω̂))′ and

hk(ω) = trace

{
[
X′V−1(ω)X

]−1 ∂
[
X′V−1(ω)X

]

∂ωk

}
, k = 1,2.

Ignoring the last term in (4.16) could lead to underestimation of the MSE (see e.g. Petrucci and Salvati
(2006)). Finally, Singh et al. (2005) derived a different MSE estimator. When̂ω is obtained by REML
method, their estimator is given by

mseSSK[θ̃d(ω̂)] = g1d(ω̂)+g2d(ω̂)+2gPR
3d (ω̂)−g4d(ω̂). (4.17)

This estimator differs from (4.15) and (4.16) in the subtraction of the extra termg4d(ω̂), whereg4d(ω) is
given by

g4d(ω) =
1
2

2

∑
k=1

2

∑
ℓ=1

b′
dΨV−1(ω)

∂2V(ω)

∂ωk∂ωℓ
V−1(ω)Ψ I −1

kℓ (ω)bd.

Whenω̂ is obtained by ML, their estimator is obtained by subtracting g4d(ω̂) in (4.16).

4.5 Parametric bootstrap estimation of the MSE

In the previous section, we decompose the MSE of the spatial EBLUP in three components,g1d(ω),
g2d(ω) andg3d(ω). The first two have exact closed formulas which does not happen for the third com-
ponent. This reflects the additional uncertainty coming from the estimation of the variance components
ω = (σ2

u,ρ).
In this section, we propose to use the parametric bootstrap of González-Manteiga et al. (2007) ex-

tended to the FH model with spatial correlation (4.4)–(4.5), to derive an estimator for the full MSE, which
is consistent if the estimators of the model parameters are consistent. In order to check the consistency
of the full MSE, we can use, as in González-Manteiga et al. (2007), the asymptotic formula of the MSE
obtained by Singh et al. (2005). The extended parametric bootstrap is composed of 8 steps as follows:

(step 1) Obtain the estimateŝω = (σ̂2
u, ρ̂)′ and β̂ = β̃(ω̂) by fitting the model (4.8) to the initial datay =

(y1, . . . ,yD)′.

(step 2) Generate a vectort∗1 whoseD elements are independentN(0,1). Build bootstrap vectorsu∗ = σ̂ut∗1
andv∗ = (ID − ρ̂W)−1u∗, and calculateθ∗ = Xβ̂+v∗, whereβ̂ andω̂ are viewed as the true values
of the parameters.

(step 3) Generate a vectort∗2 with D independentN(0,1) elements, which is independent oft∗1. Then,
construct the vector of random errors ase∗ = Ψ1/2 t∗2.

(step 4) Obtain bootstrap datay∗ directly applying the model,y∗ = θ∗ +e∗ = Xβ̂+v∗ +e∗.

(step 5) Fit the model (4.8) to the bootstrap datay∗ using β̂ and ω̂ as the true values ofβ and ω. The
estimates of the “true”̂β andω̂ are obtained based on bootstrap datay∗, by calculating the estimator
of β̂ at the “true”ω̂,

β̃∗
(ω̂) =

[
X′V−1(ω̂)X

]−1
X′V−1(ω̂)y∗;
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then, obtain the estimator̂ω∗ based ony∗. Finally, the estimator of̂β calculated at̂ω∗ is β̃∗
(ω̂∗).

(step 6) Calculate the bootstrap Spatial BLUP from bootstrap datay∗ usingω̂ as the true value ofω,

θ̃∗d(ω̂) = xdβ̃∗
(ω̂)+b′

dG(ω̂)V(ω̂)−1[y∗−Xβ̃∗
(ω̂)].

Then, compute the bootstrap Spatial EBLUP usingω̂∗ in place of the “true”ω̂ as,

θ̃∗d(ω̂
∗) = xdβ̃∗

(ω̂∗)+b′
dG(ω̂∗)V−1(ω̂∗)[y∗−Xβ̃∗

(ω̂∗)].

(step 7) Repeat steps (2)–(6)B times. In theb-th bootstrap replication,θ∗(b)
d is the quantity of interest for

d-th area,ω̂∗(b) the bootstrap estimate ofω, θ̃∗(b)
d (ω̂) the bootstrap Spatial BLUP andθ̃∗(b)

d (ω̂∗(b))
is the bootstrap Spatial EBLUP ford-th area.

(step 8) A parametric bootstrap estimator ofg3d(ω) is

gPB
3d (ω̂) = B−1

B

∑
b=1

[
θ̃∗(b)

d (ω̂∗(b))− θ̃∗(b)
d (ω̂)

]2
,

and a naive parametric bootstrap estimator of the full MSE isis given by

msenaPB[θ̃d(ω̂)] = B−1
B

∑
b=1

[
θ̃∗(b)

d (ω̂∗(b))−θ∗(b)
d

]2
. (4.18)

We can also obtain an alternative estimator of the MSE by adding the analytical estimatesg1d(ω̂)
andg2d(ω̂), the bootstrap estimategPB

3d (ω̂), and a bootstrap bias correction ofg1d(ω̂)+ g2d(ω̂) to
obtain a MSE estimate similar to the one of Pfeffermann and Tiller (2006). The alternative final
estimator is

msebcPB[θ̃d(ω̂)] = 2[g1d(ω̂)+g2d(ω̂)]−B−1
B

∑
b=1

[
g1d(ω̂∗(b))+g2d(ω̂∗(b))

]
+gPB

3d (ω̂). (4.19)

4.6 Nonparametric bootstrap

The aim of this section is to present a nonparametric bootstrap for the MSE estimation. The random
effects{u∗1, . . . ,u

∗
D} and random errors{e∗1, . . . ,e

∗
D} are obtained by resampling respectively from both the

empirical distribution of predicted random effects{û1, . . . , ûD} and of residuals{r̂1, . . . , r̂D}, whererd =
yd− θ̃d(ω̂), d = 1, . . . ,D, both previously standardized. The nonparametric bootstrap is more robust to the
non-normality of any of the random components of the model since it does not assume any distribution
for them.

Under model (4.4)–(4.5), the BLUPs ofu andv are respectively

ṽ(ω) = G(ω)V−1(ω)[y−Xβ̃(ω)], ũ(ω) = (I −ρW)ṽ(ω),

with ũ(ω) covariance matrix given by

Vu(ω) = (I −ρW)G(ω)P(ω)G(ω)(I −ρW′).
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Furthermore, the vector of residuals is

r̃(ω) = y−Xβ̃(ω)− ṽ(ω) = (y1− θ̃1(ω), . . . ,yD − θ̃D(ω))′,

with covariance matrix
Vr (ω) = ΨP(ω)Ψ.

Vu(ω) andVr (ω) are not diagonal since the elements of the vectorsũ(ω) and r̃(ω) are correlated and,
therefore, we have to proceed by applying a standardizationto these vectors (resampling from the empir-
ical distribution requires aniid setup). Our proposal relies on transforming bothû = ũ(ω̂) andr̂ = r̃(ω̂)
to make them as close as possible to vectors with uncorrelated elements and unit variances. The method
is the following for theû vector (the same applies to ther̂ vector): First, we obtain the spectral decom-
position ofV̂u = Vu(ω̂) as

V̂u = Qu∆uQ′
u,

where∆u is a diagonal matrix with them− p non-zero eigenvalues of̂Vu andQu is the matrix with the
corresponding eigenvectors in the columns. Keep in view that ũ(ω) lies in am− p dimension space. Sec-

ond, we square the matrix̂V−1/2
u = Qu∆−1/2

u Q′
u to obtain a generalized inverse ofV̂u. The transformed

û is obtaining as
ûS = V̂−1/2

u û.

The covariance matrix of̂uS is Var(ûS) = QuQ′
u, which is close to an identity matrix. The explicit

expression of̂uS is
ûS = Qu∆−1/2

u Q′
uû,

whereQ′
uû contains the coordinates ofû in its principal components. The coordinates are uncorrelated

with the covariance matrix∆u. Then, we multiply the coordinates by∆−1/2
u in order to force them to

have unit variance. Finally, we multiply the standardized vector in the space of the principal components
by Qu. This procedure assures that the standardized vector returns to the original space. Thus, the
transformed vector̂uS contains the coordinates of the vector∆−1/2

u Q′
uû, with standard elements, in the

original space.
The nonparametric bootstrap procedure works by replacing steps (2) and (3) of the parametric boot-

strap by the new steps (2’) and (3’) as:

(step 2’) Calculate predictors ofv andu using the estimateŝω = (σ̂2
u, ρ̂)′ andβ̂ = β̃(ω̂) obtained in step (1)

in the following way:

v̂ = G(ω̂)V(ω̂)−1(y−Xβ̂), û = (I − ρ̂W)v̂ = (û1, . . . , ûD)′.

Make ûS = V̂−1/2
u û = (ûS

1, . . . , û
S
D)′, whereV̂1/2

u is the square root of the generalized inverse ofV̂u

obtained by the spectral decomposition. Then, re-scale theelements ˆuS
d to obtain elements with

sample mean exactly equal to zero and sample varianceσ̂2
u. The transformation is

ûSS
d =

σ̂u(ûS
d −D−1∑D

ℓ=1 ûS
ℓ)√

D−1∑D
k=1(û

S
k −D−1∑D

ℓ=1 ûS
ℓ)

2
, d = 1, . . . ,D.

Build the vectoru∗ = (u∗1, . . . ,u
∗
D)′. Its elements are obtained by extracting a simple random sample

with replacement of sizeD from the set{ûSS
1 , . . . , ûSS

D }. Proceed by obtainingv∗ = (I − ρ̂W)−1u∗

and calculating the bootstrap quantity of interestθ∗ = Xβ̂+v∗ = (θ∗1, . . . ,θ∗D)′
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(step 3’) Follow by computing the vector of residualsr̂ = y−Xβ̂− v̂ = (r̂1, . . . , r̂D)′ and proceed with its

standardization̂rS= V̂−1/2
r r̂ = (r̂S

1, . . . , r̂
S
D)′, whereV̂r = ΨP(ω̂)Ψ is the estimated covariance ma-

trix and V̂−1/2
r is a root square of the generalized inverse derived from the spectral decomposition

of V̂r . Once more, re-standardize these values in the following way

r̂SS
d =

r̂S
d −D−1∑D

ℓ=1 r̂S
ℓ√

D−1∑D
k=1(r̂

S
k −D−1∑D

ℓ=1 r̂S
ℓ )

2
, d = 1, . . . ,D.

Finally, build r∗ = (r∗1, . . . , r
∗
D)′ by extracting a simple random sample with replacement of size D

from the set{r̂SS
1 , . . . , r̂SS

D } and lete∗ = (e∗1, . . . ,e
∗
D)′, wheree∗d = ψ1/2

d r∗d, d = 1, . . . ,D.

This procedure leads to naive and bias-corrected nonparametric bootstrap estimators analogous to (4.18)
and (6.13), which are denoted asmsenaNPB[θ̃d(ω̂)] andmsebcNPB[θ̃d(ω̂)], respectively.

When the normality assumption is suspected to be violated either for the random effects or for the
errors but not for both, it is possible to combine step (2’) with (3), or step (2) with (3’) of the two bootstrap
procedures. This comes out in a semiparametric bootstrap that avoids the normality assumption on the
desired component of the model.

4.7 Simulation study

In this section we describe some simulation experiments carried out with the following purposes: (a) to
check whether taking into account the spatial correlation between small areas in the model improves the
precision of small area estimators; (b) to study the small-sample behavior of the different MSE estimators
introduced in this chapter, for different values of the spatial correlation parameterρ and for different
patterns of sampling variancesψd; (c) to analyze the robustness of the proposed bootstrap procedures to
non-normality of the random effects and errors.

The experiments are based on a real population, the map of theD = 287 municipalities (small areas)
of Tuscany. We considered a model withp = 2, that is, one explanatory variable and a constant, with
anD×2 design matrixX = [1D x], where1D is a column vector of ones of sizeD andx = (x1, . . . ,xD)′

contains the values of the explanatory variable. These valuesxd were generated from a uniform distri-
bution in the interval(0,1). The true model coefficients wereβ = (1,2)′, the random effects variance
σ2

u = 1 and the spatial correlation parameterρ ∈ {0.25,0.5,0.75}. The matrix of sampling variances
ψ = diag(ψ1, . . . ,ψD) was taken asψd = 0.7 for 1≤ d ≤ 60; ψd = 0.6 for 61≤ d ≤ 120; ψd = 0.5 for
121≤ d ≤ 180; ψd = 0.4 for 181≤ d ≤ 240 and finallyψd = 0.3 for 241≤ d ≤ 287 (see Datta et al.
(2005)). TheD×D row-standardized proximity matrixW was obtained from the neighborhood structure
of the municipalities in Tuscany. This matrix was kept constant for all simulations. We considered three
possible probability distributions for the random area effects and errors, namely Normal, Gumbel and
Studentt distribution with 6 degrees of freedom, all standardized tohave zero mean and unit variance.
The last two distributions represent two different sourcesof discrepancy to normality, since the Gumbel
distribution is skewed and the Student t has heavy tails.

Taking into account the simulation results of Molina et al. (2008) on the comparison of fitting meth-
ods for the Spatial Fay-Herriot model, we have decided to useonly REML method in these simulations.
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Concerning target (a),L = 1000 Monte Carlo data sets were generated as described before, taking
Normal distribution for the random effects and errors. Thentwo models were fitted to each data set: the
spatial model (4.4)-(4.5), and the non-spatial model obtained by assuming that in model (4.4), the vector
of random effectsv = (v1, . . . ,vD)′ has independent and identically distributed elementsvd, with zero
mean and varianceσ2

u. Figures 4.1 and 4.2 plot the empirical values of the mean squared errors of the
Spatial EBLUP obtained from the former model, and the NonSpatial EBLUP resulting from the latter
model, for theD = 287 small areas, forρ = 0.75 andρ = 0.25, respectively. The piecewise decreasing
shape that we observe in the level of these two figures is due tothe decreasing patterns of sampling
variancesψd. Figure 4.1 shows that ignoring the spatial correlation structure of small areas leads to an
increase in the MSE. However, this increase is smaller for areas with smaller sampling variances and
in the case of weak spatial correlation, see Figure 4.2 forρ = 0.25. This last figure also suggests that
modelling the spatial correlation seems to be convenient even when this correlation is weak, since there
is no loss in efficiency.

Target (b) deals with comparing the analytical estimators of the MSE given in (4.15) and (4.17)
with the bootstrap estimators. For this,L = 250 Monte Carlo data sets were generated, and for each
data set, we calculated the different MSE estimators introduced in this paper, namely, the two analyt-
ical estimatorsmsePR[θ̃d(ω̂)] andmseSSK[θ̃d(ω̂)], the two estimators obtained by parametric bootstrap
msenaPB[θ̃d(ω̂)] and msebcPB[θ̃d(ω̂)] (drawing from the Normal distribution), and the two estimators
based on nonparametric bootstrapmsenaNPB[θ̃d(ω̂)] andmsebcNPB[θ̃d(ω̂)]. The bootstrap procedures were
applied withB = 250 replicates. The empirical values of the MSE, which are the reference values for
comparison, were computed previously with 10000 Monte Carlo replicates to ensure better accuracy.
As output of simulations, we obtained for each small aread, the meanmsead and the mean squared er-
ror Ea

d over Monte Carlo samples of each estimatormsea[θ̃d(ω̂)], for a ∈ A with A = {PR,SSK,naPB,
bcPB,naNPB,bcNPB}. Then, to summarize the results over small areas, we computed the average over
the D = 274 small areas of the relative bias and of the relative root mean squared error of each MSE
estimator, as

ARBa =
1
D

D

∑
d=1

(
msead
MSEd

−1

)
, AREa =

1
D

D

∑
d=1

√
Ea

d

MSEd
, a∈ A,

whereMSEd stands for the empirical value of the trueMSE[θ̃d(ω̂)]. Tables 4.1 and 4.2 report the resulting
percent values of AREa and ARBa respectively. In terms of relative root mean squared error,the bcNPB
estimator does not behave bad in comparison with the other estimators in any case. As expected, under
Normal distribution, the analytical PR estimator is less biased forρ = 0.25 andρ = 0.75, although not
for ρ = 0.5. In this last case, the parametric bootstrap gets a better ARB. For Gumbel distribution, the
bcNPB is less biased than the rest of estimators forρ = 0.75 and in all cases in has a moderate ARE. In
the case of the Studentt6, the bcNPB shows less ARB forρ = 0.25, and similar to the best estimator for
the other two values ofρ, and has the smaller values of ARE forρ = 0.25 andρ = 0.5. Finally, results
indicate that the bias correction is necessary.

4.8 Conclusions

This chapter considers a Fay-Herriot model with correlatedrandom area effects according to a simulta-
neously autoregressive process. It revises the different analytical estimators of the MSE of the Spatial
EBLUP and proposes two new estimators based on both a parametric and a nonparametric bootstrap.
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Figure 4.1: Empirical MSE of the Spatial EBLUP and the NonSpatial EBLUP for theD = 287 small
areas, forρ = 0.75.
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Figure 4.2: Empirical MSE of the Spatial EBLUP and the NonSpatial EBLUP for theD = 287 small
areas, forρ = 0.25.
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Table 4.1: ARE (×100) of the different MSE estimators, when data are simulated from standard Normal,
Gumbel and Studentt6 distributions.

Normal
ρ PR SSK naPB bcPB naNPB bcNPB
0.25 4.15 4.17 9.79 4.02 9.91 4.08
0.5 4.23 4.23 9.90 4.22 9.80 4.12
0.75 4.20 4.20 9.80 4.20 9.98 4.57
Gumbel
ρ PR SSK naPB bcPB naNPB bcNPB
0.25 5.15 5.18 10.44 5.41 11.50 5.28
0.5 5.27 5.28 10.53 5.56 11.93 6.05
0.75 5.17 5.16 10.68 5.78 11.74 5.75
Studentt6
ρ PR SSK naPB bcPB naNPB bcNPB
0.25 6.15 6.23 10.64 5.68 11.97 5.55
0.5 6.18 6.21 10.68 5.85 11.87 5.85
0.75 6.07 6.08 10.58 5.70 12.37 7.23

Our simulation experiments supported the results of Molinaet al. (2008), in the sense that the estimator
derived from the nonparametric bootstrap performed well interms of average relative error and bias, as
compared with the other estimators, under Gumbel and Student t6 distributions, and it performed accept-
ably well also under Normal distribution. Thus, this methodis expected to be more reliable when the
distribution is not exactly normal.

In the simulations of Section 4.7 there were not municipalities without sample data. For and aread
without sample data but for which the values of the covariates at the area-level are available from any
other data source, a possible estimator isθ̃d(ω̂) = xdβ̃(ω̂). Estimation of the MSE for these areas either
by analytical estimators based on Taylor expansion or usingbootstrap should not be a problem.

In the SAR process, the proximity matrix must be specified in advance. The structure of this matrix
can be determined by specifying a neighborhood rule or a distance function between areas. These dis-
tances can be either related to physical distances, or to other socioeconomic variables. However, the best
specification of this matrix for a particular problem is not clear and this issue deserves deep investigation.
Several specifications for the proximity matrix between Spanish provinces are studied and compared in
the next chapter.
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Table 4.2: ARB (×100) of the different MSE andg3d estimators when data are simulated from standard
Normal, Gumbel and Studentt6 distributions.

Normal
ρ PR SSK naPB bcPB naNPB bcNPB
0.25 0.27 -0.04 -0.88 -0.29 -0.15 0.44
0.5 0.26 0.07 -0.28 0.20 -0.63 -0.19
0.75 -0.16 -0.24 -1.08 -0.79 -1.26 -0.94
Gumbel
ρ PR SSK naPB bcPB naNPB bcNPB
0.25 0.07 -0.24 -1.41 -0.82 -1.23 -0.48
0.5 0.20 -0.01 -0.49 -0.02 -1.65 -1.06
0.75 0.26 0.17 -0.57 -0.31 -0.40 0.03
Studentt6
ρ PR SSK naPB bcPB naNPB bcNPB
0.25 -0.63 -0.95 -1.37 -0.80 -0.61 0.20
0.5 -0.65 -0.85 -1.39 -0.89 -0.27 0.30
0.75 -1.10 -1.18 -1.93 -1.67 -1.58 -1.13



Chapter 5

Proximities based on semi-metrics for
socioeconomic functional data

5.1 Introduction

The specification of the weight matrixW of (4.5) introduced in Section 4.2 is one of the challenges in
analyzing spatial data. The literature on spatial econometrics and statistics specifies mainly two ways of
modeling this matrix. The first consists of distances among units, it is flexible since the spatial effects are
different from different distances and it is determined in advance by Kakamu (2005). This matrix is often
call typicality matrix, and is defined in the following way: if two small areas are neighbours the corre-
sponding entry inW is 1, and 0 otherwise. Therefore, matrixW contains the geographic dependence
between small areas, an information that can be relevant in the prediction of physical or environmental
variables, such as temperature or pollution, but not in describing latent variables, such as poverty. An
alternative approach is to estimate the weights together with the model’s parameters. In this field the
paper by LeSage and Pace (2007) became a reference. They proposed the matrix exponential spatial
specification (MESS) procedure that replaces the geometricpattern of decay in the spatial autoregressive
model (SAR) by an exponential decay. Among the MESS advantages we can emphasize the simplifi-
cation of the log-likelihood and the consequent simplification of the Bayesian estimation of the model.
The procedure produces estimates and inferences similar tothose from the conventional spatial autore-
gressive models. Nevertheless, it can be applied only to theSAR model. Kakamu (2005) proposed a
distance functional weight matrix model that is suitable tobe applied to the SAR model as well to the
spatial error model (SEM), however, it is more time consuming.

Our approach belongs to the first branch of the literature, and uses the information on socioeconomic
variables to estimate the weight matrix, that we denote hereafter proximity matrix. It is not restrictive
to the use of socioeconomic variables, one can use any set of information that considers relevant for
the estimation of the variable of interest. In our particular case, we use the unemployment rate and the
illiteracy rate because our main interest is to estimate thepoverty incidences in Spanish provinces. Our
purpose is to construct a proximity matrix that considers asneighbors those provinces whose socioeco-
nomic information is similar. The variables chosen are related to poverty and are not included in the
regressor set. We used only two variables since data by provinces are not very abundant and are difficult
to obtain.

71
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In particular, we develop two alternative methods for constructing matrixW instead of considering
the classical typicality matrix. In both proposals the proximities between small areas are computed at-
tending to some socioeconomic information. The first one, described in Section 5.2, consists in construct-
ing the proximity matrix using classical multivariate analysis, whereas the second approach, described
in Section 5.3, uses functional data techniques. In both casesW is obtained from a matrixD(2) = (δ(2)

i j ),
containing the squared distances between small areas. In Section 5.4 we draw a smooth-parametric Boot-
strap scheme in order to study the gain obtained in the prediction of the poverty level, in the sense of
mean squared prediction error, when considering the classical, multivariate and functional approaches
in the computation of matrixW. The empirical results show that the functional method performs better
than the multivariate and classical ones, since it gives more accurate predictions of the poverty level.

5.2 The multivariate approach

Let X be aD× p matrix containing the information ofp socioeconomic (continuous) variables observed
on D small areas, at a fixed instant of time. Given two small areasi and j, the entries in matrixD(2) are
obtained from Mahalanobis distance as:

δ(2)
i j = (xi −x j)

′S−1(xi −x j),

wherexi = (xi1,xi2, . . . ,xip) denotes thei-th row of X (analogous forx j ) andS is the covariance matrix
of X,

S=
1
D

X′
(

I − 1
D

11′
)

X,

whereI is the identity matrix of sizeD and1 is the vector of ones. SinceW is a proximity (or similarity)
matrix it can be obtained as

W = 11′− 1
2

D(2).

Finally, one can considerW in row standardized form, if necessary.

5.3 The functional approach

Let X1 andX2 beD× J matrices containing two socioeconomic time series observed onD small areas
through a fixed period of timeT = {t1, t2, . . . , tJ}. The historical socioeconomic information of theD
small areas contained in the rows of each matrixXℓ, ℓ = 1,2, can be seen as a set ofD curves,xℓ1, . . . ,xℓD,
that is called a functional dataset. Ferraty and Vieu (2006)proposed several methodologies for obtaining
semi-metrics from a functional dataset. In this chapter we explore Functional Principal Components
Analysis (FPCA), a technique that is well adapted for rough curves, and for each Xℓ, ℓ = 1,2 we obtain
the corresponding functional semi-metric. Then, following Cuadras and Fortiana (1998), we construct
matrix D(2) combining the two functional semi-metrics without including redundant information.

5.3.1 Functional PCA

In the context of multivariate analysis, the classical Principal Components Analysis is considered as a
useful tool for displaying data in a reduced dimensional space. More recently, the PCA methods were
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extended to functional data and used for many different statistical purposes. In particular, Ferraty and
Vieu (2006) propose FPCA as a tool for computing proximitiesbetween curves in a reduced dimensional
space. In the following we describe this technique for a general functional dataset.

Let X be a random element of a functional space (typically a real function fromT = [a,b] ⊆ R to
R) and letX1, . . . ,XD be D independent and identically distributed observations from X . As long as
E(

R

T X
2(t)dt) < ∞, the FPCA ofX allows us to obtain the following expansion of Dauxois et al.(1982)

X =
∞

∑
k=1

(
Z

T
X (t)vk(t)dt

)
vk, (5.1)

where{vk}k≥1 is the sequence of orthonormal eigenfunctions of the covariance operator

ΓX (s, t) = E(X (s)X (t)),

associated with the eigenvaluesλ1 ≥ λ2 ≥ . . .. Now, let

X̃
(q)

=
q

∑
k=1

(
Z

T
X (t)vk(t)dt

)
vk

be the truncated version of (5.1). The main interest of such adecomposition is that this truncated version
is minimizing E(

R

T(X (t)−PqX (t))2dt) over all projectionsPq of X into q-dimensional spaces. Thus,
we can define a parametrized class of semi-norms from the classicalL2-norm in the following way:

‖X ‖PCA
q =

√
Z

T
(X̃ (q)(t))2 dt =

√
q

∑
k=1

(
Z

T
X (t)vk(t)dt

)2

,

which leads to the following parametrized family of semi-metrics:

dPCA
q (X i ,X ) =

√
q

∑
k=1

(
Z

T
(X i(t)−X (t))vk(t)dt

)2

.

Here,q is not really a smoothing parameter but rather a tuning parameter indicating the resolution level
at which the problem is considered. Note that in practice,ΓX is unknown, and also thevk’s, but the
covariance operator can be well approximated by its empirical version

ΓD
X (s, t) =

1
D

D

∑
i=1

X i(s)X i(t),

and the eigenfunctions ofΓD
X are consistent estimators of those ofΓX (see Cardot et al. (1999)).

Indeed we never observe directly{X i = {X i(t), t ∈ T}}i=1,...,D but only a discretized version{xi =
(X i(t1), . . . ,X i(tJ))}i=1,...,D (notice that this is implicitly assuming that the data are balanced, which means
that all units are measured at the same points). So, from a practical point of view, according to Castro et
al. (1986) we can approximate the integral in the following way

Z

T
(X i(t)−X (t))vk(t)dt ≈

J

∑
j=1

w j (X i(t j)−X (t j))vk(t j),



74 Chapter 5. Proximities based on semi-metrics for socioeconomic functional data

wherew1, . . . ,wJ are quadrature weights which define the approximate integration. To fix ideas, note that
the standard choice could bew j = t j − t j−1. If we have two discretized curvesxi andxi′ , the quantity
dPCA

q (X i ,X i′) will be approximated by its empirical version:

dPCA
q (xi ,xi′) =

√√√√
q

∑
k=1

(
J

∑
j=1

w j(X i(t j)−X i′(t j))v jk

)
, (5.2)

wherevk = (v1k, . . . ,vJk)
′, k = 1, . . . ,q, are the∆w-orthonormal eigenvectors of the covariance matrix

(∆w = diag(w1, . . . ,wJ))

Γn ∆w =
1
D

D

∑
i=1

x′i xi ∆w,

associated with the eigenvaluesλ1,D ≥ λ2,D ≥ . . . ≥ λq,D. Note thatdPCA
q (xi ,xi′) is close todPCA

q (X i ,X i′)
as soon as the grid(t1, . . . , tJ) is sufficiently fine.

5.3.2 Related metric scaling applied to functional semi-metrics

Let X1 andX2 beD× J matrices containing two socioeconomic time series observed onD small areas
through a fixed period of timeT = {t1, t2, . . . , tJ}. Using expression (5.2) and for a givenq≥ 1 we can

obtain matricesD(2)
1,q andD(2)

2,q, which contain the distances between theD small areas, according to these
two socioeconomic indicators. Since both socioeconomic indicators are referred to the same set ofD
small areas, the two functional semi-metricsD(2)

1,q andD(2)
2,q may contain redundant information. Cuadras

and Fortiana (1998) proposed a technique, called related metric scaling, that is an extension of metric
scaling whose aim is to join several distance matrices referred to the same group of individuals, taking
into consideration the possibility of redundant information. See Cuadras and Fortiana (1998) and also
Cuadras and Fortiana (1995) for the details.

In the following we apply their methodology in the case of functional semi-metrics. We start by
imposing that the two marginal distancesD(2)

1,q andD(2)
2,q have the same geometric variability, that is

1
D2

D

∑
i, j=1

δ2
1,q(i, j) =

1
D2

D

∑
i, j=1

δ2
2,q(i, j).

Note that this condition can always be assumed to hold, sincemultiplying one of the marginal distances
by an appropriate constant amounts to a change of measurement unit. Then, for each marginal distance
D(2)

i,q , i = 1,2, we consider the associated inner product matrix

Gi = −1
2

HD(2)
i,q H,

whereH = I − (1/D)11′ is the centering matrix, and we define the inner product matrix associated to
the joint distanceD(2) as

G = G1 +G2−
1
2

(
G1/2

1 G1/2
2 +G1/2

2 G1/2
1

)
,
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whereG1/2
i = Ui Λ

1/2
i U′

i, Ui is theD×k matrix containing the orthonormal eigenvectors of the symmetric
matrix Gi corresponding to the first eigenvalues, ordered asλ1 ≥ . . . ≥ λk > 0, k ≤ D− 1, andΛi =
diag(λ1, . . . ,λk). Finally, the joint distanceD(2) is obtained form the inner product matrix as

D(2) = g1′ +1g′−2G,

whereg = diag(G). Proceeding as in Section 5.2, the proximity matrixW is obtained as

W = 11′− 1
2

D(2).

5.4 Simulation study

In this Section we study the gain obtained in the prediction of direct estimators of the FGT poverty
measures (forα = 0), in the sense of mean squared error of small area predictors, when considering three
different approaches in the computation of matrixW in (4.5). The first one is the classical approach,
whereW is a typicality matrix, whereas the second and third approaches consist in implementing the
techniques described in Sections 5.2 and 5.3, respectively.

We start by describing the data to be used in the model described in Section 4.2. They consist of
official data from the Spanish Survey of Income and Living Conditions corresponding to year 2006 for
D = 51 Spanish provinces (the small areas). The response variable is the direct estimator of the FGT
poverty measure (forα = 0), that is the proportion of poor in the area. The auxiliary covariates are the
intercept and the following proportions (in the area) of Spanish people, people of ages from 16 to 24,
from 25 to 49, from 50 to 64, equal or greater than 65, people with no studies up to primary studies,
Graduate people, employees, unemployed people, inactive people.

We have selected from theInstituto Nacional de Estadı́sticawebsite (http://www.ine.es), the
more relevant socioeconomic variables related with poverty, being the unemployment rate and share of
illiterate population over 16 years old. These variables have been measured in theD = 51 provinces from
1991 to 2005 (J = 15 years). Therefore, in practice we have two matrices,X1 andX2 of size 51×15.

In order to compute matrixW with the multivariate approach of Section 5.2, we only consider the
information contained inJ-th columns ofX1 andX2, which leads to a matrix of size 51×2. We callWM

the proximity matrix computed with the methodology described in Section 5.2.
To compute matrixW using the functional approach of Section 5.3, we have obtained two semi-

metricsD(2)
1,q andD(2)

2,q, one for each data set (see Ferraty and Vieu (2006)), forq = 4 functional principal
components, sinceq= 4 is enough to collect the most part of the observed variability. Finally, in order to
obtain a square matrix of joint distances from the previous two, we have used the related metric scaling
technique, introduced by Cuadras and Fortiana (1998), which provides a joint metric from different
metrics on the same individuals, taking into account the possible redundant information that can be
added simply by adding distance matrices. We callWF the proximity matrix computed in this way.

We call WT the typicality matrix between the Spanish provinces, whoseentries are 1 if the corre-
sponding two provinces are neighbours or 0 otherwise.

We undertake a simulation study to compare the performance of the three matricesWT , WM and
WF . Therefore, we apply a resampling approach and obtain 500 samples from the original database, by
using a parametric Bootstrap technique. Under this approach, it is added a small amount of normally
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distributed random noise to each resampled observation. This is equivalent to sample from a kernel
density estimate of the data.

We compute the estimators of the model in the original sampleand in each of the resampled data con-
sidering each of the matricesWT , WM andWF . As a measure of errors we compute the corresponding
sum of squares among these estimators. Table 5.1 contains the global mean, median and third quartile of
MSE obtained using matricesWT , WM andWF .

Table 5.1: Global mean, median and third quartile of the MSE obtained using three methodologies
(classical, multivariate and functional) in computing matrix W.

mean MSE median MSE 3rd quartile MSE
WT 0.096991 0.082082 0.127506
WM 0.090955 0.076425 0.119072
WF 0.088751 0.073952 0.117385

Figure 5.1 contains the plots of the mean, median and third quartile of the MSE for each Spanish
province. Both from Table 5.1 and Figure 5.1 we can see that the best performance is obtained withWF ,
that is using functional data analysis approach.
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Figure 5.1: Comparisons of mean MSE, median MSE and third quartile MSE, for each Spanish province,
computed on 500 samples from the original database by smooth-parametric Bootstrap, using matricesWF

(black solid line),WT (red dashed line) andWM (blue dotted line).
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Chapter 6

Semiparametric Fay-Herriot model using
penalized splines

Traditional Fay-Herriot small area estimation models are based on linear mixed models, characterized
by random area effects which allow for between area heterogeneity apart from that explained by the
auxiliary variables (see Rao (2003)). These models howeverare based on the hypothesis of a linear
relationship between the variable of interest and the covariates, hypothesis that can represent a serious
restriction in many real data applications. Furthermore, traditional linear mixed models do not handle
spatial proximity effects between the areas, an important feature in environmental studies where detailed
geo-referenced information for the units of analysis is usually available. Indeed, in recent years exten-
sions to random effects models have been proposed to allow for spatially correlated random area effects
taking into account the information provided by neighboring areas (see Petrucci and Salvati (2006) and
Pratesi and Salvati (2009)), but these models still rely on the linearity assumption.

Here we present a semiparametric version of the basic Fay-Herriot model that is based on P-splines
and can also handle situations where the functional form of the relationship between the variable of
interest and the covariates cannot be specified a priori (Giusti et al., in preparation). This is often the
case when the data are supposed to be affected by spatial proximity effects. In these cases P-spline
bivariate smoothing can easily introduce spatial effects in the area level model. Opsomer et al. (2008)
proposed a similar small area model based on P-splines but under the assumption that all the data are
available at the unit level, and this can be a restriction in some situations.

6.1 Estimation of small area means

Let θ be thed× 1 vector of the parameter of inferential interest (small area totalyd, small area mean
ȳd with d = 1, ...,D) and assume that thed× 1 vector of the direct estimator̂θ is available and design
unbiased. Denote the correspondingd× p matrix of the area level auxiliary variables byX = (x1, . . . ,xp).
Fay and Herriot (1979) introduced a model that can be expressed as:

θ̂ = Xα+Zu + ε. (6.1)

Hereu is m×1 vector of independent and identically distributed randomvariables with mean0 andm×m
variance matrixΣu = σ2

uIm, Z is a m×m matrix of known positive constants,ε is them× 1 vector of

79
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independent sampling errors with mean0 and known diagonal variance matrixR = diag(σ2
1,σ2

2, . . . ,σ2
m)

and α is theq× 1 vector of regression parameters. The Fay-Herriot model isa general linear mixed
model with diagonal covariance structureΣ(σ2

u) = ZΣuZT +R.
The Fay-Herriot model produces reliable small area estimates by combining the design model and

the regression model and then borrowing strength from otherdomains. It assumes that the direct survey
estimators are linear function of the covariates. When thisassumption fails down, the Fay-Herriot model
can lead to biased estimators of the small area parameters. Asemiparametric specification of the Fay-
Herriot model, which allows non linearities in the relationship between̂θ and the auxiliary variablesX,
can be obtained by penalized-splines. This approach may have significant advantages compared to the
linear Fay-Herriot model.

A semiparametric model with one covariatex1 can be written as ˜m(x1), where the function ˜m(·) is
unknown, but assumed to be sufficiently well approximated bythe function

m(x1;η,γ) = η0 + η1x1 + . . .+ ηpxp
1 +

K

∑
k=1

γk(x1−κk)
p
+ (6.2)

whereη = (η0,η1, . . . ,ηp)
T is the (p+ 1) vector of the coefficients of the polynomial function,γ =

(γ1,γ2, . . . ,γK)T is the coefficient vector of the truncated polynomial splinebasis (P-spline) andp is the
degree of the spline(t)p

+ = tp if t > 0 and 0 otherwise. The latter portion of the model allows for handling
departures from ap-polynomialt in the structure of the relationship. In this portionκk for k = 1, . . . ,K
is a set of fixed knots and ifK is sufficiently large, the class of functions in (6.2) is verylarge and can
approximate most smooth functions. Details on bases and knots choice can be found in Chapters 3 and 5
of Ruppert et al. (2003). Since a P-spline model can be viewedas a random-effects model (see Ruppert
et al. (2003) and Opsomer et al. (2008)), it can be combined with the Fay-Herriot model for obtaining a
semiparametric small area estimation framework based on linear mixed model regression. Given theη
andγ vectors, define

X1 =




1 x11 · · · xp
11

...
...

. . .
...

1 x1m · · · xp
1m


 ,

and

S=




(x11−κ1)
p
+ · · · (x11−κK)p

+
...

.. .
...

(x1m−κ1)
p
+ · · · (x1m−κK)p

+


 .

Using only one covariate,x1, the semiparametric Fay-Herriot can be written as

β̂ = Xβ+Sγ+Zu + ε, (6.3)

whereX = X1, β is a(p+1) vector of regression coefficients, theγ component can be treated as aK×1
vector of independent and identically distributed random variables with mean0 and K ×K variance
matrix Σγ = σ2

γ IK . The variance-covariance matrix of the model (6.3) isΣ(ψ) = SΣγST + ZΣuZT + R
whereψ = (σ2

γ ,σ2
u)

T .
Model-based estimation of the small area parameters can be obtained by using the best linear unbi-

ased prediction (see Henderson (1975):

θ̃B
(ψ) = Xβ̃(ψ)+ Λ(ψ)[θ̂−Xβ̃(ψ)] (6.4)
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with Λ(ψ) = (SΣγST +ZΣuZT)Σ−1(ψ) andβ̃(ψ) = (XTΣ−1(ψ)X)−1XTΣ−1(ψ)θ̂.
Extension to bivariate smoothing can be handled by assuming

m̃(x1,x2) = m(x1,x2;η,γ). See details in Opsomer et al. (2008). This is of central interest in a number
of application areas as environment, public health and poverty mapping. It has particular relevance when
referenced responses need to be converted to maps.

6.2 Estimation of the MSE

The Mean Squared Error estimator (MSE) ofθ̃B
(ψ), depending on the variance componentsψ = (σ2

γ ,σ2
u)

T ,
can be expressed as in Rao (2003):

MSE[θ̃B
(ψ)] = g1(ψ)+g2(ψ) (6.5)

where the first term
g1(ψ) = Λ(ψ)R = R−RΣ−1(ψ)R (6.6)

is due to the estimation of random effects and it is of orderO(1), while the second term

g2(ψ) = RΣ−1(ψ)X(XTΣ−1(ψ)X)−1XTΣ−1(ψ)R (6.7)

is due to the estimation ofβ and it is of orderO(m−1) for largem.

The estimator̃θB
(ψ) depends on the unknown variance componentsσ2

γ andσ2
u. Replacing the pa-

rameters with estimatorŝσ2
γ , σ̂2

u, a two stage estimator̃θE
(ψ̂) is

θ̃E
(ψ̂) = Xβ̂(ψ̂)+ Λ̂(ψ̂)[θ̂−Xβ̂(ψ̂)] (6.8)

whereβ̂(ψ̂)= (XT Σ̂−1
(ψ̂)X)−1XT Σ̂−1

(ψ̂)θ̂. Assuming normality of the random effects,σ2
γ andσ2

u can be
estimated both by Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML) procedures
(see Prasad and Rao (1990)).

The ML and REML estimators possess the following properties(see Datta et al. (2005)): (i) they
arem1/2-consistent; (ii) they are even functions ofθ̂, so thatψ̂(−θ̂) = ψ̂(θ̂); (iii) they are translation
invariant functions, so that̂ψ(θ̂+Gc) = ψ̂(θ̂), for anym× (g+1) matrix,c∈ Rg+1 and for allθ̂.

For anyψ̂ satisfying (ii) and (iii), the MSE of̃θE
(ψ̂) can be decomposed as

MSE[θ̃E
(ψ̂)] = g1(ψ)+g2(ψ)+E

{
[θ̃E

(ψ̂)− θ̃B
(ψ)]2

}
= g1(ψ)+g2(ψ)+g3(ψ). (6.9)

Under the model (6.1) with diagonal covariance matrixΣ(σ2
u), Prasad and Rao (1990) obtained an ap-

proximation up too(m−1) terms ofg3(ψ) through Taylor linearization. In case of the semiparametric
Fay & Herriot model the structure of the covariance matrix isnot diagonal due to the introduction of the
spline random component, then the results of Prasad and Rao (1990) can not be applied directly. The
results of Opsomer et al. (2008) can be used for deriving a second order approximation to theg3(ψ)
term. It can be given by

g3(ψ) = LT(ψ)

[
I −1(ψ)⊗Σ(ψ)

]
L(ψ)+o(δm/m) (6.10)
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where

L(ψ) = [Lσ2
γ
(ψ),Lσ2

u
(ψ)]T ,L i(ψ) =

∂Λ(ψ)

∂ψi
, i = 1,2.

Here⊗ represents Kronecker product,I −1(ψ) is the inverse of the information matrix withI −1
i j (ψ) =

0.5tr[P(ψ)BiP(ψ)B j ], i, j = 1,2, P(ψ) = Σ−1(ψ)−Σ−1(ψ)X(XTΣ−1(ψ)X)−1XTΣ−1(ψ), B1 = SST and
B2 = ZZT andδm = o(

√
m).

In practical applications, the EBLUP̃θE
(ψ̂) should be accompanied with an estimate of the MSE.

Again, under Fay & Herriot models with diagonal covariance matrix, Prasad and Rao (1990) obtained an
approximately unbiased estimator of the MSE (6.9). Following the results of Prasad and Rao (1990) and
Das et al. (2004), Opsomer et al. (2008) extended the Prasad-Rao MSE estimator to models with more
general covariance structure. An approximately unbiased estimator of the MSE is

mse[θ̃E
(ψ̂)] = g1(ψ̂)+g2(ψ̂)+2g3(ψ̂). (6.11)

which is the same estimator derived by Prasad and Rao (1990).In formula (6.11), the termg3(ψ̂) appears
twice due to a bias correction ofg1(ψ̂).

This section describes an alternative procedure for estimating the MSE of the EBLUP̃θE
(ψ̂) based

on bootstrapping according to the bootstrap procedure proposed by González-Manteiga et al. (2007),
Opsomer et al. (2008) and Molina et al. (2009). In this procedure, the bootstrap random effects
(γ∗1, . . . ,γ∗K)T , (u∗1, . . . ,u

∗
m)T and the random errors(ε∗1, . . . ,ε∗m)T are obtained by resampling respectively

from the empirical distribution of the predicted random elementsγ̂ = (γ̂1, . . . , γ̂K)T , û = (û1, . . . , ûm)T ,
and the residualŝr = θ̂−Xβ̂−Sγ̂−Zû = (r̂1, . . . , r̂m)T , previously standardized. This method avoids the
need of distributional assumptions; therefore, it is expected to be more robust to non-normality of any of
the random components of the model. The procedure works as follows:

1. Fit model (6.3) to the initial direct estimatesθ̂, obtaining estimates(σ̂2
γ , σ̂2

u) andβ̂.

2. With estimates obtained in step 1, calculate predictors of γ̂ = (γ̂1, . . . , γ̂K)T andû = (û1, . . . , ûm)T .

Then takêγS = Σ̂−1/2
γ γ̂ andûS = Σ̂−1/2

u û whereΣ̂−1/2
γ andΣ̂−1/2

u are the root square of the general-

ized inverse of̂Σ−1/2
γ = SΣ̂γSTP(ψ̂)ST Σ̂γSandΣ̂−1/2

u = ZΣ̂uZTP(ψ̂)ZT Σ̂uZ respectively, obtained

by the spectral decomposition. It is convenient re-scale the elementŝγS
k andûS

i so that they have
sample means exactly equal to zero and sample variancesσ̂2

γ , σ̂2
u. This is achieved by the transfor-

mation

γ̂SS
k =

σ̂γ

{
γ̂S

k −K−1∑K
j=1 γ̂S

j

}

√
K−1∑K

d=1

{
γ̂S

d −K−1∑K
j=1 γ̂S

j

}2
, k = 1, . . . ,K

ûSS
i =

σ̂u

{
ûS

i −m−1∑m
j=1 ûS

j

}

√
m−1∑m

d=1

{
ûS

d −m−1∑m
j=1 ûS

j

}2
, i = 1, . . . ,m.

Construct the vectorsγ∗ = (γ∗1, . . . ,γ∗K)T and u∗ = (u∗1, . . . ,u
∗
m)T , whose elements are obtained

by extracting a simple random sample with replacement of size K and m from the setŝγSS=
(γ̂SS

1 , . . . , γ̂SS
K )T and ûSS= (ûSS

1 , . . . , ûSS
m )T , respectively. Then calculate the bootstrap quantity of

interestθ∗ = Xβ̂+Sγ∗ +Zu∗ = (θ∗1, . . . ,θ∗m)T .
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3. Compute the vector of residualsr̂ = θ̂−Xβ̂−Sγ̂−Zû = (r̂1, . . . , r̂m)T . Standardize the residuals
by r̂S = (RP(ψ̂)R)−1/2r̂ . Re-standardized these values

r̂SS
i =

{
r̂S
i −m−1∑m

j=1 r̂S
j

}

√
m−1∑m

d=1

{
r̂S
d −m−1∑m

j=1 r̂S
j

}2
, i = 1, . . . ,m.

Construct the vectorr∗ = (r∗1, . . . , r
∗
m)T , whose elements are obtained by extracting a simple random

sample with replacement of sizem from the set̂rSS= (r̂SS
1 , . . . , r̂SS

m )T . Then takeε∗ = (ε∗1, . . . ,ε∗m)T

whereε∗i = σir∗i .

4. Construct bootstrap data from the model,

θ̂∗
= θ∗ + ε∗ = Xβ̂+Sγ∗ +Zu∗+ ε∗ = (θ̂∗1, . . . , θ̂

∗
m)T .

5. Regardinĝβ, σ̂2
γ andσ̂2

u as the true values ofβ, σ2
γ andσ2

u, fit the model (6.3) to the bootstrap data

θ̂∗. The obtained estimatesβ∗, σ2∗
γ andσ2∗

u will be called bootstrap estimators.

6. Calculate the bootstrap small area estimator usingβ∗, σ2∗
γ andσ2∗

u in place of the ‘true’β̂, σ̂2
γ and

σ̂2
u,

θ̃E∗
(ψ̂∗) = Xβ̂

∗
(ψ̂∗)+ Λ̂∗

(ψ̂∗)[θ̂∗−Xβ̂
∗
(ψ̂∗)]

7. Repeat steps 2-6 B times. In theb-th bootstrap replication, letθ∗(b)
i be the quantity of interest in

areai, θ̃E∗
i (ψ̂∗(b)) be the bootstrap estimator for areai.

A naı̈ve bootstrap estimator for the MSE for areai is

msenaNPB
i [θ̃E

i (ψ̂)] = B−1
B

∑
b=1

{
θ̃E∗(b)

i (ψ̂∗(b))−θ∗(b)
i

}2
. (6.12)

Another MSE estimate can be obtained by adding the bootstrapestimategNPB
3i (ψ̂) and the analytical

estimatesg1i(ψ̂) andg2i(ψ̂), and then including a bootstrap bias correction ofg1i(ψ̂)+g2i(ψ̂) (see Pfef-
fermann & Tiller(2006)), as

msebcNPB
i [θ̃E

i (ψ̂)] = 2[g1i(ψ̂)+g2i(ψ̂)]−B−1
B

∑
b=1

[
g1i(ψ̂∗(b))+g2i(ψ̂∗(b))

]
+gNPB

3i (ψ̂). (6.13)

wheregNPB
3i (ψ̂) = B−1∑B

b=1

{
θ̃E∗(b)

i (ψ̂∗(b))− θ̃BLUP∗(b)
(ψ̂)
}2

with θ̃BLUP∗(b)
= Xβ̂

∗
+Sγ∗ +Zu∗.

6.3 Simulations for semiparametric Fay-Herriot model

In this section we develop a simulation study to compare the performance of thẽθE
(ψ̂) estimator of the

small area mean under the proposed semiparametric specification (denoted by NPEBLUP hereafter) to
that under the traditional Fay-Herriot specification (denoted by EBLUP).

We consider five synthetic populations generated using the following models for creating the true un-
derlying relationship between the covariatex and the expected value of the response variabley E(y|x) =
m(x):
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Linear. m(x) = 10+2(x);

Jump. m(x) = 1+2(x−1.5)I(x 6 1.5)+2I(x > 1.5).

Exponential. m(x) = 2+exp(3x)/400.

Bump. m(x) = 10+2(x−1.5)+5exp(−200(x−1.5)2).

Cycle. m(x) = 10+10sin(2πx);

Population values ofy in small areai = 1, . . . ,200 are generated under the random intercepts model

yi = m(x)+ui + εi

with x drawn from a Uniform distribution[0,3], the area effectsui drawn fromN(0,1) and the error
effectsεi independently generated fromN(0,1).

The linear case represents a situation in which the EBLUP is based on a good representation of
the true model, while the NPEBLUP may be too complex and overparametrized. The jump model is
a discontinuous function for which EBLUP and NPEBLUP are based on a misspecified model; the
Exponential, Bump and Cycle models define increasingly morecomplicated structures of the relationship
betweeny andx.

For each of the five generated populations a total ofT = 250 simulations were carried out. For each
sample the EBLUP and the NPEBLUP estimators have been used toestimate the small area means ¯yi ,
i = 1, . . . ,200.

Then, for each estimator and for each small area we computed the Monte Carlo estimate of the Bias

BMC =
1
T

T

∑
t=1

( ˆ̄yit − ȳi) (6.14)

and with it the percentage relative bias

RB%=
BMC

ȳi
100; (6.15)

the Root Mean Squared Error

RMSEMC =

√
1
T

T

∑
t=1

( ˆ̄yit − ȳi)2, (6.16)

and the corresponding percentage Relative Root Mean Squared Error

RRMSE%=
RMSEMC

ȳi
100. (6.17)

To evaluate the RB% and the RRMSE% across the 200 small areas we consider these summary
statistics: the minimum value, the first quartile, the mean and the median value, the third quartile and the
maximum value.

Tables 6.1 and 6.2 report respectively the summary statistics for the RB% and the RRMSE% values
obtained for the estimation of the small area means under theLinear, Jump, Exponential, Bump and
Cycle signals.
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Table 6.1: Percentage Relative Bias (RB%) of the estimatorsof the small area means.

RB% Point Estimation
Estimator Min 1st quartile Mean Median 3rd quartile Max

Linear Signal
EBLUP -0.74 -0.12 -0.01 0.00 0.13 0.57
NPEBLUP -0.44 -0.13 0.00 -0.01 0.11 0.47

Jump Signal
EBLUP -204.21 -12.84 0.64 -4.70 10.25 399.83
NPEBLUP -108.79 -0.63 4.36 0.52 3.45 79.01

Exponential Signal
EBLUP -15.92 -4.54 1.29 1.78 8.24 13.42
NPEBLUP -2.74 -0.82 -0.06 -0.14 0.67 2.80

Bump Signal
EBLUP -12.08 0.59 0.19 0.82 1.01 1.79
NPEBLUP -10.46 -0.11 0.12 0.13 0.60 3.49

Cycle Signal
EBLUP -9.23 -2.24 33.14 -0.49 6.13 769.18
NPEBLUP -46.69 -0.16 -0.62 -0.01 0.22 11.68

The results are promising. First note that the performance of the two estimators is essentially equiv-
alent under the Linear signal, both in terms of bias and variability. Then, from Table 6.1 we see that the
mean and median bias of the NPEBLUP estimator are always lower with respect to the EBLUP estima-
tor, with the only exception of the mean value under the Jump signal. Moreover, in many cases there is a
high gain also in terms of minimum and maximum values of the RB%: that is, the bias of the NPEBLUP
estimator in the estimating the 200 small area means varies in a range of smaller size than the EBLUP.
In terms of variability (Table 6.2) the results show a similar behavior: the NPEBLUP is always a good
competitor the the EBLUP.

6.4 Estimation of the Mean Squared Error

In this Section we present a simulation experiment carried out to contrast the three alternative estimators
of the Mean Squared Error of the NPEBLUP estimatorθ̃E

(ψ̂) described in Section 6.2. Namely, the
estimators we consider are the analytical estimator (6.11), the naı̈ve nonparametric bootstrap estimator
msenaNPB(6.12) and the combined analytical and bootstrap estimatormsebcNPB(6.13).

The simulation study is carried out using real data coming from the Italian Agricultural Census of
year 2000 for the Tuscany region, as in Molina et al. (2009), under two different settings. The small areas
of interest are the 287 municipalities of the region, withNi, i = 1, . . . ,m, given by the census and theni

randomly generated from a Binomial distribution with parametersNi andp= 0.05. These sampling data
were used to compute, for each municipalityi, the direct estimator of the mean agrarian surface area
used for production of grape in hectares (θi) and its sampling variance (ψi). Information on the agrarian
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Table 6.2: Percentage Relative Root Mean Squared Error (RRMSE%) of the estimators of the small area
means.

RRMSE% Point Estimation
Estimator Min 1st quartile Mean Median 3rd quartile Max

Linear Signal
EBLUP 4.37 5.03 5.66 5.54 6.28 7.25
NPEBLUP 4.45 5.00 5.67 5.60 6.24 7.36

Jump Signal
EBLUP 23.29 26.81 108.66 42.74 106.62 2114.17
NPEBLUP 22.61 24.34 113.22 42.40 109.19 2487.47

Exponential Signal
EBLUP 8.41 27.16 34.90 41.02 43.89 47.84
NPEBLUP 4.58 21.05 27.99 33.32 35.70 38.55

Bump Signal
EBLUP 5.51 6.61 7.87 7.71 8.91 13.10
NPEBLUP 5.63 6.51 7.80 7.89 8.74 11.62

Cycle Signal
EBLUP 4.85 5.74 86.00 8.13 23.03 1884.93
NPEBLUP 3.45 4.10 55.80 6.22 18.35 1317.73

surface area used for production in hectares (x1i) and on the average number of working days in the
reference year (x2i ) for each municipalityi is also available from the census data.

Thus, in the simulation study the goal is the estimation of the mean agrarian surface area used for
production of grape in hectares (yi) for all the municipalities of the region, using as explicative variables
x1i andx2i , which have a linear relation withyi , and an intercept term. The centroids of the small areas
are also available as spatial reference points (latitude and longitude) and are used in theS matrix when
fitting the semiparametric model under both settings. Sincethe true sampling varianceψi resulted equal
to 0 for nine areas, in the simulation experiment we considerm = 278. Note that the true sampling
variancesψi have a highly right-skewed distribution with a range of 102745; this skewness is caused by
few municipalities with atypically large sampling variances.

More in detail, in the first simulation setting the Monte Carlo samples are generated at each step as
follows: first, the random errorsei are generated from a normal distribution with mean 0 and variance
ψi ; second, the random effectsui are generated from a normal distribution with mean 0 and varianceσ2

u
taken equal to the estimated value obtained fitting a linear model with random area effects to the census
data, that isσ2

u = 56.23 for all the iterations; then, using the values of the covariatesxi = (1,x1i ,x2i)
obtained from the census together with the true vector of coefficients β = (−3.72,−0.0095,0.51), the
vectory of responses is generated under model (6.1). In a second alternative setting the steps of Monte
Carlo experiment are the same as in the first setting but the vector y of responses is generated under
the model (6.3), withγ random errors generated under a normal distribution with mean 0 and variance
σ2

γ = 15.
Under both settings we consideredL = 500 Monte Carlo samples and we computed the three MSE
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Figure 6.1: Ratios of analytical Root Mean Squared Error (RMSE), naı̈ve nonparametric bootstrap
RMSE and combined analytical and bootstrap RMSE over empirical values for them= 278 small areas,
model withσ2

γ = 0.

estimators of interest, setting the replicates of the two bootstrap procedures toB= 250; the final estimates
were computed taking the mean over the replicates. The empirical values of the MSEs, that is the
reference values, were computed previously under both settings with 1000 Monte Carlo replicates to
ensure better accuracy. Figures 6.1 and 6.2 represent for each of them= 278 small areas the ratios of
the three estimated Root Mean Squared Error (analytical, naı̈ve nonparametric bootstrap and combined
analytical and bootstrap) over the empirical values (represented by the straight lines), under the first and
the second setting respectively. Note that to allow a bettercomparison of the results, the scale used in
the two Figures has been zoomed out to the interval 0.9-1.25.

The main result standing from the simulation results is thatthe two proposed bootstrap estimators
of the MSE outperform the analytical one, under both settings. As regards the comparison between the
estimatormsenaNPBand the estimatormsebcNPB, the first seems to better follow the empirical values (see
Figure 6.1). This behavior is the same even considering the second setting, were the model used to
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Figure 6.2: Ratios of analytical Root Mean Squared Error (RMSE), naı̈ve nonparametric bootstrap
RMSE and combined analytical and bootstrap RMSE over empirical values for them= 278 small areas,
model withσ2

γ = 15.
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generate theyi values has a spline component: in this case we can observe a slightly higher variability
of the estimates, while the estimators are more correct withrespect to the empirical values, as expected.
Thus, the estimation of theg3 term of the MSE seems to play an important role in this estimation context.
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Chapter 7

Area-level time models

7.1 Area-level model with correlated time effects

7.1.1 Introduction

In the field of small area estimation, data are often available for many small areas simultaneously, al-
though possibly for only a few time points. In such cases, it is desired to borrow information both
cross-sectionally and over time. Rao and Yu (1994) gave a simple way of borrowing information cross-
sectionally and over time by introducing a model containingboth contemporary random effects and time
varying effects. They proposed the extension of the basic Fay Herriot model

ydt = xdtβ+vd +udt +edt, d = 1, . . . ,D, t = 1, . . . ,T, (7.1)

whereydt is a direct estimator of the indicator of interest andxdt is a vector containing the aggregated
(population) values ofp auxiliary variables. The indexd is used for domains and the indext for time
instants. They assume thatv1, . . . ,vD are i.i.d. normal,(ud1, . . . ,udT)’s follow i.i.d. AR(1) processes
(i.e. they follow autoregressive processes of order 1),e11, . . . ,eDT are i.i.d. normal, and thevd’s, the
(ud1, . . . ,udT)’s and theedt’s are independent.

In this section we introduce a model that it is related to the model (7.1) in the sense that onlyudt is
considered to take into account the area-by-time variability through specific random effects. The model
is

ydt = xdtβ+udt +edt, d = 1, . . . ,D, t = 1, . . . ,md, (7.2)

whereydt is a direct estimator of the indicator of interest for aread and time instantt, andxdt is a vector
containing the aggregated (population) values ofp auxiliary variables. The indexd is used for domains
and the indext for time instants. We further assume that the random vectors(ud1, . . . ,udmd), d = 1, . . . ,D,
follow i.i.d. AR(1) processes with variance and auto-correlation parametersσ2

u andρ respectively, the
errorsedt j ’s are independentN(0,σ2

dt) with knownσ2
dt’s, and theudt ’s are independent of theedt ’s.

In matrix notation the model is
y = Xβ+Zu +e, (7.3)

wherey = col
1≤d≤D

(yd), yd = col
1≤t≤md

(ydt), u = col
1≤d≤D

(ud), ud = col
1≤t≤md

(udt), e= col
1≤d≤D

(ed), ed = col
1≤t≤md

(edt),

X = col
1≤d≤D

(Xd), Xd = col
1≤t≤md

(xdt), xdt = col′
1≤i≤p

(xdti), β = col
1≤i≤p

(βi), Z = IM×M andM = ∑D
d=1md. In this

91
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notation,u ∼ N(0,Vu) ande∼ N(0,Ve) are independent with covariance matrices

Vu = σ2
uΩ(ρ), Ω(ρ) = diag

1≤d≤D
(Ωd(ρ)), Ve = diag

1≤d≤D
(Ved), Ved = diag

1≤t≤md

(σ2
dt),

where theσ2
dt are known and

Ωd = Ωd(ρ) =
1

1−ρ2




1 ρ . . . ρmd−2 ρmd−1

ρ 1
... ρmd−2

...
. . . . . . . . .

...

ρmd−2 . . . 1 ρ
ρmd−1 ρmd−2 . . . ρ 1




md×md

.

If the variance components are known, then the BLUE ofβ and the BLUP ofu are

β̂ = (X′V−1X)−1X′V−1y and û = VuZ′V−1(y−Xβ̂),

where
var(y) = V = σ2

u diag
1≤d≤D

(Ωd(ρ))+Ve = diag
1≤d≤D

(σ2
uΩd(ρ)+Ved) = diag

1≤d≤D
(Vd).

To calculatêβ andû we apply the formulas

β̂ =

(
D

∑
d=1

X′
dV−1

d Xd

)−1( D

∑
d=1

X′
dV−1

d yd

)
, û = σ2

u col
1≤d≤D

(
Ωd(ρ)V−1

d (yd −Xdβ̂)
)

.

7.1.2 REML estimators of model parameters

The REML log-likelihood is

lREML(σ2
u,ρ) = −M− p

2
log2π+

1
2

log|X′X|− 1
2

log|V|− 1
2

log|X′V−1X|− 1
2

y′Py,

where
P = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.

Let us defineθ = (θ1,θ2) = (σ2
u,ρ), V1 = ∂V

∂σ2
u
= diag

1≤d≤D
(Ωd(ρ)) andV2 = ∂V

∂ρ = σ2
u diag

1≤d≤D
(Ω̇d(ρ)). Then

Pa =
∂P
∂θa

= −P
∂V
∂θa

P = −PVaP, a = 1,2.

By taking partial derivatives oflREML with respect toθa, we get

Sa =
∂lREML

∂θa
= −1

2
tr(PVa)+

1
2

y′PVaPy, a = 1,2.
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If we take again partial derivatives with respect toθa andθb, we take expectations and we change the
sign, we obtain the elements of the REML Fisher information matrix. These elements are

Fab =
1
2

tr(PVaPVb), a,b = 1,2.

We use the Fisher-scoring algorithm to calculate the REML estimates ofθ. The updating formula is

θk+1 = θk +F−1(θk)S(θk).

As seeds we useρ = 0 andσ2(0)
u = σ̂2

uH, whereσ̂2
uH is the Henderson 3 estimator ofσ2

u under the model
restricted toρ = 0. The REML estimator ofβ is calculated by applying the formula

β̂ = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimators ofθ andβ are

θ̂ ∼ N2(θ,F−1(θ)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa andβi are

θ̂a±zα/2 ν1/2
aa , a = 1,2, β̂i ±zα/2 q1/2

ii , i = 1, . . . , p,

whereθ̂ = θκ, F−1(θκ) = (νab)a,b=1,2, (X′V−1(θκ)X)−1 = (qi j )i, j=1,...,p, κ is the final iteration of the
Fisher-scoring algorithm andzα is theα-quantile of the standard normal distributionN(0,1)). Observed
β̂i = β0, the p-value for testing the hypothesisH0 : βi = 0 is

p = 2PH0(β̂i > |β0|) = 2P(N(0,1) > β0/
√

qii ).

In what follows we present some matrix calculation that are useful to implement the Fisher-scoring
algorithm. The target here is to avoid calculations ofM×M matrices.

Q = (X′V−1X)−1 =

(
D

∑
d=1

X′
dV−1

d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d )− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d ),

PVa = diag
1≤d≤D

(V−1
d Vad)− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d Vad),

tr(PVa) =
D

∑
d=1

tr(V−1
d Vad)−

D

∑
d=1

tr(X′
dV−1

d VadV−1
d XdQ),

tr(PVaPVb) =
D

∑
d=1

tr(V−1
d VadV−1

d Vbd)−2
D

∑
d=1

tr(X′
dV−1

d VadV−1
d VbdV−1

d XdQ)

+ tr

{(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VbdV−1
d Xd

)
Q

}
.
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y′PVaPy =
D

∑
d=1

y′dV−1
d VadV−1

d yd −
(

D

∑
d=1

y′dV−1
d VadV−1

d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

−
(

D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VadV−1
d yd

)

+

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

.

Finally, the derivative of matrixΩd(ρ) with respect toρ is

Ω̇d(ρ) =
1

1−ρ2




0 1 . . . . . . (md −1)ρmd−2

1 0
... (md −2)ρmd−3

...
. .. . . . . ..

...

(md −2)ρmd−3 . . . 0 1
(md −1)ρmd−2 . . . . . . 1 0




+
2ρΩd(ρ)

(1−ρ2)2 .

7.1.3 The mean squared error of the EBLUP

We are interested in predicting the value ofµdt = xdtβ+udt by using the EBLUP̂µdt = xdtβ̂+ ûdt. If we do
not take into account the error,edt, this is equivalent to predictydt = a′y, wherea= col

1≤ℓ≤D
( col
1≤k≤mℓ

(δdℓδtk))

is a vector having one 1 in the positiont + ∑d−1
ℓ=1 mℓ and 0’s in the remaining cells. To estimateYdt we

useŶ
eblup

dt = µ̂dt. The mean squared error ofŶ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ),

whereθ = (σ2
u,ρ),

g1(θ) = a′ZTZ ′a,

g2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a],

g3(θ) ≈ tr
{

(∇b′)V(∇b′)′E
[
(θ̂−θ)(θ̂−θ)′

]}

The estimator ofMSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂)+g2(θ̂)+2g3(θ̂).

Calculation of g1(θ)

In the formula ofg1(θ) = a′ZTZ ′a, we have thatZ = IM×M, and

T = Vu−VuZ′V−1ZVu = σ2
u diag

1≤d≤D
(Ωd(ρ))−σ4

u diag
1≤d≤D

(Ωd(ρ)) diag
1≤d≤D

(V−1
d ) diag

1≤d≤D
(Ωd(ρ)).

Let us writeΩd = Ωd(ρ) andad = col
1≤k≤md

(δtk). Then,g1(θ) can be expressed in the form

g1(θ) = σ2
ua′dΩdad −σ4

ua′dΩdV−1
d Ωdad.
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Calculation of g2(θ)

We have thatg2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a], where

ZTZ ′V−1
e X =

[
σ2

u diag
1≤d≤D

(Ωd)−σ4
u diag
1≤d≤D

(Ωd) diag
1≤d≤D

(V−1
d ) diag

1≤d≤D
(Ωd)

]
diag

1≤d≤D
(V−1

ed ) col
1≤d≤D

(Xd)

= σ2
u col

1≤d≤D
(ΩdV−1

ed Xd)−σ4
u col
1≤d≤D

(ΩdV−1
d ΩdV−1

ed Xd).

Therefore

g2(θ) =
[
a′dXd −σ2

ua′dΩdV−1
ed Xd + σ4

ua′dΩdV−1
d ΩdV−1

ed Xd
]
Q

·
[
X′

dad −σ2
uX′

dV−1
ed Ωdad + σ4

uX′
dV−1

ed ΩdV−1
d Ωdad

]
.

Calculation of g3(θ)

We have that
g3(θ) ≈ tr

{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
,

where
b′ = a′ZVuZ′V−1 = σ2

ua′ diag
1≤ℓ≤D

(Ωℓ) diag
1≤ℓ≤D

(V−1
ℓ ) = σ2

u col′
1≤ℓ≤D

(δdℓaℓΩℓV−1
ℓ ).

It holds that

∂b′

∂σ2
u

= col′
1≤ℓ≤D

(δdℓa′ℓΩℓV−1
ℓ )−σ2

u col′
1≤ℓ≤D

(δdℓa′ℓΩℓV−1
ℓ VℓuV−1

ℓ ), Vℓu =
∂Vℓ

∂σ2
u

= Ωℓ,

∂b′

∂ρ
= σ2

u col′
1≤ℓ≤D

(δdℓa′ℓΩ̇ℓV−1
ℓ )−σ2

u col′
1≤ℓ≤D

(δdℓa′ℓΩℓV−1
ℓ VℓρV−1

ℓ ), Vℓρ =
∂Vℓ

∂ρ
= σ2

uΩ̇ℓ .

We define

q11 =
∂b′

∂σ2
u

diag
1≤ℓ≤D

(Vℓ)

(
∂b′

∂σ2
u

)′
= a′dΩdV−1

d Ωdad −2σ2
ua

′
dΩdV−1

d ΩdV−1
d Ωdad

+ σ4
ua′dΩdV−1

d ΩdV−1
d ΩdV−1

d Ωdad,

q12 =
∂b′

∂σ2
u

diag
1≤ℓ≤D

(Vℓ)

(
∂b′

∂ρ

)′
= σ2

ua′dΩdV−1
d Ω̇dad −σ4

ua
′
dΩdV−1

d Ω̇dV−1
d Ωdad

− σ4
ua′dΩdV−1

d ΩdV−1
d Ω̇dad + σ6

ua
′
dΩdV−1

d ΩdV−1
d Ω̇dV−1

d Ωdad,

q22 =
∂b′

∂ρ
diag

1≤ℓ≤D
(Vℓ)

(
∂b′

∂ρ

)′
= σ4

ua′dΩ̇dV−1
d Ω̇dad −2σ6

ua′dΩdV−1
d Ω̇dV−1

d Ω̇dad

+ σ8
ua′dΩdV−1

d Ω̇dV−1
d Ω̇dV−1

d Ωdad.

Finally

g3(θ) = tr

{(
q11 q12

q21 q22

)(
F11 F12

F21 F22

)−1
}

,

whereFab is the element of the REML Fisher information matrix.
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7.1.4 Simulations

Simulation 1

For d = 1, . . . ,D, t = 1, . . . ,md, the explanatory and target variables are

xdt = (bdt −adt)Udt +adt, Udt =
t

md +1
, adt = 1, bdt = 1+

1
D

(md(d−1)+ t) ,

ydt = β1 + β2xdt +udt +edt, β1 = 0, β2 = 1,

whereedt ∼ N(0,σ2
dt) and

σ2
dt =

(α1−α0) (md(d−1)+ t−1)

M−1
+ α0, α0 = 0.8, α1 = 1.2.

For d = 1, . . . ,D, the random effectsudt are calculated as follows:

ud1 = (1−ρ2)−1/2εd1, udt = ρudt−1 + εdt, t = 2, . . . ,md,

whereεdt ∼ N(0,σ2
A) if d ≤ DA, εdt ∼ N(0,σ2

B) if d > DA, andρ = 0.5. The first simulation experiment
has the following steps:

1. RepeatK = 104 times (k = 1, . . . ,K)

1.1. Generate a sample of sizem= ∑D
d=1md and calculateµ(k)

dt = β(k)
1 + β(k)

2 xdt +u(k)
dt .

1.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
u , ρ̂(k)} andµ̂(k)

dt by using the REML estimation method.

2. For eacĥτ ∈ {β1,β2,σ2
u,ρ} and forµ̂dt, d = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ), BIASdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt ), BIAS=
1
D

D

∑
d=1

md

∑
t=1

BIASdt,

MSE(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ)2, MSEdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt )2, MSE=
1
D

D

∑
d=1

md

∑
t=1

MSEdt.

The simulations are carried out for the 6 combinations of sample sizes appearing in Table 7.1.4.1.

D 50 100 200 300 400 500
md 5 5 5 5 5 5
m 250 500 1000 1500 2000 2500

Table 7.1.4.1: Sample sizes.

Table 7.1.4.2 presents the results of the simulation experiment.
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D 50 100 200 300 400 500

BIAS(β̂1) 0.0020 0.0018 -0.0012 -0.0011 -0.0004 -0.0010

MSE(β̂1) 0.0784 0.0410 0.0208 0.0134 0.0100 0.0080

BIAS(β̂2) 0.0130 0.0067 0.0034 0.0022 0.0017 0.0013

MSE(β̂2) 0.0009 -0.0003 0.0004 0.0005 0.0003 0.0004

BIAS(σ̂2
u) -0,0164 -0,0052 -0,0020 -0.0040 -0.0030 -0.0029

MSE(σ̂2
u) 0.0414 0.0213 0.0107 0.0070 0.0053 0.0044

BIAS(ρ̂) -0.0018 -0.0009 -0.0002 0.0005 0.0009 0.0013

MSE(ρ̂) 0.0115 0.0056 0.0027 0.0018 0.0014 0.0011

BIAS 0.0005 -0.0003 0.0001 0.0002 0.0000 0.0004

MSE 0.5196 0.5149 0.5121 0.5117 0.5114 0.5113

Table 7.1.4.2. Results of simulation experiment 1.

Table 7.1.4.2 shows that bias is always close to zero and thatMSE decreases when the number of
domains increases, so that the REML estimates are consistent.

Simulation 2

In the second simulation experiment we investigate the behavior of the estimatormsedt of the MSE of
the EBLUP ofµdt. For this task we compare themsedt with the empirical MSE of ˆµdt obtained from
experiment 1.

1. ForD = 50,100,200,300,400,500,take the values ofMSEd obtained in experiment 1 and repeat
I = 104 times (k = 1, . . . ,K)

1.1. Generate the sample(y(k)
dt ,xdt), d = 1, . . . ,D, t = 1, . . . ,md.

1.2. Calculatêβ(k)
1 , β̂(k)

2 , σ̂2(k)
u andmse(k)dt = msedt(σ̂

2(k)
u ).

2. Calculate the performance measure of estimatormsedt

Bdt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt), Edt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt)
2, d = 1, . . . ,D,

B =
103

D

D

∑
d=1

md

∑
t=1

Bdt, E =
103

D

D

∑
d=1

md

∑
t=1

Edt.

Table 7.1.4.3 presents the obtained results.

D 50 100 200 300 400 500

B -1.4366 -0.5348 -0.0949 -1.1423 -1.0755 -1.2366
E 3.0978 2.1816 1.6443 1.4613 1.3800 1.3508

Table 7.1.4.3. Results of simulation experiment 2.

Tables 7.1.4.3 shows that BIAS and MSE tend to zero asD increases.
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7.2 Area-level model with independent time effects

7.2.1 Introduction

This section presents a simplification of model (7.9) that isuseful for those cases where survey data is
only available for a reduced number of time instants. The newmodel is defined in the same way as
model (7.9), but assuming thatρ = 0. Parameter estimates of model (7.4) can also be used as seeds for
an iterative fitting method in model (7.9). We assume that

ydt = xdtβ+udt +edt, d = 1, . . . ,D, t = 1, . . . ,md, (7.4)

whereydt is a direct estimator of the indicator of interest for aread and time instantt, andxdt is a vector
containing the aggregated (population) values ofp auxiliary variables. The indexd is used for domains
and the indext for time instants. We assume that the vectorsudt’s are N(0,σ2

u), the errorsedt ’s are
independentN(0,σ2

dt), and theudt ’s are independent of theedt’s.
Model (7.4) can be alternatively written in the form

y = Xβ+Zu +e, (7.5)

wherey = col
1≤d≤D

(yd), yd = col
1≤t≤md

(ydt), u = col
1≤d≤D

(ud), ud = col
1≤t≤md

(udt), e= col
1≤d≤D

(ed), ed = col
1≤t≤md

(edt),

X = col
1≤d≤D

(Xd), Xd = col
1≤t≤md

(xdt), xdt = col′
1≤i≤p

(xdti), β = col
1≤i≤p

(βi), Z = IM, M = ∑D
d=1 md. We assume

thatu ∼ N(0,Vu) ande∼ N(0,Ve) are independent with covariance matrices

Vu = σ2
uIM , IM = diag

1≤d≤D
(Imd), Ve = diag

1≤d≤D
(Ved), Ved = col

1≤t≤md

(σ2
dt),

and known variancesσ2
dt.

The BLUE ofβ and the BLUP ofu are

β̂ = (X′V−1X)−1X′V−1y and û = VuZ′V−1(y−Xβ̂),

where

var(y) = V = σ2
u diag

1≤d≤D
(Imd)+Ve = diag

1≤d≤D
(σ2

uImd +Ved) = diag
1≤d≤D

(Vd).

To calculatêβ andû we apply the formulas

β̂ =

(
D

∑
d=1

X′
dV−1

d Xd

)−1( D

∑
d=1

X′
dV−1

d yd

)
, û = σ2

u col
1≤d≤D

(
V−1

d (yd −Xdβ̂)
)

.

7.2.2 The Henderson 3 method

For the linear mixed model

y = Xβ+Zu +e,
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with u ∼ ND(0,σ2
uID) ande∼ Nn(0,σ2

eW−1) independent, the Henderson 3 method gives unbiased esti-
mators ofσ2

e andσ2
u by considering the expectations

E[SSE(β,u)] = σ2
e[n− rg(X,Z)],

E[SSE(u|β)] = tr
{

Z′W[W−1−X(X′WX)−1X′]WZ
}

σ2
u + σ2

e[rg(X,Z)− rg(X)],

whereSSE(u|β) = SSE(β)−SSE(β,u) y SSE(β), SSE(β,u) are the sum of squares of residuals of the
fixed effect modelsy = Xβ+eandy = Xβ+Zu +e respectively. It hold that

E[SSE(β)] = E[SSE(u|β)]+E[SSE(β,u)]

= tr
{

Z′W[W−1−X(X′WX)−1X′]WZ
}

σ2
u + σ2

e[n− rg(X)].

The Henderson 3 estimators ofσ2
u is

σ̂2
uH =

SSE(β)−σ2
e[n− rg(X)]

tr{Z′W[W−1−X(X′WX)−1X′]WZ} ,

whereSSE(β) = y′P2y and

P2 = [I −X(X′WX)−1X′W]′W[I −X(X′WX)−1X′W] = W −WX(X′WX)−1X′W.

For the model (7.3) withρ = 0 we haveσ2
e = 1, W = V−1

e , Z = IM, n = M = ∑D
d=1 md and rg(X) = p.

Therefore,

σ̂2
uH =

y′P2y− (M− p)

tr{P2}
,

where

Q2 = (X′V−1
e X)−1 =

(
D

∑
d=1

(X′
dV−1

ed Xd

)−1

,

P2 = V−1
e −V−1

e XQ2X′V−1
e = diag

1≤d≤D
(V−1

ed )− col
1≤d≤D

(V−1
ed Xd)Q2 col′

1≤d≤D
(X′

dV−1
ed ),

tr{P2} =
D

∑
d=1

md

∑
t=1

σ−2
dt −

D

∑
d=1

tr{X′
dV−2

ed XdQ2},

y′P2y = col′
1≤d≤D

(yd)

[
diag

1≤d≤D
(V−1

ed )− col
1≤d≤D

(V−1
ed Xd)Q2 col′

1≤d≤D
(X′

dV−1
ed )

]
col

1≤d≤D
(yd)

=
D

∑
d=1

md

∑
t=1

σ−2
dt y2

dt −
(

D

∑
d=1

y′dV−1
ed Xd

)
Q2

(
D

∑
d=1

y′dV−1
ed Xd

)′

.

7.2.3 The REML method

The REML log-likelihood is

lREML(σ2
u) = −M− p

2
log2π+

1
2

log|X′X|− 1
2

log|V|− 1
2

log|X′V−1X|− 1
2

y′Py,
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whereP = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P andPX = 0. Let us defineVu = ∂V
∂σ2

u
= IM , Pu =

∂P
∂σ2

u
= −P ∂V

∂σ2
u
P = −PVuP = −P2. The derivative oflREML with respect toθ = σ2

u is

S= S(θ) =
∂lREML

∂θ
= −1

2
tr(PVu)+

1
2

y′PVuPy = −1
2

tr(P)+
1
2

y′P2y.

The minus expectation of the second order derivative oflREML with respect toθ = σ2
u is

F = F(θ) =
1
2

tr(PVuPVu) =
1
2

tr(P2). (7.6)

The updating formula of the Fisher-scoring algorithm is

θk+1 = θk +F−1(θk)S(θk).

The Henderson 3 estimatorσ̂2
uH can be used as seed of the Fisher-scoring algorithm. The REMLestima-

tor of β is
β̂REML = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimators ofσ2
u andβ are

σ̂2
u ∼ N2(θ,F−1(σ2

u)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for σ2
u andβi are

σ̂2
u±zα/2ν1/2, β̂i ±zα/2q1/2

ii , i = 1, . . . , p,

whereσ̂2
u = σ2,(κ)

u , ν = F−1(σ2,(κ)
u ), (X′V−1(σ2,(κ)

u )X)−1 = (qi j )i, j=1,...,p, κ is the final iteration of the
Fisher-scoring algorithm andzα is theα-quantile of the standard normal distributionN(0,1). Observed
β̂i = β0, thep-value for testing the hypothesisH0 : βi = 0 is

p = 2PH0(β̂i > |β0|) = 2P(N(0,1) > β0/
√

qii ).

In what follows we present some matrix calculation that are useful to implement the Fisher-scoring
algorithm. The target here is to avoid calculations ofM×M matrices.

Q = (X′V−1X)−1 =

(
D

∑
d=1

X′
dV−1

d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d )− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d ),

tr(P) =
D

∑
d=1

tr(V−1
d )−

D

∑
d=1

tr(X′
dV−2

d XdQ),

tr(P2) =
D

∑
d=1

tr(V−2
d )−2

D

∑
d=1

tr(X′
dV−3

d XdQ)

+ tr

{(
D

∑
d=1

X′
dV−2

d Xd

)
Q

(
D

∑
d=1

X′
dV−2

d Xd

)
Q

}
.
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y′P2y =
D

∑
d=1

y′dV−2
d yd −2

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−2

d yd

)

+

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−2

d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

.

7.2.4 Mean squared error of the EBLUP

We are interested in predictingµdt = xdtβ+udt with the EBLUPµ̂dt = xdtβ̂+ ûdt. No taking into account
the erroredt, this is equivalent to predictydt = a′y, wherea = col

1≤ℓ≤D
( col
1≤k≤mℓ

(δdℓδtk)) is a vector having

one “1” in the cellt + ∑d−1
ℓ=1 mℓ and ”0”’s in the remaining cells. The totalYdt is estimated witĥY

eblup

dt =

µ̂dt. The mean squared error ofŶ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ),

whereθ = σ2
u and

g1(θ) = a′ZTZ ′a,

g2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a] y

g3(θ) ≈ tr
{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}

The estimator ofMSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂)+g2(θ̂)+2g3(θ̂).

Calculation of g1(σ2
u)

We have thatg1(σ2
u) = a′ZTZ ′a, whereZ = IM×M and

T = Vu−VuZ′V−1ZVu = σ2
uIM −σ4

u diag
1≤d≤D

(V−1
d ).

We definead = col
1≤k≤md

(δtk). Then, we have

g1(σ2
u) = σ2

ua′dad −σ4
ua

′
dV−1

d ad =
σ2

uσ2
dt

σ2
u + σ2

dt

.

Calculation of g2(σ2
u)

We have thatg2(σ2
u) = [a′X −a′ZTZ ′V−1

e X]Q[X′a−X′V−1
e ZTZ ′a], where

ZTZ ′V−1
e X =

[
σ2

uIM −σ4
u diag

1≤d≤D
(V−1

d )

]
diag

1≤d≤D
(V−1

ed ) col
1≤d≤D

(Xd)

= σ2
u col

1≤d≤D
(V−1

ed Xd)−σ4
u col
1≤d≤D

(V−1
d V−1

ed Xd).
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Therefore,

g2(σ2
u) =

[
a′dXd −σ2

ua
′
dV−1

ed Xd + σ4
ua′dV−1

d V−1
ed Xd

]
Q

·
[
X′

dad −σ2
uX

′
dV−1

ed ad + σ4
uX′

dV−1
ed V−1

d ad
]

Calculation of g3(σ2
u)

We have that
g3(σ2

u) ≈ tr
{

(∇b′)V(∇b′)′E
[
(θ̂−θ)(θ̂−θ)′

]}
,

where
b′ = a′ZVuZ′V−1 = σ2

ua′ diag
1≤ℓ≤D

(V−1
ℓ ) = σ2

u col′
1≤ℓ≤D

(δdℓa′ℓV
−1
ℓ ).

It holds that

∂b′

∂σ2
u

= col′
1≤ℓ≤D

(δdℓa′ℓV
−1
ℓ )−σ2

u col′
1≤ℓ≤D

(δdℓa′ℓV
−1
ℓ VℓuV−1

ℓ ), Vℓu =
∂Vℓ

∂σ2
u

= Imℓ
.

We define

q =
∂b′

∂σ2
u

diag
1≤ℓ≤D

(Vℓ)

(
∂b′

∂σ2
u

)′
= a′dV−1

d ad −2σ2
ua′dV−2

d ad + σ4
ua

′
dV−3

d ad

=
1

σ2
u + σ2

dt

− 2σ2
u(

σ2
u + σ2

dt

)2 +
σ4

u(
σ2

u + σ2
dt

)3 ,

Finally, we get
g3(σ2

u) = qF−1(σ2
u),

whereF is the REML Fisher amount of information calculated in the updating equation of the Fisher-
scoring algorithm (cf. (7.6)).

7.2.5 Simulations

Simulation 1

For d = 1, . . . ,D, t = 1, . . . ,md, The explanatory and target variables are

xdt = (bdt −adt)Udt +adt, Udt =
t

md +1
, adt = 1, bdt = 1+

1
D

(md(d−1)+ t) ,

ydt = β1 + β2xdt +udt +edt, β1 = 0, β2 = 1,

whereudt ∼ N(0,σ2
u), edt ∼ N(0,σ2

dt), σ2
u = 1 ands

σ2
dt =

(α1−α0) (md(d−1)+ t−1)

M−1
+ α0, α0 = 0.8, α1 = 1.2.

The first simulation experiment has the following steps:

1. RepeatK = 104 times (k = 1, . . . ,K)
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1.1. Generate a sample of sizeM and calculateµ(k)
dt = β(k)

1 + β(k)
2 xdt +u(k)

dt .

1.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
u } andµ̂(k)

dt by using the REML method.

2. For eacĥτ ∈ {β1,β2,σ2
u} and forµ̂dt, d = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ), MSE(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ)2.

BIASdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt ), MSEdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt )2,

BIAS=
1
M

D

∑
d=1

md

∑
t=1

BIASdt, MSE=
1
M

D

∑
d=1

md

∑
t=1

MSEdt.

The simulation experiment is carried out for the 6 combinations of sample sizes appearing in Table
7.2.5.1.

D 50 100 200 300 400 500
md 5 5 5 5 5 5
M 250 500 1000 1500 2000 2500

Table 7.2.5.1: Sample sizes.

The Table 7.2.5.2 presents the results of the simulation experiment.

D 50 100 200 300 400 500

BIAS(β̂1) 0.0010 0.0020 -0.0008 -0.0008 -0.0005 -0.0007

MSE(β̂1) 0.0472 0.0245 0.0122 0.0080 0.0059 0.0047

BIAS(β̂2) 0.0007 -0.0006 0.0003 0.0004 0.0003 0.0004

MSE(β̂2) 0.0083 0.0043 0.0022 0.0014 0.0011 0.0008

BIAS(σ̂2
u) -0.0038 0.0010 0.0017 -0.0008 -0.0001 -0.0001

MSE(σ̂2
u) 0.0319 0.0159 0.0081 0.0052 0.0040 0.0032

BIAS 0.0020 0.0010 -0.0002 -0.0001 0.0002 -0.0003

MSE 0.5064 0.5025 0.5000 0.4997 0.4994 0.4992

Table 7.2.5.2. Results of simulation experiment 1.

The Table 7.2.5.2 shows that the bias is always close to zero and that the MSE decreases as the
number of domains increases, so that the REML estimates are consistent.

Simulation 2

The second simulation experiment investigates the behavior of the estimatormsedt of the MSE of the
EBLUP of µdt. We comparemsedt with the empirical MSE of ˆµdt obtained from Experiment 1.

1. ForD = 50,100,200,300,400,500, take the values ofMSEdt obtained in simulation 1 and repeat
I = 104 times (k = 1, . . . ,K)
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1.1. Generate the sample(y(k)
dt ,xdt), d = 1, . . . ,D, t = 1, . . . ,md.

1.2. Calculatêσ2(k)
u andmse(k)dt = msedt(σ̂

2(k)
u ).

2. Calculate the performance measures of estimatormsedt

Bdt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt), Edt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt)
2, d = 1, . . . ,D,

B =
103

D

D

∑
d=1

md

∑
t=1

Bdt, E =
103

D

D

∑
d=1

md

∑
t=1

Edt.

The Table 7.2.5.3 presents the obtained results.

D 50 100 200 300 400 500

B -0.8957 0.1581 0.7045 -0.1818 -0.0684 -0.1334
E 2.8852 1.8964 1.3884 1.1960 1.1179 1.0805

Table 7.2.5.3. Results of simulation experiment 2.

The Table 7.2.5.3 shows that the BIAS and the MSE tends to zeroasD increases.

7.2.6 The impact of the correlation parameter

Two simulation experiments for analyzing the behavior of the EBLUP and its mean squared error esti-
mator are presented in this section. The scope of the simulations is to investigate when it is worthwhile
and what is gained when using the more complicated model (7.9) with correlation parameterρ instead of
the simplified model (7.4) restricted toρ = 0. Ford = 1, . . . ,D, t = 1, . . . ,md, the explanatory and target
variables are

xdt = (bdt −adt)Udt +adt, Udt =
t

md +1
, adt = 1, bdt = 1+

1
D

(md(d−1)+ t) ,

ydt = β1 + β2xdt +udt +edt, β1 = 0, β2 = 1,

whereedt ∼ N(0,σ2
dt), σ2

dt = α0 + (α1−α0)(md(d−1)+t−1)
M−1 , α0 = 0.8 andα1 = 1.2. Ford = 1, . . . ,D, the

random vectors(ud1, . . . ,udmd) are generated as follows:

ud1 = (1−ρ2)−1/2εd1, udt = ρudt−1 + εdt, t = 2, . . . ,md,

whereεdt ∼ N(0,σ2
u), d = 1, . . . ,D, t = 1, . . . ,md, andσ2

u = 1.
The first simulation experiment is dedicated to investigated the gain of efficiency achieved by the

EBLUP based on model (7.9) as a function of the correlation parameterρ. The experiment has the
following steps:

1. Forρ = 0,1/4,1/2,3/4, repeatK = 104 times (k = 1, . . . ,K)

1.1. Generate a sample of sizem= ∑D
d=1md. Calculateµ(k)

dt = β1 + β2xdt +u(k)
dt .

1.2. Calculateβ̂(k,0)
1 , β̂(k,0)

2 , σ̂2(k,0)
u and EBLUP0µ̂(k,0)

dt by using REML method under (7.4) re-
stricted toρ = 0.
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1.3. Calculatêβ(k,1)
1 , β̂(k,1)

2 , σ̂2(k,1)
u , ρ̂(k,1) and EBLUP1µ̂(k,1)

dt by using REML method under model
(7.9).

2 Ford = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS(a)
dt =

1
K

K

∑
k=1

(
µ̂(k,a)

dt −µ(k)
dt

)
, MSE(a)

dt =
1
K

K

∑
k=1

(µ̂(k,a)
dt −µ(k)

dt )2, a = 0,1,

BIAS(a) =
1
D

D

∑
d=1

md

∑
t=1

BIAS(a)
dt , MSE(a) =

1
D

D

∑
d=1

md

∑
t=1

MSE(a)
dt , a = 0,1.

Mean squared errorsMSE(0) andMSE(1) are presented in the Table 7.2.6.1 (left). BiasesBIAS(0) and
BIAS(1) are presented in the Table 7.2.6.1 (right). In the Figure 7.2.6.1 theMSEdmd-values are plotted
for D = 100, md = 5 andρ = 0 (top-left), ρ = 0.25 (top-right), ρ = 0.5 (bottom-left) andρ = 0.75
(bottom-right). In the Figure 7.2.6.2 theBIASdmd-values are plotted forD = 100,md = 5 with the same
configuration as in the Figure 7.2.6.1.
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Figure 7.2.6.1.MSEdmd ’s of EBLUP0 and EBLUP1 forD = 100,md = 5.

When the true model is model (7.4) restricted toρ = 0, the best results in MSE are obtained if we
work all the time under the assumption thatρ = 0. However if we use the EBLUP derived under the
incorrect model (7.9) the increment of MSE is almost negligible. This can be appreciated in the two first
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rows of the Table 7.2.6.1 (left) and on the Figure 7.2.6.1. Ifwe look at the bias, no increment is observed
for incorrectly using model (7.9).

md md

ρ a 2 5 10 20 2 5 10 20

0 0 0.5086 0.5026 0.5003 0.4996 0.00078 -0.00011 0.00053 -0.00001
0 1 0.5138 0.5046 0.5014 0.5001 0.00078 -0.00011 0.00053 -0.00001

0.25 0 0.5263 0.5204 0.5185 0.5176 0.00079 -0.00011 0.00053 -0.00002
0.25 1 0.5214 0.5074 0.5026 0.5007 0.00078 -0.00011 0.00052 -0.00001

0.5 0 0.6263 0.6189 0.6183 0.6193-0.00020 -0.00133 0.00196 0.00103
0.5 1 0.5457 0.5133 0.5052 0.5015-0.00021 -0.00132 0.00193 0.00104

0.75 0 1.2021 1.1903 1.1930 1.1971-0.00030 -0.00130 0.00197 0.00106
0.75 1 0.5953 0.5230 0.5029 0.4935-0.00032 -0.00129 0.00192 0.00106

Table 7.2.6.1.MSE’s (left) andBIAS’s (right) of EBLUP0 and EBLUP1 forD = 100
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Figure 7.2.6.2.BIASdmd ’s of EBLUP0 and EBLUP1 forD = 100,md = 5.

When the true model is model (7.9) and the correlation parameter is small (ρ = 0.25), there is almost
no difference in MSE or BIAS by using the true model or the incorrect model (7.4). If the correlation
parameter is of medium size (ρ = 0.5) there is a clear increment of MSE and BIAS by using the incorrect
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model. Finally if the correlation parameter is high (ρ = 0.75) the use of the incorrect model produce
sever increments of MSE and BIAS.

The second simulation experiment takes the MSEs obtained inthe first experiment and includes the
following additional steps:

1.4 Calculatemse(µ̂(k,0)
dt ) andmse(µ̂(k,1)

dt ).

3 Ford = 1, . . . ,D, t = 1, . . . ,md, calculate

B(a)
dt =

1
K

K

∑
k=1

(
mse(µ̂(k,a)

dt −MSE(a)
dt

)
, E(a)

dt =
1
K

K

∑
k=1

(
mse(µ̂(k,a)

dt −MSE(a)
dt

)2
, a = 0,1,

B(a) =
1
D

D

∑
d=1

md

∑
t=1

B(a)
dt , E(a) =

1
D

D

∑
d=1

md

∑
t=1

E(a)
dt , a = 0,1.

Mean squared errorsE(0) and E(1) are presented in the Table 7.2.6.2 (left). BiasesB(0) and B(1) are
presented in the Table 7.2.6.2 (right). ForD = 100 andmd = 5, in the Figure 7.2.6.3 theBdmd-values
are plotted on the top forρ = 0 andρ = 0.75 and theEdmd-values are plotted in the bottom for the same
values ofρ. We observe that in the caseρ = 0 there is no difference between working under the true
model (7.4) or under the incorrect model (7.9). On the other hand, ifρ = 0.75 then we get higher bias and
mean squared error in the estimation of the MSE of the EBLUP byworking under model (7.4). Again
we conclude that if true model is model (7.9), then there is a loss of efficiency by using model (7.4). The
casesρ = 0.25 andρ = 0.5 has been also analyzed, but not presented here as they represent a smooth
transition between the two extreme considered cases.

md md

ρ a 2 5 10 20 2 5 10 20

0 0 0.00347 0.00194 0.00140 0.00112-0.00118 -0.00015 0.00014 -0.00038
0 1 0.00350 0.00194 0.00140 0.00112-0.00086 -0.00018 0.00013 -0.00038

0.25 0 0.00350 0.00202 0.00150 0.00122-0.00118 -0.00006 -0.00007 -0.00023
0.25 1 0.00352 0.00203 0.00146 0.00118-0.00116 -0.00047 -0.00007 -0.00059

0.5 0 0.00365 0.00242 0.00195 0.00168-0.00139 -0.00028 -0.00052 -0.00030
0.5 1 0.00398 0.00222 0.00161 0.00132-0.00198 -0.00109 -0.00073 -0.00113

0.75 0 0.00465 0.00395 0.00361 0.00336-0.00307 -0.00209 -0.00232 -0.00190
0.75 1 0.00513 0.00243 0.00173 0.00141-0.00405 -0.00225 -0.00165 -0.00162

Table 7.2.6.2.E’s (left) andB’s (right) of EBLUP0 and EBLUP1 forD = 100
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Figure 7.2.6.3.Bdmd ’s (top) andEdmd ’s (bottom) of EBLUP0 and EBLUP1 forD = 100,md = 5.

7.3 Partitioned Fay-Herriot model 1

7.3.1 The model

Let us consider the model (model1)

ydt = xdtβ+udt +edt, d = 1, . . . ,D = DA +DB, t = 1, . . . ,md, (7.7)

whereydt is a direct estimator of the indicator of interest for aread and time instantt, andxdt is a vector
containing the aggregated (population) values ofp auxiliary variables. The indexd is used for domains
and the indext for time instants. We assume that the random effectsudt ’s are i.i.d. N(0,σ2

A) if d ≤ DA

and i.i.d. N(0,σ2
B) if d > DA. We further assume that the errorsedt ’s are independentN(0,σ2

dt) with
knownσ2

dt’s. Finally we assume that theudt’s and theedt ’s are mutually independent. In matrix notation
the model is

y = Xβ+Zu +e,

where vectorsy, u andecan be decomposed in the formv = (v′A,v′B)′, with vA = col
d≤DA

(vd), vB = col
d>DA

(vd)

and vd = col
1≤t≤md

(vdt), matrix X can be similarly decomposed in the formX = (X′
A,X′

B)′, with XA =

col
d≤DA

(Xd), XB = col
d>DA

(Xd), Xd = col
1≤t≤md

(xdt), xdt = col′
1≤ j≤p

(xdt j), β = βp×1, Z = IM, M = MA + MB,

MA = ∑d≤DA
md, MB = ∑d>DA

md anIM denotes the identityM×M matrix. In this notation,u∼N(0,Vu)
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ande∼ N(0,Ve) are independent with covariance matrices

Vu = var(u) = diag(σ2
AIMA,σ

2
BIMB), Ve = var(e) = diag

1≤d≤D
(Ved), Ved = diag

1≤t≤md

(σ2
dt).

The covariance matrix of vectory is V = var(y) = diag(VA,VB), whereVA = diag
d≤DA

(Vd), VB = diag
d>DA

(Vd),

Vd = σ2
AImd +Ved if d ≤ DA andVd = σ2

BImd +Ved if d > DA.
If σ2

A > 0 andσ2
B > 0 are known, the best linear unbiased estimator (BLUE) ofβ is

β̂ = (X′V−1X)−1X′V−1y

and the best linear unbiased predictor (BLUP) ofu is

û = VuZ′V−1(y−Xβ̂) = diag
(
σ2

AIMA,σ
2
BIMB

)
col

1≤d≤D
(V−1

d )(y−Xβ̂),

so that

ûd =

{
σ2

AV−1
d (yd −Xdβ̂), d = 1, . . . ,DA,

σ2
BV−1

d (yd −Xdβ̂), d = DA +1, . . . ,D,

or equivalently

ûdt =

[
σ2

A

σ2
A + σ2

dt

I{d≤DA}(d)+
σ2

B

σ2
B + σ2

dt

I{d>DA}(d)

]
(ydt −xdtβ̂), d = 1, . . . ,D, t = 1, . . . ,md.

The loglikelihood of the restricted (residual) maximum likelihood method is

lreml = lreml(σ2
A,σ2

B) = −M− p
2

log2π+
1
2

log|X′X|− 1
2

log|VA|−
1
2

log|VB|

− 1
2

log|X′
AV−1

A XA +X′
BV−1

B XB|−
1
2

y′Py,

where
P = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.

Let θ = (θ1,θ2) = (σ2
A,σ2

B), then

V1 =
∂V
∂σ2

A

= diag
(
IMA, diag

d>DA

(0md×md)
)
, V2 =

∂V
∂σ2

B

= diag
(
diag
d≤DA

(0md×md), IMB

)
.

Then

Pa =
∂P
∂θa

= −P
∂V
∂θa

P = −PVaP, a = 1,2.

By taking partial derivatives oflreml with respect toθa, we get the scores

Sa =
∂lreml

∂θa
= −1

2
tr(PVa)+

1
2

y′PVaPy, a = 1,2.
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By taking again partial derivatives with respect toθa andθb, taking expectations and changing the sign,
we get the Fisher information matrix components

Fab =
1
2

tr(PVaPVb), a,b = 1,2.

To calculate the REML estimate we apply the Fisher-scoring algorithm with the updating fórmula

θk+1 = θk +F−1(θk)S(θk),

whereS andF are the column vector of scores and the Fisher information matrix respectively. As seeds
we useσ2(0)

A = σ2(0)
B = σ̂2

uH, whereσ̂2
uH is the Henderson 3 estimator under model withσ2

A = σ2
B. The

REML estimator ofβ is
β̂reml = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimators ofθ andβ are

θ̂ ∼ N2(θ,F−1(θ)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa andβ j are

θ̂a±zα/2ν1/2
aa , a = 1,2, β̂ j ±zα/2q1/2

j j , j = 1, . . . , p,

where θ̂ = θκ, F−1(θκ) = (νab)a,b=1,2, (X′V−1(θκ)X)−1 = (qi j )i, j=1,...,p, κ is the final iteration of the
Fisher-scoring algorithm andzα is theα-quantile of the standard normal distributionN(0,1)). Observed
β̂ j = β0, the p-value for testing the hypothesisH0 : β j = 0 is

p = 2PH0(β̂ j > |β0|) = 2P(N(0,1) > β0/
√

q j j ).

In what follows we present some matrix calculation that are useful to implement the Fisher-scoring
algorithm. The target here is to avoid calculations ofM×M matrices. For ease of exposition we define
the sets of indexesD 1 = {1, . . . ,DA} andD 2 = {DA +1, . . . ,D}.

Q = (X′V−1X)−1 =

(
D

∑
d=1

X′
dV−1

d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d )− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d ),

PV1 = diag
(
diag
d≤DA

(V−1
d ),0MB×MB

)
− col

1≤d≤D
(V−1

d Xd)Qcol′
(

col′
d≤DA

(X′
dV−1

d ),0p×MB

)
,

PV2 = diag
(
0MA×MA, diag

d>DA

(V−1
d )
)
− col

1≤d≤D
(V−1

d Xd)Qcol′
(
0p×MA, col′

d>DA

(X′
dV−1

d )
)
,

tr(PVa) = ∑
d∈D a

tr(V−1
d )− ∑

d∈D a

tr(X′
dV−2

d XdQ), a = 1,2,

tr(PVaPVa) = ∑
d∈D a

tr(V−2
d )−2 ∑

d∈D a

tr(X′
dV−3

d XdQ)

+ tr

{(
∑

d∈D a

X′
dV−2

d Xd

)
Q

(
∑

d∈D a

X′
dV−2

d Xd

)
Q

}
, a = 1,2,

tr(PVaPVb) = tr

{(
∑

d∈D a

X′
dV−2

d Xd

)
Q

(
∑

d∈D a

X′
dV−2

d Xd

)
Q

}
, a,b = 1,2, with a 6= b,
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y′PVaPy = ∑
d∈D a

y′dV−2
d yd −

(
∑

d∈D a

y′dV−2
d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

−
(

D

∑
d=1

y′dV−1
d Xd

)
Q

(
∑

d∈D a

X′
dV−2

d yd

)

+

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
∑

d∈D a

X′
dV−2

d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

, a = 1,2,

y′Py = col′
1≤d≤D

(y′d)

(
diag

1≤d≤D
(V−1

d )− diag
1≤d≤D

(V−1
d ) col

1≤d≤D
(Xd)Q col′

1≤d≤D
(X′

d) diag
1≤d≤D

(V−1
d )

)
col

1≤d≤D
(yd)

=
D

∑
d=1

y′dV−1
d yd −

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d yd

)
.

7.3.2 The mean squared error of the EBLUP

We are interested in predicting the value ofµdt = xdtβ+udt by using the EBLUP̂µdt = xdtβ̂+ ûdt. If we do
not take into account the error,edt, this is equivalent to predictydt = a′y, wherea= col

1≤ℓ≤D
( col
1≤k≤mℓ

(δdℓδtk))

is a vector having one 1 in the positiont + ∑d−1
ℓ=1 mℓ and 0’s in the remaining cells. To estimateYdt we

useŶ
eblup

dt = µ̂dt. The mean squared error ofŶ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ),

whereθ = (σ2
A,σ2

B),

g1(θ) = a′ZTZ ′a,

g2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a],

g3(θ) ≈ tr
{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}

The estimator ofMSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂)+g2(θ̂)+2g3(θ̂).

Calculation of g1(θ)

In the formula ofg1(θ) = a′ZTZ ′a, we have thatZ = IM , andT = Vu−VuZ′V−1ZVu = diag(TA,TB),
where

TA = σ2
AIMA −σ4

Adiag
d≤DA

(V−1
d ), TB = σ2

BIMB −σ4
Bdiag

d>DA

(V−1
d ).

Let us writead = col
1≤k≤md

(δtk). Then,g1(θ) can be expressed in the form

g1(θ) =





σ2
A−σ4

Aa′dV−1
d ad =

σ2
Aσ2

dt
σ2

A+σ2
dt

if d ≤ DA,

σ2
B−σ4

Ba′dV−1
d ad =

σ2
Bσ2

dt

σ2
B+σ2

dt
if d > DA.
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Calculation of g2(θ)

We have thatg2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a], whereZTZ ′V−1
e X =

ZTZ ′V−1
e X =




[
σ2

AIMA −σ4
Adiag

d≤DA

(V−1
d )
]
diag
d≤DA

(V−1
ed ) col

d≤DA

(Xd)
[
σ2

BIMB −σ4
Bdiag

d>DA

(V−1
d )
]
diag
d>DA

(V−1
ed ) col

d>DA

(Xd)




=




σ2
A col

d≤DA

(V−1
ed Xd)−σ4

A col
d≤DA

(V−1
d V−1

ed Xd)

σ2
B col

d>DA

(V−1
ed Xd)−σ4

B col
d>DA

(V−1
d V−1

ed Xd)


 .

Therefore

g2(θ) =
[
a′dXd −σ2

Aa′dV−1
ed Xd + σ4

Aa′dV−1
d V−1

ed Xd
]
Q

·
[
X′

dad −σ2
AX′

dV−1
ed ad + σ4

AX′
dV−1

ed V−1
d ad

]
if d ≤ DA,

=
[
a′dXd −σ2

Ba′dV−1
ed Xd + σ4

Ba′dV−1
d V−1

ed Xd
]
Q

·
[
X′

dad −σ2
BX′

dV−1
ed ad + σ4

BX′
dV−1

ed V−1
d ad

]
if d > DA.

Calculation of g3(θ)

We have that
g3(θ) ≈ tr

{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
,

whereb′ = a′ZVuZ′V−1 = a′diag
(
σ2

AIMA,σ2
BIMB

)
diag

1≤ℓ≤D
(V−1

ℓ ) = (b′
A,b′

B),

b′
A = σ2

A col′
ℓ≤DA

(δdℓa′ℓV
−1
ℓ ) and b′

B = σ2
B col′

ℓ>DA

(δdℓa′ℓV
−1
ℓ ).

It holds that ∂b′

∂σ2
A

= (
∂b′

A
∂σ2

A
,0), ∂b′

∂σ2
B

= (0,
∂b′

B
∂σ2

B
), where

∂b′
A

∂σ2
A

= col′
ℓ≤DA

(δdℓa′ℓV
−1
ℓ )−σ2

A col′
ℓ≤DA

(δdℓa′ℓV
−2
ℓ ),

∂b′
B

∂σ2
B

= col′
ℓ>DA

(δdℓa′ℓV
−1
ℓ )−σ2

B col′
ℓ>DA

(δdℓa′ℓV
−2
ℓ ).

We define

q11 =
∂b′

A

∂σ2
A

diag
ℓ≤DA

(Vℓ)

(
∂b′

A

∂σ2
A

)′
=
[
a′dV−1

d ad −2σ2
Aa′dV−2

d ad + σ4
Aa′dV−3

d ad
]
I{d≤DA}(d)

=
σ4

dt

(σ2
A + σ2

dt)
3
I{d≤DA}(d)

q22 =
∂b′

B

∂σ2
B

diag
ℓ>DA

(Vℓ)

(
∂b′

B

∂σ2
B

)′
=
[
a′dV−1

d ad −2σ2
Ba′dV−2

d ad + σ4
Ba′dV−3

d ad
]
I{d>DA}(d)

=
σ4

dt

(σ2
B + σ2

dt)
3
I{d>DA}(d).
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Finally

g3(θ) =

{
q11F

−1
11 , if d ≤ DA

q22F
−1
22 , if d > DA,

whereFab is the element of the REML Fisher information matrix.

7.3.3 Testing forH0 : σ2
A = σ2

B

Let σ̂2
A and σ̂2

B be the unrestricted REML estimators ofσ2
A andσ2

B respectively. Let̃σ2
u be the REML

estimator of the common valueσ2
A = σ2

B underH0. The REML likelihood ratio statistic (LRS) for testing
H0 : σ2

A = σ2
B is

λ = −2[lREML(σ̃2
u)− lREML(σ̂2

A, σ̂2
B)] = log

|Ṽ|
|V̂|

+ log
|X′Ṽ−1X|
|X′V̂−1X|

+y′P̃y−y′P̂y

= log|Ṽ|− log|V̂A|− log|V̂B|+ log|X′Ṽ−1X|
− log|X′

AV̂−1
A XA +X′

BV̂−1
B XB|+y′P̃y−y′P̂y.

Asymptotic distribution ofλ underH0 is χ2
1, so null hypothesis is rejected at the levelα if λ > χ2

1,α.

7.3.4 Simulations

Simulation 1

Ford = 1, . . . ,D, t = 1, . . . ,md, The explanatory and target variables are

xdt = (bdt −adt)Udt +adt, Udt =
t

md +1
, adt = 1, bdt = 1+

1
D

(md(d−1)+ t) ,

ydt = β1 + β2xdt +udt +edt, β1 = 0, β2 = 1,

whereudt ∼ N(0,σ2
A) if d ≤ DA, udt ∼ N(0,σ2

B) if d > DA, edt ∼ N(0,σ2
dt), DA = D/2, σ2

A = 1, σ2
B =

0.8,1,1.2 and

σ2
dt =

(α1−α0)(md(d−1)+ t −1)

M−1
+ α0, α0 = 0.8, α1 = 1.2.

The first simulation experiment has the following steps:

1. RepeatK = 103 times (k = 1, . . . ,K)

1.1. Generate a sample of sizeM and calculateµ(k)
dt = β(k)

1 + β(k)
2 xdt +u(k)

dt .

1.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
A , σ̂2(k)

B } andµ̂(k)
dt by using the REML method.

2. For eacĥτ ∈ {β1,β2,σ2
A,σ2

B} and forµ̂dt, d = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ), MSE(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ)2.

BIASdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt ), MSEdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt )2,
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BIAS=
1
M

D

∑
d=1

md

∑
t=1

BIASdt, MSE=
1
M

D

∑
d=1

md

∑
t=1

MSEdt.

The simulation experiments are carried out for the 6 combinations of sample sizes appearing in Table
7.3.4.1.

D 50 100 200 300 400 500
md 5 5 5 5 5 5
M 250 500 1000 1500 2000 2500

Table 7.3.4.1: Sample sizes.

The Table 7.3.4.2 presents the results of the simulation experiment for the caseσ2
A = 1 andσ2

B = 0.8.

D 50 100 200 300 400 500

BIAS(β̂1) 0.0010 0.0020 -0.0007 -0.0008 -0.0004 -0.0006

MSE(β̂1) 0.0457 0.02359 0.0118 0.0077 0.0057 0.0046

BIAS(β̂2) 0.0007 -0.0005 0.0003 0.0004 0.0003 0.0003

MSE(β̂2) 0.0079 0.0040 0.0020 0.0013 0.0010 0.0008

BIAS(σ̂2
uA) -0.0928 -0.0896 -0.0890 -0.0899 -0.0900 -0.0898

MSE(σ̂2
uA) 0.0608 0.0344 0.0213 0.0166 0.0145 0.0134

BIAS(σ̂2
uB) 0.1052 0.1112 0.1118 0.1079 0.1094 0.1092

MSE(σ̂2
uB) 0.0765 0.0455 0.0287 0.0222 0.0201 0.0184

BIAS 0.0021 0.0010 -0.0002 -0.0009 0.0002 -0.0003

MSE 0.5174 0.4974 0.4867 0.4833 0.4820 0.4811

Table 7.3.4.2. Results of simulation 1 underσ2
A = 1, σ2

B = 0.8.

The Table 7.3.4.2 shows that the bias is always close to zero and that the MSE decreases as the num-
ber of domains increases, so that the REML estimates are consistent.

The Table 7.3.4.3 presents the results of the simulation experiment for the caseσ2
A = 1 andσ2

B = 1.

D 50 100 200 300 400 500

BIAS(β̂1) 0.0014 0.0017 -0.0005 -0.0005 -0.0002 -0.0004

MSE(β̂1) 0.0305 0.0156 0.0078 0.0051 0.0038 0.0030

BIAS(β̂2) 0.0009 -0.0006 0.0002 0.0003 0.0003 0.0001

MSE(β̂2) 0.0051 0.0026 0.0013 0.0008 0.0007 0.0005

BIAS(σ̂2
uA) -0.2478 -0.2468 -0.2462 -0.2465 -0.2464 -0.2466

MSE(σ̂2
uA) 0.0846 0.0725 0.0665 0.0646 0.0636 0.0631

BIAS(σ̂2
uB) -0.2493 -0.2459 -0.2453 -0.2479 -0.2469 -0.2470

MSE(σ̂2
uB) 0.0896 0.0745 0.0669 0.0659 0.0644 0.0637

BIAS 0.0011 0.0005 -0.0001 -0.0004 0.0009 -0.0001

MSE 0.2536 0.2456 0.2416 0.2410 0.2404 0.2401

Table 7.3.4.3. Results of simulation 1 underσ2
A = 1, σ2

B = 1.

The Table 7.3.4.3 shows that the bias is always close to zero and that the MSE decreases as the num-
ber of domains increases, so that the REML estimates are consistent.
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The Table 7.3.4.4 presents the results of the simulation experiment for the caseσ2
A = 1 andσ2

B = 1.2.

D 50 100 200 300 400 500

BIAS(β̂1) 0.0014 0.0017 -0.0005 -0.0005 -0.0002 -0.0004

MSE(β̂1) 0.0323 0.0166 0.0082 0.0054 0.0040 0.0032

BIAS(β̂2) 0.0007 -0.0007 0.0002 0.0003 0.0001 0.0003

MSE(β̂2) 0.0056 0.0029 0.0014 0.0009 0.0007 0.0006

BIAS(σ̂2
uA) -0.2478 -0.2468 -0.2462 -0.2465 -0.2464 -0.2466

MSE(σ̂2
uA) 0.0846 0.0725 0.0665 0.0646 0.0636 0.0631

BIAS(σ̂2
uB) -0.2496 -0.2457 -0.2451 -0.2480 -0.2469 -0.2470

MSE(σ̂2
uB) 0.0989 0.0791 0.0690 0.0674 0.0656 0.0646

BIAS 0.0011 0.0005 -0.0001 -0.0005 0.0008 -0.0001

MSE 0.2613 0.2454 0.2373 0.2350 0.2340 0.2333

Table 7.3.4.4. Results of simulation1 underσ2
A = 1, σ2

B = 1.2.

The Table 7.3.4.4 shows that the bias is always close to zero and that the MSE decreases as the
number of domains increases, so that the REML estimates are consistent.

Simulation 2

The second simulation experiment investigates the behavior of the estimatormsedt of the MSE of the
EBLUP of µdt. We comparemsedt with the empirical MSE of ˆµdt obtained from Experiment 1.

1. ForD = 50,100,200,300,400,500, take the values ofMSEdt obtained in simulation 1 and repeat
K = 103 times (k = 1, . . . ,K)

1.1. Generate the sample(y(k)
dt ,xdt), d = 1, . . . ,D, t = 1, . . . ,md.

1.2. Calculatemse(k)dt = msedt(σ̂
2(k)
u ).

2. Calculate the performance measures of estimatormsedt

Bdt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt), Edt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt)
2, d = 1, . . . ,D,

B =
103

D

D

∑
d=1

md

∑
t=1

Bdt, E =
103

D

D

∑
d=1

md

∑
t=1

Edt.

The Table 7.3.4.5 presents the obtained results for the caseσ2
A = 1 andσ2

B = 0.8.

D 50 100 200 300 400 500

B -0.0336 -0.0173 -0.0090 -0.0070 -0.0060 -0.0054
E 8.1547 3.4678 1.6412 1.1217 0.9084 0.7736

Table 7.3.4.5. Results of simulation 2 underσ2
A = 1, σ2

B = 0.8.
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The Table 7.3.4.5 shows that the BIAS and the MSE tends to zeroasD increases.

The Table 7.3.4.6 presents the obtained results for the caseσ2
A = 1 andσ2

B = 1.

D 50 100 200 300 400 500
B 0.0588 0.0606 0.0613 0.0607 0.0608 0.0607
E 4.6616 4.1992 4.0266 3.8739 3.8572 3.8305
Table 7.3.4.6. Results of simulation 2 underσ2

A = 1, σ2
B = 1.

The Table 7.3.4.6 shows that the BIAS and the MSE tends to zeroasD increases.

The Table 7.3.4.7 presents the obtained results for the caseσ2
A = 1 andσ2

B = 1.2.

D 50 100 200 300 400 500

B 0.0694 0.0776 0.0818 0.0826 0.0830 0.0833
E 5.7342 6.5256 7.1781 7.3190 7.4025 7.4494

Table 7.3.4.7. Results of simulation 2 underσ2
A = 1, σ2

B = 1.2.

The Table 7.3.4.7 shows that the BIAS and the MSE don’t tends to zero asD increases.

Simulation 3

This simulation experiment is planned to check the behaviorof the REML log-likelihood test statistics.
For σ2

A = 1 andσ2
B = 0.25,0.5,0.75,1,1.25,1.5,1.75,2. The steps of the simulation experiment are:

1. RepeatK = 103 times (k = 1, . . . ,K)

1.1. Generate a sample of sizeM in the same way as in Simulation 1 and calculate the unrestricted
andH0-restricted REML estimateŝσ2

A(k), σ̂2
B(k) andσ̃2

u(k) .

1.2. Calculateλ(k) = λ(σ̂2
A(k), σ̂

2
B(k); σ̃2

u(k)) andα(k) = I
{

λ(k) > χ2
1,0.05

}
.

2. Output:α = 1
K ∑K

k=1α(k).

The simulation experiment is carried out for the 6 combinations of sample sizes appearing in Table
7.3.4.4.

D 50 100 200 300 400 500
md 5 5 5 5 5 5
M 250 500 1000 1500 2000 2500

Table 7.3.4.4: Sample sizes.

The Table 7.3.4.5 presents the results of the simulation experiment.
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D 50 100 200 300 400 500

σ2
B = 0.25 0.9987 1 1 1 1 1

σ2
B = 0.5 0.9987 1 1 1 1 1

σ2
B = 0.75 0.2352 0.4131 0.6928 0.8652 0.9416 0.9746

σ2
B = 1 0.0517 0.0557 0.0491 0.0481 0.0508 0.0496

σ2
B = 1.25 0.1695 0.3096 0.5301 0.6968 0.8166 0.8926

σ2
B = 1.5 0.4619 0.7536 0.9671 0.9962 0.9996 1

σ2
B = 1.75 0.7423 0.9571 0.9997 1 1 1

σ2
B = 2 0.9006 0.9954 1 1 1 1

Table 7.3.4.5. Power results (α) of simulation experiment 3.

The Table 7.3.4.5 shows that, underσ2
B = σ2

A, the value ofα converge to 0.05 asD increases.

7.4 Partitioned Fay-Harriot model 2

7.4.1 The model

Let us consider the model (model 2)

ydt = xdtβ+udt +edt, d = 1, . . . ,D = DA +DB, t = 1, . . . ,md, (7.8)

whereydt is a direct estimator of the indicator of interest for aread and time instantt, andxdt is a vector
containing the aggregated (population) values ofp auxiliary variables. The indexd is used for domains
and the indext for time instants. We assume that the random vectors(ud1, . . . ,udmd), d≤DA, follow i.i.d.
first order auto-regressive processes with variance and auto-correlation parametersσ2

A andρ respectively;
in short,(ud1, . . . ,udmd)∼iid AR1(σ2

A,ρ), d≤DA. We further assume that(ud1, . . . ,udmd)∼iid AR1(σ2
B,ρ),

d > DA, and that the errorsedt ’s are independentN(0,σ2
dt) with knownσ2

dt’s. Finally we assume that the
(ud1, . . . ,udmd)’s and theedt ’s are mutually independent.

In matrix notation the model is

y = Xβ+Zu +e,

where vectorsy, u andecan be decomposed in the formv = (v′A,v′B)′, with vA = col
d≤DA

(vd), vB = col
d>DA

(vd)

and vd = col
1≤t≤md

(vdt), matrix X can be similarly decomposed in the formX = (X′
A,X′

B)′, with XA =

col
d≤DA

(Xd), XB = col
d>DA

(Xd) andXd = col′
1≤t≤md

(xdt), β = βp×1, Z = IM andM = ∑D
d=1 md. In this notation,

u ∼ N(0,Vu) ande∼ N(0,Ve) are independent with covariance matrices

Vu = var(u) = diag(σ2
AΩA,σ2

BΩB), Ve = var(e) = diag
1≤d≤D

(Ved)
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whereΩA = diag
d≤DA

(Ωd), ΩB = diag
d>DA

(Ωd), Ved = diag
1≤t≤md

(σ2
dt) and

Ωd = Ωd(ρ) =
1

1−ρ2




1 ρ . . . ρmd−2 ρmd−1

ρ 1
... ρmd−2

...
. . . . . . . . .

...

ρmd−2 . . . 1 ρ
ρmd−1 ρmd−2 . . . ρ 1




md×md

.

The covariance matrix of vectory is V = var(y) = diag(VA,VB), whereVA = diag
d≤DA

(Vd), VB = diag
d>DA

(Vd),

Vd = σ2
AΩd +Ved if d ≤ DA andVd = σ2

BΩd +Ved if d > DA.
If σ2

A > 0, σ2
B > 0 andρ are known, the best linear unbiased estimator (BLUE) ofβ is

β̂ = (X′V−1X)−1X′V−1y

and the best linear unbiased predictor (BLUP) ofu is

û = VuZ′V−1(y−Xβ̂) = diag

(
σ2

Adiag
d≤DA

(Ωd),σ2
Bdiag

d>DA

(Ωd)

)
col

1≤d≤D
(V−1

d )(y−Xβ̂),

so that

ûd =

{
σ2

AΩdV−1
d (yd −Xdβ̂), d = 1, . . . ,DA,

σ2
BΩdV−1

d (yd −Xdβ̂), d = DA +1, . . . ,D.

The loglikelihood of the restricted (residual) maximum likelihood method is

lreml = lreml(σ2
A,σ2

B,ρ) = −M− p
2

log2π+
1
2

log|X′X|− 1
2

log|VA|−
1
2

log|VB|

− 1
2

log|X′
AV−1

A XA +X′
BV−1

B XB|−
1
2

y′Py,

where
P = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.

Let θ = (θ1,θ2,θ3) = (σ2
A,σ2

B,ρ), then

V1 =
∂V
∂σ2

A

= diag

(
diag
d≤DA

(Ωd(ρ)), diag
d>DA

(0md×md)

)

V2 =
∂V
∂σ2

B

= diag

(
diag
d≤DA

(0md×md), diag
d>DA

(Ωd(ρ))

)
,

V3 =
∂V
∂ρ

= diag

(
σ2

Adiag
d≤DA

(Ω̇d(ρ)),σ2
Bdiag

d>DA

(Ω̇d(ρ))

)
,
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whereΩ̇(ρ) = ∂Ω(ρ)/∂ρ. Then

Pa =
∂P
∂θa

= −P
∂V
∂θa

P = −PVaP, a = 1,2,3.

By taking partial derivatives oflreml with respect toθa, we get the scores

Sa =
∂lreml

∂θa
= −1

2
tr(PVa)+

1
2

y′PVaPy, a = 1,2,3.

By taking again partial derivatives with respect toθa andθb, taking expectations and changing the sign,
we get the Fisher information matrix components

Fab =
1
2

tr(PVaPVb), a,b = 1,2,3.

To calculate the REML estimate we apply the Fisher-scoring algorithm with the updating fórmula

θk+1 = θk +F−1(θk)S(θk),

whereS andF are the column vector of scores and the Fisher information matrix respectively. As seeds

we useρ(0) = 0, andσ2(0)
A = σ2(0)

B = σ̂2
uH, whereσ̂2

uH is the Henderson 3 estimator under model with
ρ = 0 andσ2

A = σ2
B. The REML estimator ofβ is

β̂reml = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimators ofθ andβ are

θ̂ ∼ N3(θ,F−1(θ)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa andβ j are

θ̂a±zα/2 ν1/2
aa , a = 1,2,3, β̂ j ±zα/2q1/2

j j , j = 1, . . . , p,

whereθ̂ = θκ, F−1(θκ) = (νab)a,b=1,2,3, (X′V−1(θκ)X)−1 = (qi j )i, j=1,...,p, κ is the final iteration of the
Fisher-scoring algorithm andzα is theα-quantile of the standard normal distributionN(0,1)). Observed
β̂ j = β0, thep-value for testing the hypothesisH0 : β j = 0 is

p = 2PH0(β̂ j > |β0|) = 2P(N(0,1) > β0/
√

q j j ).

In what follows we present some matrix calculation that are useful to implement the Fisher-scoring
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algorithm. The target here is to avoid calculations ofM×M matrices.

Q = (X′V−1X)−1 =

(
D

∑
d=1

X′
dV−1

d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d )− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d ),

PVa = diag
1≤d≤D

(V−1
d Vad)− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d Vad),

tr(PVa) =
D

∑
d=1

tr(V−1
d Vad)−

D

∑
d=1

tr(X′
dV−1

d VadV−1
d XdQ),

tr(PVaPVb) = tr

{(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VbdV−1
d Xd

)
Q

}

if a,b = 1,2 with a 6= b; otherwise

tr(PVaPVb) =
D

∑
d=1

tr(V−1
d VadV−1

d Vbd)−2
D

∑
d=1

tr(X′
dV−1

d VadV−1
d VbdV−1

d XdQ)

+ tr

{(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VbdV−1
d Xd

)
Q

}
,

y′PVaPy =
D

∑
d=1

y′dV−1
d VadV−1

d yd −
(

D

∑
d=1

y′dV−1
d VadV−1

d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

−
(

D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VadV−1
d yd

)

+

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

.

Finally, the derivative of matrixΩd(ρ) with respect toρ is

Ω̇d(ρ) =
1

1−ρ2




0 1 . . . . . . (md −1)ρmd−2

1 0
... (md −2)ρmd−3

...
. .. . . . . ..

...

(md −2)ρmd−3 . . . 0 1
(md −1)ρmd−2 . . . . . . 1 0




+
2ρΩd(ρ)

1−ρ2 .

7.4.2 The mean squared error of the EBLUP

We are interested in predicting the value ofµdt = xdtβ+udt by using the EBLUP̂µdt = xdtβ̂+ ûdt. If we do
not take into account the error,edt, this is equivalent to predictydt = a′y, wherea= col

1≤ℓ≤D
( col
1≤k≤mℓ

(δdℓδtk))

is a vector having one 1 in the positiont + ∑d−1
ℓ=1 mℓ and 0’s in the remaining cells. To estimateYdt we
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useŶ
eblup

dt = µ̂dt. The mean squared error ofŶ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ),

whereθ = (σ2
A,σ2

B,ρ),

g1(θ) = a′ZTZ ′a,

g2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a],

g3(θ) ≈ tr
{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}

The estimator ofMSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂)+g2(θ̂)+2g3(θ̂).

Calculation of g1(θ)

In the formula ofg1(θ) = a′ZTZ ′a, we have thatZ = IM , andT = Vu−VuZ′V−1ZVu = diag(TA,TB),
where

TA = σ2
Adiag

d≤DA

(Ωd)−σ4
Adiag

d≤DA

(Ωd)diag
d≤DA

(V−1
d )diag

d≤DA

(Ωd)

and
TB = σ2

Bdiag
d>DA

(Ωd)−σ4
Bdiag

d>DA

(Ωd)diag
d>DA

(V−1
d )diag

d>DA

(Ωd)

Let us writead = col
1≤k≤md

(δtk). Then,g1(θ) can be expressed in the form

g1(θ) =

{
σ2

Aa′dΩdad −σ4
Aa′dΩdV−1

d Ωdad if d ≤ DA,

σ2
Ba′dΩdad −σ4

Ba′dΩdV−1
d Ωdad if d > DA.

Calculation of g2(θ)

We have thatg2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a], whereZTZ ′V−1
e X =

ZTZ ′V−1
e X =




[
σ2

Adiag
d≤DA

(Ωd)−σ4
Adiag

d≤DA

(Ωd)diag
d≤DA

(V−1
d )diag

d≤DA

(Ωd)
]
diag
d≤DA

(V−1
ed ) col

d≤DA

(Xd)
[
σ2

Bdiag
d>DA

(Ωd)−σ4
Bdiag

d>DA

(Ωd)diag
d>DA

(V−1
d )diag

d>DA

(Ωd))
]
diag
d>DA

(V−1
ed ) col

d>DA

(Xd)




=




σ2
A col

d≤DA

(ΩdV−1
ed Xd)−σ4

A col
d≤DA

(ΩdV−1
d ΩdV−1

ed Xd)

σ2
B col

d>DA

(ΩdV−1
ed Xd)−σ4

B col
d>DA

(ΩdV−1
d ΩdV−1

ed Xd)


 .

Therefore

g2(θ) =
[
a′dXd −σ2

Aa′dΩdV−1
ed Xd + σ4

Aa′dΩdV−1
d ΩdV−1

ed Xd
]
Q

·
[
X′

dad −σ2
AX′

dV−1
ed Ωdad + σ4

AX′
dV−1

ed ΩdV−1
d Ωdad

]
if d ≤ DA,

=
[
a′dXd −σ2

Ba′dΩdV−1
ed Xd + σ4

Ba′dΩdV−1
d ΩdV−1

ed Xd
]
Q

·
[
X′

dad −σ2
BX′

dV−1
ed Ωdad + σ4

BX′
dV−1

ed ΩdV−1
d Ωdad

]
if d > DA.
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Calculation of g3(θ)

We have that
g3(θ) ≈ tr

{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
,

whereb′ = a′ZVuZ′V−1 = a′diag
(
σ2

Adiag
ℓ≤DA

(Ωℓ),σ2
Bdiag

ℓ>DA

(Ωℓ)
)

diag
1≤ℓ≤D

(V−1
ℓ ) = (b′

A,b′
B),

b′
A = σ2

A col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ ) and b′

B = σ2
B col′

ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ ).

It holds that ∂b′

∂σ2
A

= (
∂b′

A
∂σ2

A
,0), ∂b′

∂σ2
B

= (0,
∂b′

B
∂σ2

B
), ∂b′

∂ρ = (
∂b′

A
∂ρ ,

∂b′
B

∂ρ ), where

∂b′
A

∂σ2
A

= col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ )−σ2

A col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ VℓAV−1

ℓ ), VℓA =
∂Vℓ

∂σ2
A

= Ωℓ,

∂b′
B

∂σ2
B

= col′
ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ )−σ2

B col′
ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ VℓBV−1

ℓ ), VℓB =
∂Vℓ

∂σ2
B

= Ωℓ,

∂b′
A

∂ρ
= σ2

A col′
ℓ≤DA

(δdℓa′ℓΩ̇ℓV−1
ℓ )−σ4

A col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ VℓρV−1

ℓ ), Vℓρ =
∂Vℓ

∂ρ
= σ2

AΩ̇ℓ,

∂b′
B

∂ρ
= σ2

B col′
ℓ>DA

(δdℓa′ℓΩ̇ℓV−1
ℓ )−σ4

B col′
ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ VℓρV−1

ℓ ), Vℓρ =
∂Vℓ

∂ρ
= σ2

BΩ̇ℓ.

We defineq21 = q12 = 0, q31 = q13, q32 = q23,

q11 =
∂b′

A

∂σ2
A

diag
ℓ≤DA

(Vℓ)

(
∂b′

A

∂σ2
A

)′
=
[
a′dΩdV−1

d Ωdad −2σ2
Aa′dΩdV−1

d ΩdV−1
d Ωdad

+ σ4
Aa′dΩdV−1

d ΩdV−1
d ΩdV−1

d Ωdad
]
I{d≤DA}(d),

q22 =
∂b′

B

∂σ2
B

diag
ℓ>DA

(Vℓ)

(
∂b′

B

∂σ2
B

)′
=
[
a′dΩdV−1

d Ωdad −2σ2
Ba′dΩdV−1

d ΩdV−1
d Ωdad

+ σ4
Ba′dΩdV−1

d ΩdV−1
d ΩdV−1

d Ωdad
]
I{d>DA}(d),

q33 =
∂b′

∂ρ
diag

1≤ℓ≤D
(Vℓ)

(
∂b′

∂ρ

)′
=
[
σ4

Aa′dΩ̇dV−1
d Ω̇dad −2σ6

Aa′dΩdV−1
d Ω̇dV−1

d Ω̇dad

+ σ8
Aa′dΩdV−1

d Ω̇dV−1
d Ω̇dV−1

d Ωdad
]
I{d≤DA}(d)

+
[
σ4

Ba′dΩ̇dV−1
d Ω̇dad −2σ6

Ba′dΩdV−1
d Ω̇dV−1

d Ω̇dad

+ σ8
Ba′dΩdV−1

d Ω̇dV−1
d Ω̇dV−1

d Ωdad
]
I{d>DA}(d).

q13 =
∂b′

A

∂σ2
A

diag
ℓ≤DA

(Vℓ)

(
∂b′

A

∂ρA

)′
=
[
σ2

Aa′dΩdV−1
d Ω̇dad −σ4

Aa′dΩdV−1
d Ω̇dV−1

d Ωdad

− σ4
Aa′dΩdV−1

d ΩdV−1
d Ω̇dad + σ6

Aa′dΩdV−1
d ΩdV−1

d Ω̇dV−1
d Ωdad

]
I{d≤DA}(d),

q23 =
∂b′

B

∂σ2
B

diag
ℓ>DA

(Vℓ)

(
∂b′

B

∂ρB

)′
=
[
σ2

Ba′dΩdV−1
d Ω̇dad −σ4

Ba′dΩdV−1
d Ω̇dV−1

d Ωdad

− σ4
Ba′dΩdV−1

d ΩdV−1
d Ω̇dad + σ6

Ba′dΩdV−1
d ΩdV−1

d Ω̇dV−1
d Ωdad

]
I{d>DA}(d),
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Finally

g3(θ) =





tr
{( q11 q13

q31 q33

)(
F11 F13

F31 F33

)−1}
, if d ≤ DA

tr
{( q22 q23

q32 q33

)(
F22 F23

F32 F33

)−1}
, if d > DA,

whereFab is the element of the REML Fisher information matrix.

7.4.3 testing forH0 : ρ = 0

Let σ̂2
A, σ̂2

B and ρ̂ be the unrestricted REML estimators ofσ2
A, σ2

B and ρ respectively. Let̃σ2
A and σ̃2

B
be the REML estimator ofσ2

A andσ2
B underH0. The REML likelihood ratio statistic (LRS) for testing

H0 : ρ = 0 is

λ = −2[lREML(σ̃2
A, σ̃2

B)− lREML(σ̂2
A, σ̂2

B, ρ̂)] = log
|Ṽ|
|V̂|

+ log
|X′Ṽ−1X|
|X′V̂−1X|

+y′P̃y−y′P̂y.

Asymptotic distribution ofλ underH0 is χ2
1, so null hypothesis is rejected at the levelα if λ > χ2

1,α.

7.5 Partitioned Fay-Herriot model 3

7.5.1 The model

Let us consider the model (model 3)

ydt = xdtβ+udt +edt, d = 1, . . . ,D = DA +DB, t = 1, . . . ,md, (7.9)

whereydt is a direct estimator of the indicator of interest for aread and time instantt, andxdt is a
vector containing the aggregated (population) values ofp auxiliary variables. The indexd is used
for domains and the indext for time instants. We assume that the random vectors(ud1, . . . ,udmd),
d ≤ DA, follow i.i.d. first order auto-regressive processes with variance and auto-correlation parame-
tersσ2

A andρA respectively; in short,(ud1, . . . ,udmd) ∼iid AR1(σ2
A,ρA), d ≤ DA. We further assume that

(ud1, . . . ,udmd)∼iid AR1(σ2
B,ρB), d > DA, and that the errorsedt ’s are independentN(0,σ2

dt) with known
σ2

dt’s. Finally we assume that the(ud1, . . . ,udmd)’s and theedt ’s are mutually independent.
In matrix notation the model is

y = Xβ+Zu +e,

where vectorsy, u andecan be decomposed in the formv = (v′A,v′B)′, with vA = col
d≤DA

(vd), vB = col
d>DA

(vd)

and vd = col
1≤t≤md

(vdt), matrix X can be similarly decomposed in the formX = (X′
A,X′

B)′, with XA =

col
d≤DA

(Xd), XB = col
d>DA

(Xd) andXd = col′
1≤t≤md

(xdt), β = βp×1, Z = IM andM = ∑D
d=1 md. In this notation,

u ∼ N(0,Vu) ande∼ N(0,Ve) are independent with covariance matrices

Vu = var(u) = diag(σ2
AΩA,σ2

BΩB), Ve = var(e) = diag
1≤d≤D

(Ved)
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whereΩA = diag
d≤DA

(Ωd), ΩB = diag
d>DA

(Ωd), Ved = diag
1≤t≤md

(σ2
dt) and

Ωd = Ωd(ρ) =
1

1−ρ2




1 ρ . . . ρmd−2 ρmd−1

ρ 1
... ρmd−2

...
.. . . . . .. .

...

ρmd−2 . . . 1 ρ
ρmd−1 ρmd−2 . . . ρ 1




md×md

, ρ = ρA,ρB.

The covariance matrix of vectory is V = var(y) = diag(VA,VB), whereVA = diag
d≤DA

(Vd), VB = diag
d>DA

(Vd),

Vd = σ2
AΩd +Ved if d ≤ DA andVd = σ2

BΩd +Ved if d > DA.
If σ2

A > 0, ρA, σ2
B > 0 andρB are known, the best linear unbiased estimator (BLUE) ofβ is

β̂ = (X′V−1X)−1X′V−1y

and the best linear unbiased predictor (BLUP) ofu is

û = VuZ′V−1(y−Xβ̂) = diag

(
σ2

Adiag
d≤DA

(Ωd),σ2
Bdiag

d>DA

(Ωd)

)
col

1≤d≤D
(V−1

d )(y−Xβ̂),

so that

ûd =

{
σ2

AΩdV−1
d (yd −Xdβ̂), d = 1, . . . ,DA,

σ2
BΩdV−1

d (yd −Xdβ̂), d = DA +1, . . . ,D.

The loglikelihood of the restricted (residual) maximum likelihood method is

lreml = lreml(σ2
A,ρA,σ2

B,ρB) = −M− p
2

log2π+
1
2

log|X′X|− 1
2

log|VA|−
1
2

log|VB|

− 1
2

log|X′
AV−1

A XA +X′
BV−1

B XB|−
1
2

y′Py,

where
P = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.

Let θ = (θ1,θ2,θ3,θ4) = (σ2
A,ρA,σ2

B,ρB), then

V1 =
∂V
∂σ2

A

= diag

(
diag
d≤DA

(Ωd(ρA)), diag
d>DA

(0md×md)

)

V2 =
∂V
∂ρA

= diag

(
σ2

Adiag
d≤DA

(Ω̇d(ρA)), diag
d>DA

(0md×md)

)
,

V3 =
∂V
∂σ2

B

= diag

(
diag
d≤DA

(0md×md), diag
d>DA

(Ωd(ρB))

)
,

V4 =
∂V
∂ρB

= diag

(
diag
d≤DA

(0md×md),σ
2
Bdiag

d>DA

(Ω̇d(ρB))

)
.
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whereΩ̇(ρ) = ∂Ω(ρ)/∂ρ. Then

Pa =
∂P
∂θa

= −P
∂V
∂θa

P = −PVaP, a = 1,2,3,4.

By taking partial derivatives oflreml with respect toθa, we get the scores

Sa =
∂lreml

∂θa
= −1

2
tr(PVa)+

1
2

y′PVaPy, a = 1,2,3,4.

By taking again partial derivatives with respect toθa andθb, taking expectations and changing the sign,
we get the Fisher information matrix components

Fab =
1
2

tr(PVaPVb), a,b = 1,2,3,4.

To calculate the REML estimate we apply the Fisher-scoring algorithm with the updating fórmula

θk+1 = θk +F−1(θk)S(θk),

whereS andF are the column vector of scores and the Fisher information matrix respectively. As seeds

we useρ(0)
A = ρ(0)

B = 0, andσ2(0)
A = σ2(0)

B = σ̂2
uH, whereσ̂2

uH is the Henderson 3 estimator under model
with ρA = ρB = 0 andσ2

A = σ2
B. The REML estimator ofβ is

β̂reml = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of of the REML estimators ofθ andβ are

θ̂ ∼ N4(θ,F−1(θ)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa andβ j are

θ̂a±zα/2ν1/2
aa , a = 1,2,3,4, β̂ j ±zα/2q1/2

j j , j = 1, . . . , p,

whereθ̂ = θκ, F−1(θκ) = (νab)a,b=1,2,3,4, (X′V−1(θκ)X)−1 = (qi j )i, j=1,...,p, κ is the final iteration of the
Fisher-scoring algorithm andzα is theα-quantile of the standard normal distributionN(0,1)). Observed
β̂ j = β0, thep-value for testing the hypothesisH0 : β j = 0 is

p = 2PH0(β̂ j > |β0|) = 2P(N(0,1) > β0/
√

q j j ).

In what follows we present some matrix calculation that are useful to implement the Fisher-scoring
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algorithm. The target here is to avoid calculations ofM×M matrices.

Q = (X′V−1X)−1 =

(
D

∑
d=1

X′
dV−1

d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d )− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d ),

PVa = diag
1≤d≤D

(V−1
d Vad)− col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV−1

d Vad),

tr(PVa) =
D

∑
d=1

tr(V−1
d Vad)−

D

∑
d=1

tr(X′
dV−1

d VadV−1
d XdQ),

tr(PVaPVb) = tr

{(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VbdV−1
d Xd

)
Q

}

with a = 1,2 and b = 3,4, otherwise

tr(PVaPVb) =
D

∑
d=1

tr(V−1
d VadV−1

d Vbd)−2
D

∑
d=1

tr(X′
dV−1

d VadV−1
d VbdV−1

d XdQ)

+ tr

{(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VbdV−1
d Xd

)
Q

}
,

y′PVaPy =
D

∑
d=1

y′dV−1
d VadV−1

d yd −
(

D

∑
d=1

y′dV−1
d VadV−1

d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

−
(

D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VadV−1
d yd

)

+

(
D

∑
d=1

y′dV−1
d Xd

)
Q

(
D

∑
d=1

X′
dV−1

d VadV−1
d Xd

)
Q

(
D

∑
d=1

y′dV−1
d Xd

)′

.

Finally, the derivative of matrixΩd(ρ) with respect toρ is

Ω̇d(ρ) =
1

1−ρ2




0 1 . . . . . . (md −1)ρmd−2

1 0
... (md −2)ρmd−3

...
. .. . . . . ..

...

(md −2)ρmd−3 . . . 0 1
(md −1)ρmd−2 . . . . . . 1 0




+
2ρΩd(ρ)

1−ρ2 .

7.5.2 The mean squared error of the EBLUP

We are interested in predicting the value ofµdt = xdtβ+udt by using the EBLUP̂µdt = xdtβ̂+ ûdt. If we do
not take into account the error,edt, this is equivalent to predictydt = a′y, wherea= col

1≤ℓ≤D
( col
1≤k≤mℓ

(δdℓδtk))

is a vector having one 1 in the positiont + ∑d−1
ℓ=1 mℓ and 0’s in the remaining cells. To estimateYdt we
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useŶ
eblup

dt = µ̂dt. The mean squared error ofŶ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ),

whereθ = (σ2
A,ρA,σ2

B,ρB),

g1(θ) = a′ZTZ ′a,

g2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a],

g3(θ) ≈ tr
{

(∇b′)V(∇b′)′E
[
(θ̂−θ)(θ̂−θ)′

]}

The estimator ofMSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂)+g2(θ̂)+2g3(θ̂).

Calculation of g1(θ)

In the formula ofg1(θ) = a′ZTZ ′a, we have thatZ = IM , andT = Vu−VuZ′V−1ZVu = diag(TA,TB),
where

TA = σ2
Adiag

d≤DA

(Ωd)−σ4
Adiag

d≤DA

(Ωd)diag
d≤DA

(V−1
d )diag

d≤DA

(Ωd)

and
TB = σ2

Bdiag
d>DA

(Ωd)−σ4
Bdiag

d>DA

(Ωd)diag
d>DA

(V−1
d )diag

d>DA

(Ωd)

Let us writead = col
1≤k≤md

(δtk). Then,g1(θ) can be expressed in the form

g1(θ) =

{
σ2

Aa′dΩdad −σ4
Aa′dΩdV−1

d Ωdad if d ≤ DA,

σ2
Ba′dΩdad −σ4

Ba′dΩdV−1
d Ωdad if d > DA.

Calculation of g2(θ)

We have thatg2(θ) = [a′X −a′ZTZ ′V−1
e X]Q[X′a−X′V−1

e ZTZ ′a], whereZTZ ′V−1
e X =

ZTZ ′V−1
e X =




[
σ2

Adiag
d≤DA

(Ωd)−σ4
Adiag

d≤DA

(Ωd)diag
d≤DA

(V−1
d )diag

d≤DA

(Ωd)
]
diag
d≤DA

(V−1
ed ) col

d≤DA

(Xd)
[
σ2

Bdiag
d>DA

(Ωd)−σ4
Bdiag

d>DA

(Ωd)diag
d>DA

(V−1
d )diag

d>DA

(Ωd))
]
diag
d>DA

(V−1
ed ) col

d>DA

(Xd)




=




σ2
A col

d≤DA

(ΩdV−1
ed Xd)−σ4

A col
d≤DA

(ΩdV−1
d ΩdV−1

ed Xd)

σ2
B col

d>DA

(ΩdV−1
ed Xd)−σ4

B col
d>DA

(ΩdV−1
d ΩdV−1

ed Xd)


 .

Therefore

g2(θ) =
[
a′dXd −σ2

Aa′dΩdV−1
ed Xd + σ4

Aa′dΩdV−1
d ΩdV−1

ed Xd
]
Q

·
[
X′

dad −σ2
AX′

dV−1
ed Ωdad + σ4

AX′
dV−1

ed ΩdV−1
d Ωdad

]
if d ≤ DA,

=
[
a′dXd −σ2

Ba′dΩdV−1
ed Xd + σ4

Ba′dΩdV−1
d ΩdV−1

ed Xd
]
Q

·
[
X′

dad −σ2
BX′

dV−1
ed Ωdad + σ4

BX′
dV−1

ed ΩdV−1
d Ωdad

]
if d > DA.



128 Chapter 7. Area-level time models

Calculation of g3(θ)

We have that
g3(θ) ≈ tr

{
(∇b′)V(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
,

whereb′ = a′ZVuZ′V−1 = a′diag
(
σ2

Adiag
ℓ≤DA

(Ωℓ),σ2
Bdiag

ℓ>DA

(Ωℓ)
)

diag
1≤ℓ≤D

(V−1
ℓ ) = (b′

A,b′
B),

b′
A = σ2

A col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ ) and b′

B = σ2
B col′

ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ ).

It holds that ∂b′

∂σ2
A

= (
∂b′

A
∂σ2

A
,0), ∂b′

∂ρA
= (

∂b′
A

∂ρA
,0), ∂b′

∂σ2
B

= (0,
∂b′

B
∂σ2

B
), ∂b′

∂ρB
= (0,

∂b′
B

∂ρB
), where

∂b′
A

∂σ2
A

= col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ )−σ2

A col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ VℓAV−1

ℓ ), VℓA =
∂Vℓ

∂σ2
A

= Ωℓ,

∂b′
A

∂ρA
= σ2

A col′
ℓ≤DA

(δdℓa′ℓΩ̇ℓV−1
ℓ )−σ4

A col′
ℓ≤DA

(δdℓa′ℓΩℓV−1
ℓ VℓρAV−1

ℓ ), VℓρA =
∂Vℓ

∂ρA
= σ2

AΩ̇ℓ,

∂b′
B

∂σ2
B

= col′
ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ )−σ2

B col′
ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ VℓBV−1

ℓ ), VℓB =
∂Vℓ

∂σ2
B

= Ωℓ,

∂b′
B

∂ρB
= σ2

B col′
ℓ>DA

(δdℓa′ℓΩ̇ℓV−1
ℓ )−σ4

B col′
ℓ>DA

(δdℓa′ℓΩℓV−1
ℓ VℓρBV−1

ℓ ), VℓρB =
∂Vℓ

∂ρB
= σ2

BΩ̇ℓ.

We defineq21 = q12,

q11 =
∂b′

A

∂σ2
A

diag
ℓ≤DA

(Vℓ)

(
∂b′

A

∂σ2
A

)′
=
[
a′dΩdV−1

d Ωdad −2σ2
Aa′dΩdV−1

d ΩdV−1
d Ωdad

+ σ4
Aa′dΩdV−1

d ΩdV−1
d ΩdV−1

d Ωdad
]
I{d≤DA}(d),

q12 =
∂b′

A

∂σ2
A

diag
ℓ≤DA

(Vℓ)

(
∂b′

A

∂ρA

)′
=
[
σ2

Aa′dΩdV−1
d Ω̇dad −σ4

Aa′dΩdV−1
d Ω̇dV−1

d Ωdad

− σ4
Aa′dΩdV−1

d ΩdV−1
d Ω̇dad + σ6

Aa′dΩdV−1
d ΩdV−1

d Ω̇dV−1
d Ωdad

]
I{d≤DA}(d),

q22 =
∂b′

A

∂ρA
diag
ℓ≤DA

(Vℓ)

(
∂b′

A

∂ρA

)′
=
[
σ4

Aa′dΩ̇dV−1
d Ω̇dad −σ6

Aa′dΩ̇dV−1
d Ω̇dV−1

d Ωdad

− σ6
Aa′dΩdV−1

d Ω̇dV−1
d Ω̇dad + σ8

Aa′dΩdV−1
d Ω̇dV−1

d Ω̇dV−1
d Ωdad

]
I{d≤DA}(d).

Similarly, we defineq43 = q34,

q33 =
∂b′

B

∂σ2
B

diag
ℓ>DA

(Vℓ)

(
∂b′

B

∂σ2
B

)′
=
[
a′dΩdV−1

d Ωdad −2σ2
Ba′dΩdV−1

d ΩdV−1
d Ωdad

+ σ4
Ba′dΩdV−1

d ΩdV−1
d ΩdV−1

d Ωdad
]
I{d>DA}(d),

q34 =
∂b′

B

∂σ2
B

diag
ℓ>DA

(Vℓ)

(
∂b′

B

∂ρB

)′
=
[
σ2

Ba′dΩdV−1
d Ω̇dad −σ4

Ba′dΩdV−1
d Ω̇dV−1

d Ωdad

− σ4
Ba′dΩdV−1

d ΩdV−1
d Ω̇dad + σ6

Ba′dΩdV−1
d ΩdV−1

d Ω̇dV−1
d Ωdad

]
I{d>DA}(d),

q44 =
∂b′

B

∂ρB
diag
ℓ>DA

(Vℓ)

(
∂b′

B

∂ρB

)′
= σ4

Ba′dΩ̇dV−1
d Ω̇dad −σ6

Ba′dΩ̇dV−1
d Ω̇dV−1

d Ωdad

− σ6
Ba′dΩdV−1

d Ω̇dV−1
d Ω̇dad + σ8

Ba′dΩdV−1
d Ω̇dV−1

d Ω̇dV−1
d Ωdad

]
I{d>DA}(d).
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Finally

g3(θ) =





tr
{( q11 q12

q21 q22

)(
F11 F12

F21 F22

)−1}
, if d ≤ DA

tr
{( q33 q34

q43 q44

)(
F33 F34

F43 F44

)−1}
, if d > DA,

whereFab is the element of the REML Fisher information matrix.

7.5.3 testing forH0 : ρA = ρB

Let σ̂2
A, σ̂2

B, ρ̂A andρ̂B be the unrestricted REML estimators ofσ2
A andσ2

B ρA andρB respectively. Let
σ̃2

A, σ̃2
B andρ̃ be the REML estimator ofσ2

A, σ2
B and of the common valueρA = ρB underH0. The REML

likelihood ratio statistic (LRS) for testingH0 : ρA = ρB is

λ = −2[lREML(σ̃2
A, σ̃2

B, ρ̃)− lREML(σ̂2
A, σ̂2

B, ρ̂A, ρ̂B)] = log
|Ṽ|
|V̂|

+ log
|X′Ṽ−1X|
|X′V̂−1X|

+y′P̃y−y′P̂y.

Asymptotic distribution ofλ underH0 is χ2
1, so null hypothesis is rejected at the levelα if λ > χ2

1,α.
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Chapter 8

Area-level time-space models

8.1 Model 1

8.1.1 Introduction

Let ydt be a direct estimator of the target population parameter andlet xdt be a vector containing the
aggregated values ofp auxiliary variables. Subindexesd andt are used for domains and time instants
respectively. Let us consider the model

ydt = xdtβ+u1d +u2dt +edt, d = 1, . . . ,D, t = 1, . . . ,T, (8.1)

where{u1d}, {u2dt} y {edt} are independent with distributions{u1d}D
d=1 ∼ SAR(1), {u2dt} i.i.d N(0,σ2

2)
andedt ∼ N(0,σ2

dt). Model (8.1) can alternatively written as

y = Xβ+Z1u1+Z2u2+e, (8.2)

where

• y = col
1≤d≤D

( col
1≤t≤T

(ydt)), e= col
1≤d≤D

( col
1≤t≤T

(edt)),

• u1 = col
1≤d≤D

(u1d), u2 = col
1≤d≤D

(u2d), u2d = col
1≤t≤T

(u2dt),

• X = col
1≤d≤D

( col
1≤t≤T

(xdt)), xdt = col′
1≤ j≤p

(xdt j), β = col
1≤ j≤p

(β j),

• Z1 = diag
1≤d≤D

(1T), Z2 = IM×M, M = DT.

We assume thatu1 ∼ N(0,Vu1), u2 ∼ N(0,Vu2) ande∼ N(0,Ve) are independent with covariance ma-
trices

Vu1 = σ2
1Ω1(ρ1), Ω1(ρ1) =

[
(ID −ρ1W)′(ID −ρ1W)

]−1
, C−1(ρ1),

Vu2 = σ2
2IDT ,

Ve = diag
1≤d≤D

(Ved), Ved = diag
1≤t≤T

(σ2
dt),

131
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and knownσ2
dt’s. We assume that the rows of the proximity matrixW are stochastic vectors, i.e. with

components summing up to one. The vectoru1 is distributed according to a stochastic process SAR(1)
and the variablesu2dt are i.i.d. normal.

The variance ofy is

var(y) = V = Z1Vu1Z
′
1 +Z2Vu2Z

′
2+Ve = Z1Vu1Z

′
1 + diag

1≤d≤D
(σ2

2IT +Ved).

Its inverse can be calculated with the formula

(A+CBD)−1 = A−1−A−1C(B−1 +DA−1C)−1DA−1,

with A = diag
1≤d≤D

(σ2
2IT +Ved), B = Vu1, C = Z1 andD = Z′

1. Then

V−1 = A−1−A−1Z1(V−1
u1

+Z′
1A

−1Z1)
−1Z′

1A−1,

whereA−1 = diag
1≤d≤D

(A−1
d ) andAd = σ2

2IT + Ved. Observe that by applying the above formula we avoid

inverting anM×M matrix, instead we have to invertD matrices of orderT ×T.
Let us define the parameterθ = (σ2

1,ρ1,σ2
2). The formula

∂C−1

∂ρ1
= −C−1 ∂C

∂ρ1
C−1

is used for calculating the partial derivatives ofV with respect to the components ofθ, i.e.

V1 =
∂V
∂σ2

1

= Z1
∂Vu1

∂σ2
1

Z′
1 = Z1Ω1(ρ1)Z′

1,

V2 =
∂V
∂ρ1

= Z1
∂Vu1

∂ρ1
Z′

1 = −σ2
1Z1Ω1(ρ1)

∂Ω−1
1 (ρ1)

∂ρ1
Ω1(ρ1)Z′

1,

V3 =
∂V
∂σ2

2

= IDT ,

where

∂Ω−1
1 (ρ1)

∂ρ1
=

∂C
∂ρ1

=
∂

∂ρ1

{
(ID −ρ1W)′(ID −ρ1W)

}

= −W′ + ρ1W′W −W + ρ1W′W = −W −W′+2ρ1W′W.

8.1.2 BLUP

The BLU estimators and predictors ofβ andu are

β̂ = (X′V−1X)−1X′V−1y y û = VuZ′V−1(y−Xβ̂),

whereVu = diag(Vu1,Vu2) andZ = (Z1,Z2). To calculatêu we apply the formula

û =

(
Vu1Z

′
1

Vu2Z
′
2

)
V−1(y−Xβ̂) =

(
σ2

1Ω1(ρ1)Z′
1V−1(y−Xβ̂)

σ2
2Z′

2V−1(y−Xβ̂)

)
.

The BLUP predictor ofµdt is
µ̂dt = xdtβ̂+ û1d + û2dt.
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8.1.3 Residual maximum likelihood estimation

For the residual maximum likelihood (REML) estimation method, the log-likelihood is

lREML(θ) = −M− p
2

log2π+
1
2

log|X′X|− 1
2

log|V|− 1
2

log|X′V−1X|− 1
2

y′Py,

whereθ = (θ1,θ2,θ3) = (σ2
1,ρ1,σ2

2) and

P = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.

Then

Pa =
∂P
∂θa

= −P
∂V
∂θa

P = −PVaP, a = 1,2,3.

By taking derivatives oflREML with respect toθa, we get

Sa =
∂lREML

∂θa
= −1

2
tr(PVa)+

1
2

y′PVaPy, a = 1,2,3.

By taking again derivatives wit respect toθa andθb, taking expectations and changing the sign, we have

Fab =
1
2

tr(PVaPVb), a,b = 1,2,3.

The updating formula of the Fisher-scoring algorithm is

θk+1 = θk +F−1(θk)S(θk).

This algorithm requires starting values ofθ (seeds). We may obtain seeds by considering the model
withoutu1 and withρ2 = 0. For this last model we might consider the Henderson 3 estimatorσ̂2

u2H of the

only remaining varianceσ2
2. Therefore, we might propose the following seeds:σ2(0)

1 = σ2(0)
2 = 1

2σ̂2
u2H ,

ρ(0)
1 = 0.3.

The REML estimator ofβ is
β̂ = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimatorsθ andβ are

θ̂ ∼ N2(θ,F−1(θ)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa andβ j are

θ̂a±zα/2ν1/2
aa , a = 1, . . . ,3, β̂ j ±zα/2q1/2

j j , j = 1, . . . , p,

whereθ̂ = θκ, F−1(θκ) = (νab)a,b=1,...,3, (X′V−1(θκ)X)−1 = (qi j )i, j=1,...,p, κ is the final iteration of the
Fisher-scoring algorithm andzα is theα-quantil of the standard normal distributionN(0,1). Observed
β̂ j = β0, thep-value for testing the test of hypothesisH0 : β j = 0 is

p = 2PH0(β̂ j > |β0|) = 2P(N(0,1) > β0/
√

q j j ).
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8.1.4 Simulations

For d = 1, . . . ,D, t = 1, . . . ,T, the explanatory and target variables are

xdt = (bdt −adt)Udt +adt, Udt =
t

T +1
, adt = 1, bdt = 1+

1
D

(T(d−1)+ t) ,

ydt = β1 + β2xdt +u1d +u2dt +edt, β1 = 0, β2 = 1,

whereu2dt ∼ N(0,σ2
2) andedt ∼ N(0,σ2

dt) are independent withσ2
2 = 1 and

σ2
dt =

(α1−α0)(T(d−1)+ t −1)

M−1
+ α0, α0 = 0.8, α1 = 1.2.

The vectoru1 = col
1≤d≤D

(u1d) is generated from the distributionND(0,σ2
1Ω1(ρ1)), using the proximity

matrix

W =




0 1 0 . . . 0
1/2 0 1/2 . . . 0

...
.. . .. . . . .

...
0 . . . 1/2 0 1/2
0 . . . 0 1 0




D×D

, σ2
1 = 1,ρ1 = 0.5 (8.3)

Simulation 1a

The steps of the simulation experiment are

1. Doβ1 = 0, β2 = 1, σ2
1 = σ2

2 = 1, ρ1 = 0.5, definirW según (8.3) and generateσ2
dt, xdt, d = 1, . . . ,D,

t = 1, . . . ,T.

2. RepeatK = 4000 times (k = 1, . . . ,K)

2.1. Generatey(k)
dt and calculateµ(k)

dt = β1 + β2xdt +u(k)
1d +u(k)

2dt, d = 1, . . . ,D, t = 1, . . . ,T.

2.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
1 , ρ̂(k)

1 , σ̂2(k)
2 } and µ̂(k)

dt = β̂(k)
1 + β̂(k)

2 xdt + û(k)
1d + û(k)

2dt, by using
the REML method.

3. For eachτ ∈ {β1,β2,σ2
1,ρ1,σ2

2} and for each ˆµdt, d = 1, . . . ,D, t = 1, . . . ,T, calculate

BIAS(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ), MSE(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ)2.

BIASdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt ), MSEdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt )2,

BIAS=
1
M

D

∑
d=1

T

∑
t=1

BIASdt, MSE=
1
M

D

∑
d=1

T

∑
t=1

MSEdt.

The simulation experiment is repeated for each of the 6 combinations of sample sizes appearing in the
Table 8.1.4.1.
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D 50 100 200 300 400 500
T 5 5 5 5 5 5
M 250 500 1000 1500 2000 2500

Table 8.1.4.1: Sample sizes.

The results of the simulation experiments are presented in the Table 8.1.4.2.

D 50 100 200 300 400 500

BIAS(β̂1) -0.0046 0.0047 0.0014 -0.0012 -0.0002 -0.0009

MSE(β̂1) 0.1595 0.0851 0.0435 0.0278 0.0219 0.0169

BIAS(β̂2) 0.0012 -0.0005 -0.0011 0.0003 -0.0003 -0.0002

MSE(β̂2) 0.0159 0.0083 0.0042 0.0028 0.0020 0.0016

BIAS(σ̂2
1) -0.0350 -0.0138 -0.0064 -0.0065 -0.0036 -0.0053

MSE(σ̂2
1) 0.1101 0.0547 0.0285 0.0192 0.0141 0.0116

BIAS(ρ̂1) -0.0169 -0.0073 -0.0034 -0.0029 -0.0014 -0.0009

MSE(ρ̂1) 0.0267 0.0115 0.0059 0.0038 0.0030 0.0023

BIAS(σ̂2
2) 0.0006 -0.0012 0.0010 -0.0005 -0.0009 0.0001

MSE(σ̂2
2) 0.0388 0.0191 0.0100 0.0064 0.0049 0.0040

BIAS -0.0003 0.0005 -0.0002 -0.0003 0.0001 0.0001

MSE 0.5784 0.5739 0.5715 0.5716 0.5712 0.5710

Table 8.1.4.2. Results of the simulation experiments.

The Table 8.1.4.2 shows that bias is always close to zero and that MSE decreases as the number of
domains increases, so that the estimators are empirically consistent.

Simulation 1b

The steps of the simulation experiment are

1. Doβ1 = 0, β2 = 1, σ2
1 = σ2

2 = 1, ρ1 = 0.5, defineW according to (8.3), generateσ2
dt y xdt and read

MSEdt, d = 1, . . . ,D, t = 1, . . . ,T.

2. RepeatK = 200 timess (k = 1, . . . ,K)

2.1. Generatey(k)
dt and calculateµ(k)

dt = β1 + β2xdt +u(k)
1d +u(k)

2dt, d = 1, . . . ,D, t = 1, . . . ,T.

2.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
1 , ρ̂(k)

1 , σ̂2(k)
2 } by using REML method.

2.3. RepeatB = 100 times (b = 1, . . . ,B)

2.3.1. Generatey(kb)
dt with the parameters{β̂(k)

1 , β̂(k)
2 , σ̂2(k)

1 , ρ̂(k)
1 , σ̂2(k)

2 } from step 2.2. Generar

µ(kb)
dt = β̂(k)

1 + β̂(k)
2 xdt +u(kb)

1d +u(kb)
2dt .

2.3.2. Calculatêτ(kb) ∈ {β̂(kb)
1 , β̂(kb)

2 , σ̂2(kb)
1 , ρ̂(kb)

1 , σ̂2(kb)
2 } and µ̂(kb)

dt = β̂(kb)
1 + β̂(kb)

2 xdt + û(kb)
1d +

û(kb)
2dt , by using REML method.

2.4. Calculate

mse(k)dt =
1
B

B

∑
b=1

(µ̂(kb)
dt −µ(kb)

dt )2.
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3. Ford = 1, . . . ,D, t = 1, . . . ,T, calculate

Bdt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt), Edt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt)
2.

B =
1
M

D

∑
d=1

T

∑
t=1

Bdt, E =
1
M

D

∑
d=1

T

∑
t=1

Edt.

The simulation experiment is repeated for all 6 combinations of sample sizes appearing in the Table
8.1.4.1. The simulation results are presented in the Table 8.1.4.3.

D 50 100 200 400

B -0.0032 -0.0052 -0.0020 -0.0025

E 0.0082 0.0075 0.0071 0.0069

Table 8.1.4.3. Results of simulation 1b.

The Table 8.1.4.3 shows that biasB is always close to zero and that the MSEE decreases as the number
of domains increases, so that the estimatorsmseare empirically consistent.

8.2 Model 2

8.2.1 Introduction

Let ydt be a direct estimator of the characteristic of interest and let xdt be a vector containing the aggre-
gated values ofp of auxiliary variables. The subindexd is used for domains and the subindext for time
instants. Let us consider the model

ydt = xdtβ+u1d +u2dt +edt, d = 1, . . . ,D, t = 1, . . . ,T, (8.4)

where{u1d}, {u2dt} and{edt} are independent with distributions{u1d}D
d=1 ∼ SAR(1), {u2dt}T

t=1 i.i.d
AR(1) andedt ∼ N(0,σ2

dt).
The model (8.4) can be alternatively written in the form

y = Xβ+Z1u1 +Z2u2 +e, (8.5)

where

• y = col
1≤d≤D

( col
1≤t≤T

(ydt)), e= col
1≤d≤D

( col
1≤t≤T

(edt)),

• u1 = col
1≤d≤D

(u1d), u2 = col
1≤d≤D

(u2d), u2d = col
1≤t≤T

(u2dt),

• X = col
1≤d≤D

( col
1≤t≤T

(xdt)), xdt = col′
1≤ j≤p

(xdt j), β = col
1≤ j≤p

(β j),

• Z1 = diag
1≤d≤D

(1T), Z2 = IM×M, M = DT.
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We assume thatu1 ∼ N(0,Vu1), u2 ∼ N(0,Vu2) ande∼ N(0,Ve) are independent with covariance ma-
trices

Vu1 = σ2
1Ω1(ρ1), Ω1(ρ1) =

[
(ID −ρ1W)′(ID −ρ1W)

]−1
, C−1(ρ1),

Vu2 = σ2
2Ω2(ρ2), Ω2(ρ2) = diag

1≤d≤D
(Ω2d(ρ2)),

Ve = diag
1≤d≤D

(Ved), Ved = diag
1≤t≤T

(σ2
dt),

Ω2d = Ω2d(ρ2) =
1

1−ρ2
2




1 ρ2 . . . ρT−2
2 ρT−1

2

ρ2 1
... ρT−2

2
...

.. . . . . . . .
...

ρT−2
2

. . . 1 ρ2

ρT−1
2 ρT−2

2 . . . ρ2 1




T×T

,

where theσ2
dt’s are known. We assume that the rows of matrixW are stochastic vectors, i.e. their

components sum up to one. The vectoru1 is distributed as a SAR(1) stochastic process and the vectors
u2d are independent with homogeneous AR(1) distributions (they all have the same variance and auto-
correlation parameters).

The variance ofy is

var(y) = V = Z1Vu1Z
′
1 +Z2Vu2Z

′
2 +Ve = Z1Vu1Z

′
1 + diag

1≤d≤D
(σ2

2Ω2d(ρ2)+Ved).

Its inverse can be calculated by applying the formula

(A+CBD)−1 = A−1−A−1C(B−1+DA−1C)−1DA−1

with A = diag
1≤d≤D

(σ2
2Ω2d(ρ2)+Ved), B = Vu1, C = Z1 andD = Z′

1. Then

V−1 = A−1−A−1Z1(V−1
u1

+Z′
1A

−1Z1)
−1Z′

1A−1,

whereA−1 = diag
1≤d≤D

(A−1
d ) andAd = σ2

2Ω2d(ρ2)+Ved. Observe that by applying this formula we substi-

tute the inversion of one matrix of orderM×M by the inversion ofD matrices of orderT ×T.

Let us define the parameterθ = (σ2
1,ρ1,σ2

2,ρ2). We apply the formula

∂C−1

∂ρ1
= −C−1 ∂C

∂ρ1
C−1,
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to obtain the partial derivatives ofV with respect toθ.

V1 =
∂V
∂σ2

1

= Z1
∂Vu1

∂σ2
1

Z′
1 = Z1Ω1(ρ1)Z′

1,

V2 =
∂V
∂ρ1

= Z1
∂Vu1

∂ρ1
Z′

1 = −σ2
1Z1Ω1(ρ1)

∂Ω−1
1 (ρ1)

∂ρ1
Ω1(ρ1)Z′

1,

V3 =
∂V
∂σ2

2

= diag
1≤d≤D

(Ω2d(ρ2)),

V4 =
∂V
∂ρ2

= σ2
2 diag

1≤d≤D

(
∂Ω2d(ρ2)

∂ρ2

)
,

where

∂Ω−1
1 (ρ1)

∂ρ1
=

∂C
∂ρ1

=
∂

∂ρ1

{
(ID −ρ1W)′(ID −ρ1W)

}

= −W′ + ρ1W′W −W + ρ1W′W = −W −W′+2ρ1W′W,

and

∂Ω2d(ρ2)

∂ρ2
=

1

1−ρ2
2




0 1 . . . . . . (T −1)ρT−2
2

1 0
... (T −2)ρT−3

2
...

. . . . . . . . .
...

(T −2)ρT−3
2

. . . 0 1

(T −1)ρT−2
2 . . . . . . 1 0




+
2ρ2Ω2d(ρ2)

1−ρ2
2

.

8.2.2 BLUP

The BLU estimator and predictor ofβ andu are

β̂ = (X′V−1X)−1X′V−1y y û = VuZ′V−1(y−Xβ̂),

whereVu = diag(Vu1,Vu2) andZ = (Z1,Z2). For calculatinĝu we apply the formula

û =

(
Vu1Z

′
1

Vu2Z
′
2

)
V−1(y−Xβ̂) =

(
σ2

1Ω1(ρ1)Z′
1V−1(y−Xβ̂)

σ2
2Ω2(ρ2)Z′

2V−1(y−Xβ̂)

)
.

The BLUP ofµdt is
µ̂dt = xdtβ̂+ û1d + û2dt.

8.2.3 Residual maximum likelihood estimation

The log-likelihood of the residual maximum likelihood estimation method is

lREML(θ) = −M− p
2

log2π+
1
2

log|X′X|− 1
2

log|V|− 1
2

log|X′V−1X|− 1
2

y′Py,
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whereθ = (θ1,θ2,θ3,θ4) = (σ2
1,ρ1,σ2

2,ρ2) and

P = V−1−V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.

Then

Pa =
∂P
∂θa

= −P
∂V
∂θa

P = −PVaP, a = 1, . . . ,4.

By taking derivatives onlREML with respect toθa we get

Sa =
∂lREML

∂θa
= −1

2
tr(PVa)+

1
2

y′PVaPy, a = 1, . . . ,4.

By taking again derivatives with respect toθa and θb, taking expectations and changing the sign, we
obtain

Fab =
1
2

tr(PVaPVb), a,b = 1, . . . ,4.

The updating formula of the Fisher-scoring algorithm is

θk+1 = θk +F−1(θk)S(θk).

We can take the reduced model withoutu1 and withρ2 = 0 as a reference for obtaining seeds for the
Fisher-scoring algorithm. For the mentioned reduced model, it is easy to calculate the Henderson 3
estimator̂σ2

u2H of the only remaining varianceσ2
2. Therefore, a possible set of algorithm seeds isσ2(0)

1 =

σ2(0)
2 = 1

2σ̂2
u2H , ρ(0)

1 = ρ(0)
2 = 0.3.

The REML estimator ofβ is
β̂ = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimators ofθ andβ are

θ̂ ∼ N2(θ,F−1(θ)), β̂ ∼ Np(β,(X′V−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa andβ j are

θ̂a±zα/2ν1/2
aa , a = 1, . . . ,4, β̂ j ±zα/2q1/2

j j , j = 1, . . . , p,

whereθ̂ = θκ, F−1(θκ) = (νab)a,b=1,...,4, (X′V−1(θκ)X)−1 = (qi j )i, j=1,...,p, κ is the last iteration in the
Fisher-scoring algorithm andzα is theα-quantil of the standard normal distributionN(0,1). If we observe
β̂ j = β0, thep-value for testingH0 : β j = 0 is

p = 2PH0(β̂ j > |β0|) = 2P(N(0,1) > β0/
√

q j j ).

8.2.4 Simulations

Ford = 1, . . . ,D, t = 1, . . . ,T, the explanatory and target variables are

xdt = (bdt −adt)Udt +adt, Udt =
t

T +1
, adt = 1, bdt = 1+

1
D

(T(d−1)+ t) ,

ydt = β1 + β2xdt +u1d +u2dt +edt, β1 = 0, β2 = 1,
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whereedt ∼ N(0,σ2
dt) and

σ2
dt =

(α1−α0)(T(d−1)+ t −1)

M−1
+ α0, α0 = 0.8, α1 = 1.2.

The vectoru1 = col
1≤d≤D

(u1d) is generated from the distributionND(0,σ2
1Ω1(ρ1)), with σ2

1 = 1, ρ1 = 0.5

and proximity matrix (8.3). Ford = 1, . . . ,D, the random effectsu2dt are generated as follows:

u2d1 = (1−ρ2
2)

−1/2εd1, u2dt = ρ2u2dt−1 + εdt, t = 2, . . . ,T,

whereεdt ∼ N(0,σ2
2), d = 1, . . . ,D, t = 1, . . . ,T, andρ2 = 0.5.

Simulation 2a

The steps of the simulation experiment 2a are

1. Do β1 = 0, β2 = 1, σ2
1 = σ2

2 = 1, ρ1 = 0.5, defineW according to (8.3) and generateσ2
dt, xdt,

d = 1, . . . ,D, t = 1, . . . ,T.

2. RepeatK = 2000 times (k = 1, . . . ,K)

2.1. Generatey(k)
dt and calculateµ(k)

dt = β1 + β2xdt +u(k)
1d +u(k)

2dt, d = 1, . . . ,D, t = 1, . . . ,T.

2.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
1 , ρ̂(k)

1 , σ̂2(k)
2 , ρ̂(k)

2 } and µ̂(k)
dt = β̂(k)

1 + β̂(k)
2 xdt + û(k)

1d + û(k)
2dt, by

using the REML method.

3. For eachτ ∈ {β1,β2,σ2
1,ρ1,σ2

2,ρ2} and forµ̂dt, d = 1, . . . ,D, t = 1, . . . ,T, calculate

BIAS(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ), MSE(τ̂) =
1
K

K

∑
k=1

(τ̂(k) − τ)2.

BIASdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt ), MSEdt =
1
K

K

∑
k=1

(µ̂(k)
dt −µ(k)

dt )2,

BIAS=
1
M

D

∑
d=1

T

∑
t=1

BIASdt, MSE=
1
M

D

∑
d=1

T

∑
t=1

MSEdt.

The simulation experiment is repeated for the 6 combinations of sample sizes appearing in the Table
8.2.4.1.

D 50 100 200 300 400 500
T 5 5 5 5 5 5
M 250 500 1000 1500 2000 2500

Table 8.2.4.1: Sample sizes.

The Tabla 8.2.4.2 presents the simulation results.
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D 50 100 200 300 400 500

BIAS(β̂1) 0.0021 0.0059 0.0015 0.0023 0.0027 -0.0001

MSE(β̂1) 0.1966 0.1050 0.0515 0.0344 0.0257 0.0199

BIAS(β̂2) 0.0004 -0.0016 -0.0019 -0.0012 -0.0025 -0.0011

MSE(β̂2) 0.0212 0.0109 0.0053 0.0036 0.0025 0.0020

BIAS(σ̂2
1) 0.0413 -0.0248 -0.0308 -0.0337 -0.0269 -0.0226

MSE(σ̂2
1) 0.2519 0.1603 0.1025 0.0706 0.0550 0.0449

BIAS(ρ̂1) -0.0245 0.0061 0.0083 0.0108 0.0075 0.0053

MSE(ρ̂1) 0.0455 0.0241 0.0139 0.0086 0.0069 0.0054

BIAS(σ̂2
2) -0.0174 -0.0082 -0.0039 -0.0050 -0.0013 -0.0017

MSE(σ̂2
2) 0.0430 0.0228 0.0109 0.0072 0.0056 0.0044

BIAS(ρ̂2) -0.0896 -0.0293 -0.0113 -0.0030 -0.0023 -0.0011

MSE(ρ̂2) 0.0412 0.0191 0.0112 0.0074 0.0056 0.0044

BIAS -0.0016 0.0000 -0.0006 -0.0008 -0.0002 -0.0001

MSE 0.5500 0.5446 0.5424 0.5418 0.5413 0.5409

Table 8.2.4.2. Resultados del experimento de simulación 2a.

The Table 8.2.4.2 shows that the bias is always close to zero and that the MSE decreases as the number
of domains increases, so that the REML estimators are empirically consistent.

Simulation 2b

The steps of the simulation experiment 2b are

1. Doβ1 = 0, β2 = 1, σ2
1 = σ2

2 = 1, ρ1 = 0.5, ρ2 = 0.5, defineW according to (8.3), generateσ2
dt and

xdt and readMSEdt, d = 1, . . . ,D, t = 1, . . . ,T.

2. RepeatK = 200 times (k = 1, . . . ,K)

2.1. Generatey(k)
dt and calculateµ(k)

dt = β1 + β2xdt +u(k)
1d +u(k)

2dt, d = 1, . . . ,D, t = 1, . . . ,T.

2.2. Calculatêτ(k) ∈ {β̂(k)
1 , β̂(k)

2 , σ̂2(k)
1 , ρ̂(k)

1 , σ̂2(k)
2 , ρ̂(k)

2 } by using the REML method.

2.3. RepeatB = 100 times (b = 1, . . . ,B)

2.3.1. Generatey(kb)
dt with the parameters{β̂(k)

1 , β̂(k)
2 , σ̂2(k)

1 , ρ̂(k)
1 , σ̂2(k)

2 , ρ̂(k)
2 } obtained in step 2.2.

Generateµ(kb)
dt = β̂(k)

1 + β̂(k)
2 xdt +u(kb)

1d +u(kb)
2dt .

2.3.2. Calculatêτ(kb) ∈{β̂(kb)
1 , β̂(kb)

2 , σ̂2(kb)
1 , ρ̂(kb)

1 , σ̂2(kb)
2 , ρ̂(kb)

2 } andµ̂(kb)
dt = β̂(kb)

1 + β̂(kb)
2 xdt + û(kb)

1d +

û(kb)
2dt , by using the REML method.

2.4. Calculate

mse(k)dt =
1
B

B

∑
b=1

(µ̂(kb)
dt −µ(kb)

dt )2.
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3. Ford = 1, . . . ,D, t = 1, . . . ,T, calculate

Bdt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt), Edt =
1
K

K

∑
k=1

(mse(k)dt −MSEdt)
2.

B =
1
M

D

∑
d=1

T

∑
t=1

Bdt, E =
1
M

D

∑
d=1

T

∑
t=1

Edt.

The simulation experiment is repeated for the 6 combinations of sample sizes appearing in the Table
8.1.4.1. The Tabla 8.1.4.3 presents the simulation results.

D 50 100 200 400

B 0.0009 -0.0032 0.0010

E 0.0086 0.0072 0.0067

Table 8.2.4.3. Results of simulation 2b.

The Table 8.2.4.3 shows that the biasB is always close to zero and that the MSEE decreases as the
number of domains increases, so that the estimatorsmseare empirically consistent.



Chapter 9

Unit-level time models

9.1 Unit-level model with correlated time effects

9.1.1 Introduction

Let us consider a version of mixed model (1.1) with two nestedrandom factors, where the first factor
hasD levels and, for each leveld (d = 1, . . . ,D) of this factor, the second factor hasmd levels. More
concretely, let us consider the model

y = Xβ+Z1u1+Z2u2+W−1/2e, (9.1)

whereu1 = u1,D×1 ∼ N(0,σ2
1ID), u2 = u2,M×1 ∼ N(0,σ2

2Ω(ρ)) ande= en×1 ∼ N(0,σ2
0In) are indepen-

dent,y = yn×1, X = Xn×p with r(X) = p, β = βp×1, Z1 = diag
1≤d≤D

(1nd)n×D, Z2 = diag
1≤d≤D

( diag
1≤t≤md

(1ndt))n×M ,

M = ∑D
d=1 md, n = ∑D

d=1nd, nd = ∑md
t=1ndt, Ia is thea× a identity matrix,1a is thea× 1 vector with

all its elements equal to 1,W = diag
1≤d≤D

(Wd), Wd = diag
1≤t≤md

(Wdt), Wdt = diag
1≤ j≤ndt

(wdt j)n×n with known

wdt j > 0, d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, Ω(ρ) = diag
1≤d≤D

(Ωd) and

Ωd = Ωd(ρ) =
1

1−ρ2




1 ρ . . . ρmd−2 ρmd−1

ρ 1
... ρmd−2

...
. . . . . . . . .

...

ρmd−2 . . . 1 ρ
ρmd−1 ρmd−2 . . . ρ 1




md×md

.

Model (9.1) can alternatively be written in the form

ydt j = xdt jβ+u1,d +u2,dt +w−1/2
dt j edt j, d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, (9.2)

whereydt j is the target variable for the sample unitj, time t and domaind, andxdt j is the row(d, t, j) of
matrix X. The random vectors(u2d1, . . . ,u2dmd), d = 1, . . . ,D, are i.i.d. AR(1).

143
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In what follows we use the alternative parameters

σ2 = σ2
0, ϕ1 =

σ2
1

σ2
0

, ϕ2 =
σ2

2

σ2
0

, ρ = ρ.

Let σ = (σ2,ϕ1,ϕ2,ρ) be the vector of variance components, withσ2 > 0,ϕ1 > 0,ϕ2 > 0 and−1< ρ < 1.
If σ is known, the BLUE ofβ = (β1, . . . ,βp)

′ and the BLUP ofu = (u′
1,u

′
2)

′ are

β̂ = (X′V−1X)−1X′V−1y and û = VuZ′V−1
(

y−Xβ̂
)

. (9.3)

Formulas (9.3) are not computationally efficient because they require the inversion of then× n matrix
V. By calculating the inversion ofV new formulas are obtained.

Under model (9.1), we have var(u1) = σ2ϕ1ID, var(u2) = σ2ϕ2Ω(ρ), var(e) = σ2In and

V = var(y) = Z1var(u1)Z1
′ +Z2var(u2)Z2

′ + σ2W−1 = σ2Σ = σ2diag(Σ1, . . . ,ΣD),

where

Σd = ϕ11nd1′nd
+ ϕ2 diag

1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)+W−1

d = ϕ11nd1′nd
+Ld, d = 1, . . . ,D.

To calculateL−1
d we use the formula

(A+CBD)−1 = A−1−A−1C(B−1 +DA−1C)−1DA−1

with A = W−1
d , C = ϕ2 diag

1≤t≤md

(1ndt), B = Ωd andD = diag
1≤t≤md

(1′ndt
). we obtain

L−1
d = Wd −ϕ2Wd diag

1≤t≤md

(1ndt)

[
Ω−1

d (ρ)+ ϕ2 diag
1≤t≤md

(1′ndt
)Wd diag

1≤t≤md

(1ndt)

]−1

· diag
1≤t≤md

(1′ndt
)Wd.

To calculateΣ−1
d we use the formula

(A +uv′)−1 = A−1− A−1uv′A−1

1+v′A−1u

with A = Ld, u = ϕ11nd , v′ = 1′nd
. We obtain

Σ−1
d = L−1

d − ϕ1

1+ ϕ11′nd
L−1

d 1nd

L−1
d 1nd1′nd

L−1
d .

The final formula for̂β is

β̂ =

(
D

∑
d=1

X′
dΣ−1

d Xd

)−1(
D

∑
d=1

X′
dΣ−1

d yd

)
(9.4)
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whereX = col
1≤d≤D

(Xd) andy = col
1≤d≤D

(yd). The final formula for̂u is

û = VuZ′V−1
(

y−Xβ̂
)

=

(
σ2

1ID 0

0 σ2
2Ω(ρ)

)[
Z′

1

Z′
2

]
diag

1≤d≤D

(
V−1

d

)
col

1≤d≤D

[
yd −Xdβ̂

]

=




ϕ1 diag
1≤d≤D

(
1′nd

)
diag

1≤d≤D

(
Σ−1

d

)
col

1≤d≤D

[
yd −Xdβ̂

]

ϕ2 diag
1≤d≤D

(Ωd(ρ)) diag
1≤d≤D

(
diag

1≤t≤md

(
1′ndt

))
diag

1≤d≤D

(
Σ−1

d

)
col

1≤d≤D

[
yd −Xdβ̂

]




=




ϕ1 col
1≤d≤D

[
1′nd

Σ−1
d

(
yd −Xdβ̂

)]

ϕ2 col
1≤d≤D

[
Ωd(ρ) diag

1≤t≤md

(
1′ndt

)
Σ−1

d

(
yd −Xdβ̂

)]

 .

9.1.2 REML estimators of model parameters

The restricted log-likelihood is

lreml(σ) = −1
2
(n− p) log2π− 1

2
(n− p) logσ2− 1

2
log|K ′ΣK |− 1

2σ2 y′Py,

where

P = K(K ′ΣK)−1K ′ = Σ−1−Σ−1X(X′Σ−1X)−1X′Σ−1, K = W −WX(X′WX)−1X′W.

Let us denote the derivatives ofΩ(ρ) by Ω′(ρ) = ∂Ω(ρ)
∂ρ andΩ′′(ρ) = ∂2Ω(ρ)

∂ρ2 . By taking partial derivatives

with respect toσ2, ϕ2
1, ϕ2

2 andρ we obtain the components of the score vectorS(σ).

Sσ2 = −n− p
2σ2 +

1
2σ4 y′Py,

Sϕ1 = −1
2

tr{PZ1Z′
1}+

1
2σ2 y′PZ1Z′

1Py,

Sϕ2 = −1
2

tr{PZ2Ω(ρ)Z′
2}+

1
2σ2 y′PZ2Ω(ρ)Z′

2Py,

Sρ = −ϕ2

2
tr
{

PZ2Ω′(ρ)Z′
2

}
+

ϕ2

2σ2 y′PZ2Ω′(ρ)Z′
2Py,

The second partial derivatives of the restricted log-likelihood function are

Hσ2σ2 =
n− p
2σ4 − 1

σ6 y′Py, Hσ2ϕ1
= − 1

2σ4 y′PZ1Z′
1Py,

Hσ2ϕ2
= − 1

2σ4y′PZ2Ω(ρ)Z′
2Py, Hσ2ρ = − ϕ2

2σ4y′PZ2Ω′(ρ)Z′
2Py,

Hϕ1ϕ1 =
1
2

tr{PZ1Z′
1PZ1Z′

1}−
1

σ2y′PZ1Z′
1PZ1Z′

1Py,

Hϕ1ϕ2 =
1
2

tr{PZ1Z′
1PZ2Ω(ρ)Z′

2}−
1

σ2y′PZ1Z′
1PZ2Ω(ρ)Z′

2Py,

Hϕ1ρ =
ϕ2

2
tr{PZ1Z′

1PZ2Ω′(ρ)Z′
2}−

ϕ2

σ2 y′PZ1Z′
1PZ2Ω′(ρ)Z′

2Py,

Hϕ2ϕ2 =
1
2

tr{PZ2Ω(ρ)Z′
2PZ2Ω(ρ)Z′

2}−
1

σ2 y′PZ2Ω(ρ)Z′
2PZ2Ω(ρ)Z′

2Py,
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Hϕ2ρ = −1
2

tr{PZ2Ω′(ρ)Z′
2}+

ϕ2

2
tr{PZ2Ω(ρ)Z′

2PZ2Ω′(ρ)Z′
2}

+
1

2σ2 y′PZ2Ω′(ρ)Z′
2Py− ϕ2

σ2y′PZ2Ω(ρ)Z′
2PZ2Ω′(ρ)Z′

2Py,

Hρρ =
ϕ2

2

2
tr{PZ2Ω′(ρ)Z′

2PZ2Ω′(ρ)Z′
2}−

ϕ2

2
tr{PZ2Ω′′(ρ)Z′

2}

− ϕ2
2

σ2y′PZ2Ω′(ρ)Z′
2PZ2Ω′(ρ)Z′

2Py+
ϕ2

2σ2 y′PZ2Ω′′(ρ)Z′
2Py.

By taking expectations, changing the sign and taking into account thatPX = 0 andPΣP = P, we get the
elements of the Fisher information matrix,

Fσ2σ2 = −n− p
2σ4 +

1
σ4 tr{PΣ} =

n− p
2σ4 , Fσ2ϕ1

=
1

2σ2 tr{PZ1Z′
1},

Fσ2ϕ2
=

1
2σ2 tr{PZ2Ω(ρ)Z′

2}, Fσ2ρ =
ϕ2

2σ2 tr{PZ2Ω′(ρ)Z′
2},

Fϕ1ϕ1 =
1
2

tr{PZ1Z′
1PZ1Z′

1}, Fϕ1ϕ2 =
1
2

tr{PZ1Z′
1PZ2Ω(ρ)Z′

2}

Fϕ1ρ =
ϕ2

2
tr{PZ1Z′

1PZ2Ω′(ρ)Z′
2}, Fϕ2ϕ2 =

1
2

tr{PZ2Ω(ρ)Z′
2PZ2Ω(ρ)Z′

2},

Fϕ2ρ =
ϕ2

2
tr{PZ2Ω(ρ)Z′

2PZ2Ω′(ρ)Z′
2}, Fρρ =

ϕ2
2

2
tr{PZ2Ω′(ρ)Z′

2PZ2Ω′(ρ)Z′
2}.

The updating formula of the Fisher-scoring algorithm is

σk+1 = σk +F−1(σk)S(σk).

As algorithm seeds we may useρ(0) = 0 and the Henderson 3 estimatorsσ2(0)
0 , σ2(0)

1 , σ2(0)
2 , under the

model withρ = 0. The REML estimator̂βreml is calculated by using the formula (9.4).

Observation 9.1.1.From equationSσ2 = 0, we get

σ̂2 =
1

n− p
y′Py, (9.5)

which can be used to introduce an algorithm updatingσ2 with (9.5) andϕ = (ϕ1,ϕ2,ρ)′ with

ϕk+1 = ϕk +F−1(ϕk)S(ϕk).

Observation 9.1.2. It holds that

Ω̇d(ρ) =
1

1−ρ2




0 1 . . . . . . (md −1)ρmd−2

1 0
. . . (md −2)ρmd−3

...
. . . . . . . . .

...

(md −2)ρmd−3 . . . 0 1

(md −1)ρmd−2 . . . . . . 1 0




+
2ρΩd(ρ)

1−ρ2 ,
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Ω−1
d (ρ) =




1 −ρ 0 . . . . . . 0

−ρ 1+ ρ2 −ρ 0 0

0 −ρ 1+ ρ2 −ρ .. .
...

...
. .. . . . . . . .. . 0

0
. . . −ρ 1+ ρ2 −ρ

0 . . . . . . 0 −ρ 1




= Imd + ρ2E−ρF,

whereE is a diagonal matrix with diagonal elements 0,1, . . . ,1,0, andF is a matrix whose elements in
the diagonals immediately above and below the principal diagonal are equal to -1 and whose remaining
elements are equal to 0.

Matrix calculations

In what follows we presents computationally efficient formulas for the scores and the Fisher information
components. These formulas avoid the construction ofn×n matrices. Let us define

Σ = diag
1≤d≤D

(Σd), X = col
1≤d≤D

(Xd), y = col
1≤d≤D

(yd), R = (X′Σ−1X)−1 =

(
D

∑
d=1

X′
dΣ−1

d Xd

)−1

so that

P = Σ−1−Σ−1XRX ′Σ−1 = diag
1≤d≤D

(Σ−1
d )− col

1≤d≤D
(Σ−1

d Xd)R col′
1≤d≤D

(X′
dΣ−1

d )

The scores are

Sσ2 = −n− p
2σ2 +

1
2σ4

D

∑
d=1

y′dΣ−1
d yd −

1
2σ4

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)
,

Sϕ1 = −1
2

tr{Z′
1PZ1}+

1
2σ2 y′PZ1Z′

1Py = −1
2

D

∑
d=1

1′nd
[Σ−1

d −Σ−1
d XdRX′

dΣ−1
d ]1nd

+
1

2σ2

D

∑
d=1

y′dΣ−1
d 1nd1′nd

Σ−1
d yd −

1
σ2

(
D

∑
d=1

y′dΣ−1
d 1nd1′nd

Σ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)

+
1

2σ2

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)
,
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Sϕ2 = −1
2

tr{Z′
2PZ2Ω(ρ)}+

1
2σ2 y′PZ2Ω(ρ)Z′

2Py

= −1
2

D

∑
d=1

tr

{
diag

1≤t≤md

(1′ndt
)[Σ−1

d −Σ−1
d XdRX′

dΣ−1
d ] diag

1≤t≤md

(1ndt)Ωd(ρ)

}

+
1

2σ2

D

∑
d=1

y′dΣ−1
d diag

1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d yd

− 1
σ2

(
D

∑
d=1

y′dΣ−1
d diag

1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)

+
1

2σ2

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· R

(
D

∑
d=1

X′
dΣ−1

d yd

)
,

Sρ = −ϕ2

2
tr
{

Z′
2PZ2Ω′(ρ)

}
+

ϕ2

2σ2 y′PZ2Ω′(ρ)Z′
2Py

= −ϕ2

2

D

∑
d=1

tr

{
diag

1≤t≤md

(1′ndt
)[Σ−1

d −Σ−1
d XdRX′

dΣ−1
d ] diag

1≤t≤md

(1ndt)Ω
′
d(ρ)

}

+
ϕ2

2σ2

D

∑
d=1

y′dΣ−1
d diag

1≤t≤md

(1ndt)Ω
′
d(ρ) diag

1≤t≤md

(1′ndt
)Σ−1

d yd

− ϕ2

σ2

(
D

∑
d=1

y′dΣ−1
d diag

1≤t≤md

(1ndt)Ω
′
d(ρ) diag

1≤t≤md

(1′ndt
)Σ−1

d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)

+
ϕ2

2σ2

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ) diag

1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· R

(
D

∑
d=1

X′
dΣ−1

d yd

)
.

The elements of the REML Fisher information matrix are

Fσ2σ2 =
n− p
2σ2

Fσ2ϕ1
=

1
2σ2 tr{Z′

1PZ1} =
1

2σ2

D

∑
d=1

1′nd

[
Σ−1

d −Σ−1
d XdRX′

dΣ−1
d

]
1nd

Fσ2ϕ2
=

1
2σ2 tr{Z′

2PZ2Ω(ρ)}

=
1

2σ2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)
[
Σ−1

d −Σ−1
d XdRX′

dΣ−1
d

]
diag

1≤t≤md

(1ndt)Ωd(ρ)}
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Fσ2ρ =
ϕ2

2σ2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)
[
Σ−1

d −Σ−1
d XdRX′

dΣ−1
d

]
diag

1≤t≤md

(1ndt)Ω
′
d(ρ)}

Fϕ1ϕ1 =
1
2

tr{Z′
1PZ1Z′

1PZ1} =
1
2

D

∑
d=1

(1′nd
Σ−1

d 1nd)
2−

D

∑
d=1

1′nd
Σ−1

d 1nd1′nd
Σ−1

d XdRX′
dΣ−1

d 1nd

+
1
2

D

∑
d=1

1′nd
Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)
RX′

dΣ−1
d 1nd ,

Fϕ1ϕ2 =
1
2

tr{Z′
2PZ1Z′

1PZ2Ω(ρ)} =
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d 1nd1′nd
Σ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ)}

−
D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d 1nd1′nd
Σ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ)}

+
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)

· RX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ)},

Fϕ1ρ =
ϕ2

2
tr{Z′

2PZ1Z′
1PZ2Ω′(ρ)}

=
ϕ2

2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d 1nd1′nd
Σ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)}

− ϕ2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d 1nd1′nd
Σ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)}

+
ϕ2

2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)

· RX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)},

Fϕ2ϕ2 =
1
2

tr{Z′
2PZ2Ω(ρ)Z′

2PZ2Ω(ρ)}

=
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ)}

−
D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)

· Ωd(ρ)}

+
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· RX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ)},
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Fϕ2ρ =
ϕ2

2
tr{Z′

2PZ2Ω(ρ)Z′
2PZ2Ω′(ρ)}

=
ϕ2

2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)}

− ϕ2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)

· Ω′
d(ρ)}

+
ϕ2

2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt)Ωd(ρ) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· RX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)},

Fρρ =
ϕ2

2

2
tr{PZ2Ω′(ρ)Z′

2PZ2Ω′(ρ)Z′
2}

=
ϕ2

2

2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ) diag

1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)}

− ϕ2
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ) diag

1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)

· Ω′
d(ρ)}

+
ϕ2

2

2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ) diag

1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· RX′
dΣ−1

d diag
1≤t≤md

(1ndt)Ω
′
d(ρ)}.

9.1.3 The EBLUP of the domain mean

The EBLUP of the linear parameterη = a′y = a′sys+a′ryr is

η̂ = a′sys+a′r
[
Xr β̂+ V̂rsV̂−1

ss (ys−Xsβ̂)
]

As Vers = 0, Vrs = ZrVuZ′
s+Vers = ZrVuZ′

s andû = ΣuZ′
sV

−1
ss (ys−Xsβ̂), we get

η̂ = a′sys+a′r
[
Xr β̂+ZrΣuZ′

sV̂
−1
ss (ys−X ŝβ)

]
= a′sys+a′r

[
Xr β̂+Zr û

]

= a′
[
Xβ̂+Z1û1+Z2û2

]
+a′s

[
ys−X ŝβ−Zs1û1−Zs2û2

]
.

Under model (9.2),Ydt = 1
Ndt

∑Ndt
j=1ydt j can be written as a linear parameterη = a′y, where

a′ =
1

Ndt
(0′N1

, . . . ,0′Nd−1
,0′Nd1

, . . . ,0′Nd(i−1)
,1′Ndt

,0′Nd(i+1)
, . . . ,0′Ndmd

,0′Nd+1
, . . . ,0′ND

)

=
1

Ndt
(0′N1

, . . . ,0′Nd−1
, col′
1≤k≤md

[
δtk1′Ndk

]
,0′Nd+1

, . . . ,0′ND
) =

1
Ndt

col′
1≤ℓ≤D

{δdℓ col′
1≤k≤mℓ

[δtk1′Nℓk
]}
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with δab = 1 sia = b andδab = 0 sia 6= b. It holds thata′X = Xdt,

a′Z1 =
1

Ndt
col′

1≤ℓ≤D
{δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk
]} diag

1≤ℓ≤D
(1Nℓ

) = col′
1≤ℓ≤D

{δdℓ} = Z1,dt,

a′Z2 =
1

Ndt
col′

1≤ℓ≤D
{δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk
]} diag

1≤ℓ≤D
( diag
1≤k≤mℓ

(1Nℓk)) = col′
1≤ℓ≤D

{ col′
1≤k≤mℓ

{δdℓδtk}} = Z2,dt.

If ndt > 0, the EBLUP ofYdt is

Ŷ
eblup

dt = Xdtβ̂+Z1,dtû1+Z2,dtû2+ fdt

[
ys,dt −Xs,dtβ̂−Z1,dtû1−Z2,dtû2

]
,

whereys,dt = 1
ndt

∑ndt
j=1ydt j, Xs,dt = 1

ndt
∑ndt

j=1 xdt j and fdt = ndt
Ndt

. If ndt = 0, the EBLUP ofYdt is the
synthetic part

Ŷ
eblup

dt = Xdtβ̂+Z1,dtû1 +Z2,dtû2.

9.1.4 Mean squared error of the EBLUP

Let θ = (σ2
0,ϕ1,ϕ2,ρ) be the vector of variance components. A second order approximation to the mean

squared error of the EBLUP is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ)+g4(θ),

where

g1(θ) = a′rZrTsZ′
rar ,

g2(θ) = [a′rXr −a′rZrTsZ′
sV

−1
es Xs]Qs[X′

rar −X′
sV

−1
es ZsTsZ′

rar ],

g3(θ) ≈ tr
{
(∇b′)Vs(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
,

g4(θ) = a′rVerar .

Calculation of g1(θ)

The elements of formulag1(θ) = a′rZrTsZ′
rar are

a′r =
1

Ndt

(
0′N1−n1

, . . . ,0′Nd−1−nd−1
, col′
1≤k≤md

[
δtk1′Ndk−ndk

]
,0′Nd+1−nd+1

, . . . ,0′ND−nD

)
,

Zr = [Z1r Z2r ] , Ts = Vu−VuZ′
sV

−1
s ZsVu =

(
T11s T12s

T21s T22s

)
,

Vu =

(
σ2

1ID 0

0 σ2
2Ω(ρ)

)
, Zs = [Z1sZ2s] , V−1

s = diag
1≤d≤D

{V−1
ds }.
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It holds that

VuZ′
sV

−1
s ZsVu =

(
σ2

1Z′
1s

σ2
2Ω(ρ)Z′

2s

)
diag

1≤d≤D
{V−1

ds }
[
σ2

1Z1s, σ2
2Z2sΩ(ρ)

]

=




σ4
1Z′

1s diag
1≤d≤D

{V−1
ds }Z1s σ2

1σ2
2Z′

1s diag
1≤d≤D

{V−1
ds }Z2sΩ(ρ)

σ2
1σ2

2Ω(ρ)Z′
2s diag

1≤d≤D
{V−1

ds }Z1s σ4
2Ω(ρ)Z′

2s diag
1≤d≤D

{V−1
ds }Z2sΩ(ρ)


 ,

where

Z′
1s diag

1≤d≤D
{V−1

ds }Z1s = diag
1≤d≤D

{1′nd
} diag

1≤d≤D
{V−1

ds } diag
1≤d≤D

{1nd} = diag
1≤d≤D

{1′ndV−1
ds 1nd},

Z′
1s diag

1≤d≤D
{V−1

ds }Z2sΩ(ρ) = diag
1≤d≤D

{1′nd
} diag

1≤d≤D
{V−1

ds } diag
1≤d≤D

{ diag
1≤k≤md

(1ndk)}Ω(ρ)

= diag
1≤d≤D

{1′ndV−1
ds diag

1≤k≤md

(1ndk)Ωd(ρ)},

Ω(ρ)Z′
2s diag

1≤d≤D
{V−1

ds }Z2sΩ(ρ) = diag
1≤d≤D

{Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ)}.

The blocks of matrixTs are

T11s = σ2
1 diag

1≤d≤D
{1−σ2

11′nd
V−1

ds 1nd},

T12s = −σ2
1σ2

2 diag
1≤d≤D

{1′nd
V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ)}, T21s = (T12s)
′,

T22s = σ2
2 diag

1≤d≤D
{Ωd(ρ)−σ2

2Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ)}.

The productZrTsZ′
r is calculated as follows.

ZrTsZ′
r = [Z1r Z2r ]Ts

[
Z′

1r Z′
2r

]′
= Z1rT11sZ′

1r +Z1rT12sZ′
2r +Z2rT21sZ′

1r +Z2rT22sZ′
2r .
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It holds that

M rr
11 = Z1rT11sZ′

1r = σ2
1 diag

1≤d≤D
{1Nd−nd} diag

1≤d≤D
{1−σ2

11′nd
V−1

ds 1nd} diag
1≤d≤D

{1′Nd−nd
}

= σ2
1 diag

1≤d≤D
{1Nd−nd [1−σ2

11′nd
V−1

ds 1nd ]1
′
Nd−nd

},

M rr
12 = Z1rT12sZ′

2r = −σ2
1σ2

2 diag
1≤d≤D

{1Nd−nd} diag
1≤d≤D

{1′nd
V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ)}

· diag
1≤d≤D

{ diag
1≤k≤md

(1′Ndk−ndk
)}

= −σ2
1σ2

2 diag
1≤d≤D

{1Nd−nd1′nd
V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ) diag
1≤k≤md

(1′Ndk−ndk
)},

M rr
21 = (M rr

12)
′,

M rr
22 = Z2rT22sZ′

2r = σ2
2 diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk)}

· diag
1≤d≤D

{Ωd(ρ)−σ2
2Ωd(ρ) diag

1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ)} diag
1≤d≤D

{ diag
1≤k≤md

(1′Ndk−ndk
)}

= σ2
2 diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′Ndk−ndk
)}

− σ4
2 diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)

· Ωd(ρ) diag
1≤k≤md

(1′Ndk−ndk
)}.

As

a′r =
1

Ndt
col′

1≤ℓ≤D

[
δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk−nℓk
]

]
y fdt =

ndt

Ndt
,

We obtain

a′rM
rr
11ar = σ2

1a′r diag
1≤d≤D

{1Nd−nd [1−σ2
11

′
nd

V−1
ds 1nd ]1

′
Nd−nd

}ar

= σ2
1(1− fdt)

2[1−σ2
11′nd

V−1
ds 1nd ] = σ2ϕ1(1− fdt)

2[1−ϕ11′nd
Σ−1

ds 1nd ],

a′rM
rr
12ar = −σ2

1σ2
2a′r diag

1≤d≤D
{1Nd−nd1

′
nd

V−1
ds diag

1≤k≤md

(1ndk)Ωd(ρ) diag
1≤k≤md

(1′Ndk−ndk
)}ar ,

= −σ2ϕ1ϕ2(1− fdt)1′nd
Σ−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ) col
1≤k≤md

[δtk(1− fdk)]

= −σ2ϕ1ϕ2(1− fdt)
21′nd

Σ−1
ds diag

1≤k≤md

(1ndk)Ωd(ρ) col
1≤k≤md

(δtk)
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a′rM
rr
22ar = σ2

2a′r diag
1≤d≤D

{ diag
1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′Ndk−ndk
)}ar

− σ4
2a′r diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)

· Ωd(ρ) diag
1≤k≤md

(1′Ndk−ndk
)}ar

= σ2ϕ2 col′
1≤k≤md

[(1− fdk)δtk]Ωd(ρ) col
1≤k≤md

[(1− fdk)δtk]−σ2ϕ2
2 col′

1≤k≤md

[(1− fdk)δtk]Ωd(ρ)

· diag
1≤k≤md

(1′ndk
)Σ−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ) col
1≤k≤md

[(1− fdk)δtk]

= σ2ϕ2(1− fdt)
2 col′

1≤k≤md

(δtk)Ωd(ρ) col
1≤k≤md

(δtk)−σ2ϕ2
2(1− fdt)

2 col′
1≤k≤md

(δtk)Ωd(ρ)

· diag
1≤k≤md

(1′ndk
)Σ−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ) col
1≤k≤md

(δtk).

Finally,

g1(θ) = a′rZrTsZ′
rar = a′rM

rr
11ar +2a′rM

rr
12ar +a′rM

rr
22ar .

Calculation of g2(θ)

The formula forg2(θ) is

g2(θ) = [a′rXr −a′rZrTsZ′
sV

−1
es Xs]Qs[X′

rar −X′
sV

−1
es ZsTsZ′

rar ] = [a′21−a′22]Qs[a21−a22],

whereQs = (X′
sV

−1
s Xs)

−1 = σ2
(
∑D

d=1 X′
dsΣ

−1
ds Xds

)−1
andΣ−1

es = σ−2Ws. On the one hand

a′21 = a′rXr =
1

Ndt
1′Ndt−ndt

Xdt,r =
1

Ndt
∑
j∈r

xdt j = (1− fdt)X
∗
dt, whereX

∗
dt =

1
Ndt −ndt

∑
j∈r

xdt j.

On the other hand

a′22 = a′rZrTsZ′
sΣ

−1
es Xs = σ−2a′r(M

rs
11+M rs

12+M rs
21+M rs

22)WsXs = G11+G12+G21+G22,

where

M rs
11 = Z1rT11sZ′

1s, M rs
12 = Z1rT12sZ′

2s

M rs
21 = Z2rT21sZ′

1s = (M sr
12)

′, M rs
22 = Z2rT22sZ′

2s.
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let us definew′
ndk

= (wdk1, . . . ,wdkndk). It holds that

G11 = σ−2a′rM
rs
11WsXs =

σ2
1

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]1Nd−nd [1−σ2

11
′
nd

V−1
ds 1nd ]1

′
nd

WdsXds

= ϕ1(1− fdt)[1−ϕ11′nd
Σ−1

ds 1nd ]
md

∑
k=1

w′
ndk

Xdk,s,

G12 = σ−2a′rM
rs
12WsXs

= − σ2
1σ2

2

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]1Nd−nd1′nd

V−1
ds diag

1≤k≤md

(1ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)WdsXds

= −ϕ1ϕ2(1− fdt)1′nd
Σ−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ) col
1≤k≤md

(w′
nd j

Xdk,s),

G21 = σ−2a′rM
rs
21WsXs

= − σ2
1σ2

2

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
] diag
1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds 1nd1′nd
WdsXds

= −ϕ1ϕ2(1− fdt) col′
1≤k≤md

[δtk]Ωd(ρ) diag
1≤k≤md

(1′ndk
)Σ−1

ds 1nd

md

∑
k=1

w′
ndk

Xdk,s,

G22 = σ−2a′rM
rs
22WsXs

=
σ2

2

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]{ diag

1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)

− σ2
2 diag

1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)}WdsXds

= ϕ2(1− fdt) col′
1≤k≤md

[δtk]Ωd(ρ)

[
Imd −ϕ2 diag

1≤k≤md

(1′ndk
)Σ−1

ds diag
1≤k≤md

(1ndk)Ωd(ρ)

]

· col
1≤k≤md

(w′
ndk

Xdk,s).

Calculation of g3(θ)

The formula forg3(θ) is

g3(θ) ≈ tr
{

(∇b′)Vs(∇b′)′E
[
(θ̂−θ)(θ̂−θ)′

]}
,

where

b′ = a′rZrVuZ′
sV

−1
s = a′r [Z1r , Z2r ]diag

{
σ2

1ID, σ2
2Ω(ρ)

}
[Z′

1s, Z′
2s]

′V−1
s

= a′r
[
σ2

1Z1rZ′
1s+ σ2

2Z2rΩ(ρ)Z′
2s

]
V−1

s = σ2
1a′rZ1rZ′

1sV
−1
s + σ2

2a
′
rZ2rΩ(ρ)Z′

2sV
−1
s

= b′
1+b′

2 = col′
1≤ℓ≤D

[δdℓ b′
1ℓ]+ col′

1≤ℓ≤D
[δdℓ b′

2ℓ],
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b′
1d =

σ2ϕ1

Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]1Nd−nd1′nd

V−1
ds = ϕ1(1− fdt)1′nd

Σ−1
ds ,

b′
2d =

σ2ϕ2

Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
] diag
1≤k≤md

(1Ndk−ndk)Ωd(ρ) diag
1≤k≤md

(1′ndk
)V−1

ds ,

= ϕ2(1− fdt) col′
1≤d≤D

[δtk]Ωd(ρ) diag
1≤k≤md

(1′ndk
)Σ−1

ds .

Let us defineAds = Ω−1
d (ρ)+ ϕ2 diag

1≤k≤md

(1′ndk
)Wds diag

1≤k≤md

(1ndk). Then

Σ−1
ds = L−1

ds − ϕ1

1+ ϕ11′nd
L−1

ds 1nd

L−1
ds 1nd1′nd

L−1
ds ,

L−1
ds = Wds−ϕ2Wds diag

1≤k≤md

(1ndk)A
−1
ds diag

1≤k≤md

(1′ndk
)Wds.

By applying the formula∂A−1

∂γ = −A−1 ∂A
∂γ A−1, we calculate the partial derivatives ofL−1

ds .

∂L−1
ds

∂σ2 = 0nd×nd,
∂L−1

ds

∂ϕ1
= 0nd×nd ,

∂L−1
ds

∂ϕ2
= −Wds diag

1≤k≤md

(1ndk)A
−1
ds diag

1≤k≤md

(1′ndk
)Wds+ ϕ2Wds diag

1≤k≤md

(1ndk)A
−1
ds

· diag
1≤k≤md

(1′ndk
)Wds diag

1≤k≤md

(1ndk)A
−1
ds diag

1≤k≤md

(1′ndk
)Wds,

∂L−1
ds

∂ρ
= −ϕ2Wds diag

1≤k≤md

(1ndk)A
−1
ds Ω−1

d (ρ)Ω′(ρ)Ω−1
d (ρ)A−1

ds diag
1≤k≤md

(1′ndk
)Wds.

The partial derivatives ofΣ−1
ds are

∂Σ−1
ds

∂σ2 = 0nd×nd

∂Σ−1
ds

∂ϕ1
= − 1

[1+ ϕ11′nd
L−1

ds 1nd ]
2
L−1

ds 1nd1′nd
L−1

ds ,

∂Σ−1
ds

∂ϕ2
=

∂L−1
ds

∂ϕ2
+

ϕ2
11′nd

∂L−1
ds

∂ϕ2
1nd

[1+ ϕ11′nd
L−1

ds 1nd ]
2
L−1

ds 1nd1′nd
L−1

ds

− ϕ1

1+ ϕ11′nd
L−1

ds 1nd

[
∂L−1

ds

∂ϕ2
1nd1′nd

L−1
ds +L−1

ds 1nd1′nd

∂L−1
ds

∂ϕ2

]
,

∂Σ−1
ds

∂ρ
=

∂L−1
ds

∂ρ
+

ϕ2
11′nd

∂L−1
ds

∂ρ 1nd

[1+ ϕ11′nd
L−1

ds 1nd ]
2
L−1

ds 1nd1′nd
L−1

ds

− ϕ1

1+ ϕ11′nd
L−1

ds 1nd

[
∂L−1

ds

∂ρ
1nd1′nd

L−1
ds +L−1

ds 1nd1′nd

∂L−1
ds

∂ρ

]
.
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Let us defineθ = (θ1,θ2,θ3,θ4) = (σ2,ϕ1,ϕ2,ρ). The partial derivatives ofb′
1d y b′

2d are

∂b′
1d

∂σ2 = 01×nd ,

∂b′
1d

∂ϕ1
= (1− fdt)1′nd

[
Σ−1

ds + ϕ1
∂Σ−1

ds

∂ϕ1

]
,

∂b′
1d

∂θℓ
= ϕ1(1− fdt)1′nd

∂Σ−1
ds

∂θℓ
, ℓ = 3,4,

∂b′
2d

∂σ2 = 01×nd ,

∂b′
2d

∂ϕ1
= ϕ2(1− fdt) col′

1≤k≤md

[δtk]Ωd(ρ) diag
1≤k≤md

(1′ndk
)
∂Σ−1

ds

∂ϕ1
,

∂b′
2d

∂ϕ2
= (1− fdt) col′

1≤k≤md

[δtk]Ωd(ρ) diag
1≤k≤md

(1′ndk
)

[
Σ−1

ds + ϕ2
∂Σ−1

ds

∂ϕ2

]
,

∂b′
2d

∂ρ
= ϕ2(1− fdt) col′

1≤k≤md

[δtk]

[
Ω′

d(ρ) diag
1≤k≤md

(1′ndk
)Σ−1

ds + Ωd(ρ) diag
1≤k≤md

(1′ndk
)
∂Σ−1

ds

∂ρ

]
.

Let Q = (qab)a,b=1,...,4 be the matrix with elements

qab =

(
∂b′

1d

∂θa
+

∂b′
2d

∂θa

)
σ2Σds

(
∂b′

1d

∂θb
+

∂b′
2d

∂θb

)′
, a,b = 1,2,3,4,

andFθa,θb’s be the elements of the REML Fisher information matrix. Then

g3(θ) ≈ tr
{

QE
[
(θ̂−θ)(θ̂−θ)′

]}

≈ tr








q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44







Fσ2σ2 Fσ2ϕ1
Fσ2ϕ2

Fσ2ρ

Fϕ1σ2 Fϕ1ϕ1 Fϕ1ϕ2 Fϕ1ρ

Fϕ2σ2 Fϕ2ϕ1 Fϕ2ϕ2 Fϕ2ρ

Fρσ2 Fρϕ1 Fρϕ2 Fρρ




−1


Calculation of g4(θ)

We recall thatg4(θ) = a′rVerar , where

a′r =
1

Ndt
col′

1≤ℓ≤D

[
δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk−nℓk
]

]
,

V−1
er = σ−2Wr = σ−2 diag

1≤d≤D
{Wdr}.

Therefore

g4(θ) =
1

Ndt
col′

1≤ℓ≤D

[
δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk−nℓk
]

]
σ2 diag

1≤d≤D
{W−1

dr }
1

Ndt
col

1≤ℓ≤D

[
δdℓ col

1≤k≤mℓ

[δtk1Nℓk−nℓk]

]

=
σ2

N2
dt

1′Ndt−ndt
diag

j∈r
{w−1

dt j}1Ndt−ndt =
σ2

N2
dt

∑
j∈rdt

1
wdt j

.
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9.2 Unit-level model with independent time effects

9.2.1 Introduction

Let us consider a version of linear mixed model (1.1) having two nested random factors. Assume that
the first factor hasD levels and, for each of these levelsd (d = 1, . . . ,D), the second one hasmd levels.
The model is

y = Xβ+Z1u1 +Z2u2 +W−1/2e, (9.6)

whereu1 = u1,D×1 ∼ N(0,σ2
1ID), u2 = u2,M×1 ∼ N(0,σ2

2IM) ande= en×1 ∼ N(0,σ2
0In) are independent,

y = yn×1, X = Xn×p with r(X) = p, β = βp×1, Z1 = diag
1≤d≤D

(1nd)n×D, Z2 = diag
1≤d≤D

( diag
1≤t≤md

(1ndt))n×M,

M = ∑D
d=1md, n = ∑D

d=1 nd, nd = ∑md
t=1 ndt, Ia is thea× a identity matrix,1a is thea× 1 vector with

all its elements equal to 1,W = diag
1≤d≤D

(Wd), Wd = diag
1≤t≤md

(Wdt), Wdt = diag
1≤ j≤ndt

(wdt j)n×n with known

wdt j > 0, d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt. Model (9.6) can alternatively be written in the form

ydt j = xdt jβ+u1,d +u2,dt +w−1/2
dt j edt j, d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, (9.7)

whereydt j is the target variable for the sample unitj, time t and domaind, andxdt j is the row(d, t, j) of
matrix X. In what follows we use the alternative parameters

σ2 = σ2
0, ϕ1 =

σ2
1

σ2
0

, ϕ2 =
σ2

2

σ2
0

.

Let σ = (σ2,ϕ1,ϕ2) be the vector of variance components, withσ2 > 0, ϕ1 > 0 andϕ2 > 0. If σ is
known, the BLUE ofβ = (β1, . . . ,βp)

′ and the BLUP ofu = (u′
1,u

′
2)

′ are

β̂ = (X′V−1X)−1X′V−1y y û = VuZ′V−1
(

y−Xβ̂
)

. (9.8)

Formulas (9.8) are not computationally efficient because they require the inversion of then× n matrix
V. By calculating the inversion ofV new formulas are obtained. Under model (9.6), we have var(u1) =
σ2ϕ1ID, var(u2) = σ2ϕ2IM , var(e) = σ2In and

V = var(y) = Z1var(u1)Z1
′ +Z2var(u2)Z2

′ + σ2W−1 = σ2Σ = σ2diag(Σ1, . . . ,ΣD),

where

Σd = ϕ11nd1′nd
+ ϕ2 diag

1≤t≤md

(1ndt) Imd diag
1≤t≤md

(1′ndt
)+W−1

d = ϕ11nd1′nd
+Ld, d = 1, . . . ,D.

To calculateL−1
d we use the formula

(A+CBD)−1 = A−1−A−1C(B−1 +DA−1C)−1DA−1

with A = W−1
d , C = ϕ2 diag

1≤t≤md

(1ndt), B = Imd y D = diag
1≤t≤md

(1′ndt
). We obtain

L−1
d = Wd −ϕ2Wd diag

1≤t≤md

(1ndt)

[
Imd + ϕ2 diag

1≤t≤md

(1′ndt
)Wd diag

1≤t≤md

(1ndt)

]−1

· diag
1≤t≤md

(1′ndt
)Wd.
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To calculateΣ−1
d we use the formula

(A +uv′)−1 = A−1− A−1uv′A−1

1+v′A−1u

with A = Ld, u = ϕ11nd , v′ = 1′nd
. We obtain

Σ−1
d = L−1

d − ϕ1

1+ ϕ11′nd
L−1

d 1nd

L−1
d 1nd1′nd

L−1
d .

The formula for̂β is

β̂ =

(
D

∑
d=1

X′
dΣ−1

d Xd

)−1(
D

∑
d=1

X′
dΣ−1

d yd

)
(9.9)

whereX = col
1≤d≤D

(Xd), andy = col
1≤d≤D

(yd). The formula for̂u is

û = VuZ′V−1
(

y−Xβ̂
)

=

(
σ2

1ID 0

0 σ2
2IM

)[
Z′

1

Z′
2

]
diag

1≤d≤D

(
V−1

d

)
col

1≤d≤D

[
yd −Xdβ̂

]

=




ϕ1 diag
1≤d≤D

(
1′nd

)
diag

1≤d≤D

(
Σ−1

d

)
col

1≤d≤D

[
yd −Xdβ̂

]

ϕ2 diag
1≤d≤D

(
diag

1≤t≤md

(
1′ndt

))
diag

1≤d≤D

(
Σ−1

d

)
col

1≤d≤D

[
yd −Xdβ̂

]




=




ϕ1 col
1≤d≤D

[
1′nd

Σ−1
d

(
yd −Xdβ̂

)]

ϕ2 col
1≤d≤D

[
diag

1≤t≤md

(
1′ndt

)
Σ−1

d

(
yd −Xdβ̂

)]

 .

9.2.2 REML estimators of model parameters

The REML log-likelihood function is

lreml(σ) = −1
2
(n− p) log2π− 1

2
(n− p) logσ2− 1

2
log|K ′ΣK |− 1

2σ2 y′Py,

where

P = K(K ′ΣK)−1K ′ = Σ−1−Σ−1X(X′Σ−1X)−1X′Σ−1, K = W −WX(X′WX)−1X′W.

By taking partial derivatives with respect toσ2, ϕ2
1 andϕ2

2 we get the components of the vectors of scores
S(σ).

Sσ2 = −n− p
2σ2 +

1
2σ4 y′Py,

Sϕ1 = −1
2

tr{PZ1Z′
1}+

1
2σ2 y′PZ1Z′

1Py,

Sϕ2 = −1
2

tr{PZ2Z′
2}+

1
2σ2 y′PZ2Z′

2Py,
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Second partial derivatives of the REML log-likelihood function are

Hσ2σ2 =
n− p
2σ4 − 1

σ6y′Py, Hσ2ϕ1
= − 1

2σ4y′PZ1Z′
1Py,

Hσ2ϕ2
= − 1

2σ4y′PZ2Z′
2Py,

Hϕ1ϕ1 =
1
2

tr{PZ1Z′
1PZ1Z′

1}−
1

σ2 y′PZ1Z′
1PZ1Z′

1Py,

Hϕ1ϕ2 =
1
2

tr{PZ1Z′
1PZ2Z′

2}−
1

σ2 y′PZ1Z′
1PZ2Z′

2Py,

Hϕ2ϕ2 =
1
2

tr{PZ2Z′
2PZ2Z′

2}−
1

σ2 y′PZ2Z′
2PZ2Z′

2Py.

By taking expectations, changing the sign and taking into account thatPX = 0 andPΣP = P, we obtain
the elements of the Fisher information matrix

Fσ2σ2 = −n− p
2σ4 +

1
σ4 tr{PΣ} =

n− p
2σ4 , Fσ2ϕ1

=
1

2σ2 tr{PZ1Z′
1},

Fσ2ϕ2
=

1
2σ2 tr{PZ2Z′

2}, Fϕ1ϕ1 =
1
2

tr{PZ1Z′
1PZ1Z′

1},

Fϕ1ϕ2 =
1
2

tr{PZ1Z′
1PZ2Z′

2}, Fϕ2ϕ2 =
1
2

tr{PZ2Z′
2PZ2Z′

2}.

The updating formula of the Fisher-scoring algorithm is

σk+1 = σk +F−1(σk)S(σk).

As algorithm seeds we can use the Henderson 3 estimatorsσ2(0)
0 , σ2(0)

1 and σ2(0)
2 . Estimatorβ̂reml is

calculated by applying the formula (9.9).

Observation 9.2.1.From equationSσ2 = 0, we get

σ̂2 =
1

n− p
y′Py, (9.10)

and we can introduce an algorithm updatingσ2 with (9.10) andϕ = (ϕ1,ϕ2)
′ with

ϕi+1 = ϕi +F(ϕi)−1S(ϕi).

Matrix calculations

In what follows we presents computationally efficient formulas for the scores and the Fisher information
components. These formulas avoid the construction ofn×n matrices. Let us define

Σ = diag
1≤d≤D

(Σd), X = col
1≤d≤D

(Xd), y = col
1≤d≤D

(yd), R = (X′Σ−1X)−1 =

(
D

∑
d=1

X′
dΣ−1

d Xd

)−1

so that
P = Σ−1−Σ−1XRX ′Σ−1 = diag

1≤d≤D
(Σ−1

d )− col
1≤d≤D

(Σ−1
d Xd)R col′

1≤d≤D
(X′

dΣ−1
d )
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The components of the score vector are

Sσ2 = −n− p
2σ2 +

1
2σ4

D

∑
d=1

y′dΣ−1
d yd −

1
2σ4

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)
,

Sϕ1 = −1
2

tr{Z′
1PZ1}+

1
2σ2 y′PZ1Z′

1Py = −1
2

D

∑
d=1

1′nd
[Σ−1

d −Σ−1
d XdRX′

dΣ−1
d ]1nd

+
1

2σ2

D

∑
d=1

y′dΣ−1
d 1nd1′nd

Σ−1
d yd −

1
σ2

(
D

∑
d=1

y′dΣ−1
d 1nd1′nd

Σ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)

+
1

2σ2

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)
,

Sϕ2 = −1
2

tr{Z′
2PZ2}+

1
2σ2 y′PZ2Z′

2Py

= −1
2

D

∑
d=1

tr

{
diag

1≤t≤md

(1′ndt
)[Σ−1

d −Σ−1
d XdRX′

dΣ−1
d ] diag

1≤t≤md

(1ndt)

}

+
1

2σ2

D

∑
d=1

y′dΣ−1
d diag

1≤t≤md

(1ndt) diag
1≤t≤md

(1′ndt
)Σ−1

d yd

− 1
σ2

(
D

∑
d=1

y′dΣ−1
d diag

1≤t≤md

(1ndt) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d yd

)

+
1

2σ2

(
D

∑
d=1

y′dΣ−1
d Xd

)
R

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· R

(
D

∑
d=1

X′
dΣ−1

d yd

)
,

The elements of the Fisher iformation matrix are

Fσ2σ2 =
n− p
2σ2

Fσ2ϕ1
=

1
2σ2 tr{Z′

1PZ1} =
1

2σ2

D

∑
d=1

1′nd

[
Σ−1

d −Σ−1
d XdRX′

dΣ−1
d

]
1nd

Fσ2ϕ2
=

1
2σ2 tr{Z′

2PZ2} =
1

2σ2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)
[
Σ−1

d −Σ−1
d XdRX′

dΣ−1
d

]
diag

1≤t≤md

(1ndt)}

Fϕ1ϕ1 =
1
2

tr{Z′
1PZ1Z′

1PZ1} =
1
2

D

∑
d=1

(1′nd
Σ−1

d 1nd)
2−

D

∑
d=1

1′nd
Σ−1

d 1nd1′nd
Σ−1

d XdRX′
dΣ−1

d 1nd

+
1
2

D

∑
d=1

1′nd
Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)
RX′

dΣ−1
d 1nd ,
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Fϕ1ϕ2 =
1
2

tr{Z′
2PZ1Z′

1PZ2} =
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d 1nd1′nd
Σ−1

d diag
1≤t≤md

(1ndt)}

−
D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d 1nd1′nd
Σ−1

d diag
1≤t≤md

(1ndt)}

+
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d 1nd1′nd
Σ−1

d Xd

)
RX′

dΣ−1
d diag

1≤t≤md

(1ndt)},

Fϕ2ϕ2 =
1
2

tr{Z′
2PZ2Z′

2PZ2}

=
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt) diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)}

−
D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdRX′
dΣ−1

d diag
1≤t≤md

(1ndt) diag
1≤t≤md

(1′ndt
)Σ−1

d diag
1≤t≤md

(1ndt)}

+
1
2

D

∑
d=1

tr{ diag
1≤t≤md

(1′ndt
)Σ−1

d XdR

(
D

∑
d=1

X′
dΣ−1

d diag
1≤t≤md

(1ndt) diag
1≤t≤md

(1′ndt
)Σ−1

d Xd

)

· RX′
dΣ−1

d diag
1≤t≤md

(1ndt)},
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9.2.3 Henderson 3 estimators of model parameters

In this section we present thefitting constants methodto estimate the variance components. This method
is also known asHenderson 3(H3) since it was introduced by Henderson (1953). To apply the H3
method, we treat the factorsu1 andu2 as fixed and we fit the model

y = Xβ+Z1u1 +Z2u2 +W−1/2e (9.11)

by using the weighted least squared method. To avoid collinearity between the fixed effects of model
(9.11) we equate to zero the parameters of the last time instants within domains, i.e.u2,dmd = 0, d =
1, . . . ,D. This is equivalent to delete columns∑d

j=1mj , d = 1, . . . ,D, from matrixZ2 = diag
1≤d≤D

( diag
1≤t≤md

(1ndt)).

Therefore, we use the following incidence matrices

Z1 = diag
1≤d≤D

(1nd)n×D and Z̃2 = diag
1≤d≤D

(
col{ diag

1≤t≤md−1
(1ndt),0ndmd

×(md−1)}
)

.

The H3 estimators are

σ̂2
0 =

y′M3y
n− r(X(3))

=
y′M3y

n− p−M
,

σ̂2
2 =

y′M2y−y′M3y− σ̂2
0

[
r(X(3))− r(X(2))

]

tr{L2}
=

y′M2y−y′M3y− (M−D)σ̂2
0

tr{L2}
,

σ̂2
1 =

y′M1y−y′M3y− σ̂2
0

[
r(X(3))− r(X(1))

]
− σ̂2

2tr{L2}
tr{L1}

=
y′M1y−y′M3y−Mσ̂2

0− σ̂2
2tr{L2}

tr{L1}
,

where

X(1) = X, X(2) = (X,Z1), X(3) = (X,Z1, Z̃2)

M1 = W −WX (1)(X(1)tWX (1))−1X(1)tW, L1 = Z′
1M1Z1,

M2 = W −WX (2)(X(2)tWX (2))−1X(2)tW, L2 = Z̃′
2M2Z̃2

M3 = W −WX (3)(X(3)tWX (3))−1X(3)tW

The above formulas are not computationally efficient because they require the inversion ofp+M matri-
ces andM is in general quite large. In what follows more efficient formulas are given.
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Calculations for M1

Let us defineC = (X(1)tWX (1))−1 =
(
∑D

d=1∑md
t=1 X′

dtWdtXdt
)−1

. Then

y′M1y = y′Wy−y′WXCX ′Wy

=
D

∑
d=1

y′dWdyd −
(

D

∑
d=1

y′dWdXd

)
C

(
D

∑
d=1

y′dWdXd

)′

=
D

∑
d=1

md

∑
t=1

y′dtWdtydt −
(

D

∑
d=1

md

∑
t=1

y′dtWdtXdt

)
C

(
D

∑
d=1

md

∑
t=1

y′dtWdtXdt

)′

L1 = Z′
1M1Z1 = diag

1≤d≤D
(1′nd

Wd1nd)− col
1≤d≤D

(1′nd
WdXd)C col′

1≤d≤D
(X′

dWd1nd)

tr(L1) = w...−
D

∑
d=1

tr
{

1′nd
WdXdCX′

dWd1nd

}
,

= w...−
D

∑
d=1

tr

{
( md

∑
t=1

w′
ndt

Xdt
)
C
( md

∑
t=1

w′
ndt

Xdt
)′
}

, w... =
D

∑
d=1

md

∑
t=1

ndt

∑
j=1

wdt j.

wherew′
nd

= 1′nd
Wd andw′

ndt
= 1′ndt

Wdt.

Calculations for M2

Let us defineG1 = (Z′
1WZ1)

−1 = diag
1≤d≤D

(w−1
d.. ), P1 = W −WZ1G1Z′

1W and

B =
(

X(2)tWX (2)
)−1

=

(
X′WX X ′WZ1

Z′
1WX Z ′

1WZ1

)−1

=

(
B11 B12

B21 B22

)
,

wherewd.. = ∑md
t=1 ∑ndt

j=1 wdt j. Then

B11 = (X′P1X)−1,

B12 = −B11X′WZ1G1 = −B11 col′
1≤d≤D

(w−1
d.. X

′
dWd1nd), B21 = B12′,

B22 = G1 +G1Z′
1WXB11X′WZ1G1

= diag
1≤d≤D

(w−1
d.. )+ col

1≤d≤D
(w−1

d.. w
′
nd

Xd)B11 col′
1≤d≤D

(w−1
d.. X

′
dwnd)

= diag
1≤d≤D

(w−1
d.. )+ col

1≤d≤D
(w−1

d..

md

∑
t=1

w′
ndt

Xdt)B11[ col
1≤d≤D

(w−1
d..

md

∑
t=1

w′
ndt

Xdt)
]′
,

where

X′P1X = X′WX −X′WZ1G1Z′
1WX =

D

∑
d=1

X′
dWdXd −

D

∑
d=1

X′
dWd1ndw−1

d.. 1
′
nd

WdXd

=
D

∑
d=1

md

∑
t=1

X′
dtWdtXdt −

D

∑
d=1

w−1
d..

(
md

∑
t=1

X′
dtWdt1ndt

)(
md

∑
t=1

X′
dtWdt1ndt

)′

.
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The quadratic form is

y′M2y = y′Wy−y′W [X,Z1]B [X′,Z′
1]
′Wy

= y′Wy−
[
y′WXB11X′Wy +y′WZ1B22Z′

1Wy +2y′WXB12Z′
1Wy

]

=
D

∑
d=1

md

∑
t=1

y′dtWdtydt −
(

D

∑
d=1

md

∑
t=1

y′dtWdtXdt

)
B11

(
D

∑
d=1

md

∑
t=1

y′dtWdtXdt

)′

−
[

col′
1≤d≤D

(
md

∑
t=1

y′dtwndt

)]
B22

[
col′

1≤d≤D

(
md

∑
t=1

y′dtwndt

)]′

− 2

(
D

∑
d=1

md

∑
t=1

y′dtWdtXdt

)
B12

[
col′

1≤d≤D

(
md

∑
t=1

y′dtwndt

)]′
,

L2 = Z̃′
2M2Z̃2 = Z̃′

2WZ̃2− Z̃′
2W [X,Z1]B [X′,Z′

1]
′WZ̃2

= Z̃′
2WZ̃2− Z̃′

2W
[
XB11X′−Z1B22Z′

1−XB12Z′
1−Z1B21X′]WZ̃2

= (Z̃′
2WZ̃2)− (Z̃′

2WX)B11(Z̃′
2WX)′− (Z̃′

2WZ1)B22(Z̃′
2WZ1)

′

− (Z̃′
2WX)B12(Z̃′

2WZ1)
′− (Z̃′

2WZ1)B21(Z̃′
2WX)′,

To calculate the trace ofL2 we need some previous calculations.

Z̃′
2WZ̃2 = diag

1≤d≤D




[

diag
1≤t≤md−1

(1′ndt
),0′
]



diag
1≤t≤md−1

(Wdt) 0

0 Wdmd






diag
1≤t≤md−1

(1ndt)

0







= diag
1≤d≤D

(
diag

1≤t≤md−1
(1′ndt

Wdt1ndt)
)

= diag
1≤d≤D

(
diag

1≤t≤md−1
(wdt.)

)
,

Z̃′
2WZ1 = diag

1≤d≤D




[

diag
1≤t≤md−1

(1′ndt
),0′
]



diag
1≤t≤md−1

(Wdt) 0

0 Wdmd




 col

1≤t≤md−1
(1ndt)

1ndmd







= diag
1≤d≤D

(
col

1≤t≤md−1
(1′ndt

Wdt1ndt)
)

= diag
1≤d≤D

(
col

1≤t≤md−1
(wdt.)

)
,

Z̃′
2WX = col

1≤d≤D




[

diag
1≤t≤md−1

(1′ndt
),0′
]



diag
1≤t≤md−1

(Wdt) 0

0 Wdmd




 col

1≤t≤md−1
(Xdt)

Xdmd







= col
1≤d≤D

(
col

1≤t≤md−1
(1′ndt

WdtXdt)
)
.

Finally, the trace ofL2is

tr(L2) = tr(Z̃′
2WZ̃2)− tr((Z̃′

2WX)B11(Z̃′
2WX)′)− tr((Z̃′

2WZ1)B22(Z̃′
2WZ1)

′)

− 2tr((Z̃′
2WX)B12(Z̃′

2WZ1)
′) =

(
w... −

D

∑
d=1

wdmd.

)
− t11− t22−2t12,
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where

t11 =
D

∑
d=1

tr

{
col

1≤t≤md−1
(1′ndt

WdtXdt)B11 col′
1≤t≤md−1

(X′
dtWdt1ndt)

}

=
D

∑
d=1

md−1

∑
t=1

tr
{

1′ndt
WdtXdtB11X′

dtWdt1ndt

}
=

D

∑
d=1

md−1

∑
t=1

w′
ndt

XdtB11X′
dtwndt,

t22 = tr

{
diag

1≤d≤D
( col
1≤t≤md−1

(wdt.))

[
diag

1≤d≤D
(w−1

d.. )+ col
1≤d≤D

(w−1
d.. w

′
nd

Xd)B11 col′
1≤d≤D

(w−1
d.. X

′
dwnd)

]

· diag
1≤d≤D

( col′
1≤t≤md−1

(wdt.))

}
=

D

∑
d=1

w−1
d.. tr

{
col

1≤t≤md−1
(wdt.) col′

1≤t≤md−1
(wdt.)

}

+ tr

{
col

1≤d≤D
(w−1

d.. col
1≤t≤md−1

(wdt.)w′
nd

Xd)B11 col′
1≤d≤D

(w−1
d.. X

′
dwnd col′

1≤t≤md−1
(wdt.))

}

=
D

∑
d=1

w−1
d..

md−1

∑
t=1

w2
dt. +

D

∑
d=1

w−2
d.. tr

{
col

1≤t≤md−1
(wdt.)w′

nd
XdB11X′

dwnd col′
1≤t≤md−1

(wdt.)

}

=
D

∑
d=1

w−1
d..

md−1

∑
t=1

w2
dt. +

D

∑
d=1

w−2
d.. (w

′
nd

XdB11X′
dwnd)

md−1

∑
t=1

w2
dt.

=
D

∑
d=1

w−1
d..

{[
1+w−1

d..

( md

∑
t=1

w′
ndt

Xdt
)
B11( md

∑
t=1

w′
ndt

Xdt
)′
]

md−1

∑
t=1

w2
dt.

}
,

t12 = −tr

{
col

1≤d≤D
( col
1≤t≤md−1

(1′ndt
WdtXdt))B11 col′

1≤d≤D
(w−1

d.. X
′
dWd1nd) diag

1≤d≤D
( col′
1≤t≤md−1

(wdt.))

}

= −tr

{
col

1≤d≤D
( col
1≤t≤md−1

(1′ndt
WdtXdt))B11 col′

1≤d≤D
(w−1

d.. X
′
dWd1nd col′

1≤t≤md−1
(wdt.))

}

= −
D

∑
d=1

w−1
d.. tr

{
col

1≤t≤md−1
(1′ndt

WdtXdt)B11X′
dWd1nd col′

1≤t≤md−1
(wdt.)

}

= −
D

∑
d=1

w−1
d..

md−1

∑
t=1

1′ndt
WdtXdtB11X′

dWd1ndwdt.

= −
D

∑
d=1

w−1
d..

(
md−1

∑
t=1

wdt.1′ndt
WdtXdt

)
B11

md

∑
t=1

X′
dtwndt .

Calculations for M3

The target of this section is to obtain a computationally efficient formula fory′M3y, whereM3 = W −
WX (3)(X(3)tWX (3))−1X(3)tW, X(3) = (X,Z1, Z̃2) andZ = (Z1, Z̃2). We start by calculating the inverse
of X(3)tWX (3). We have

A = (X(3)tWX (3))−1 =

(
X′WX X ′WZ

Z′WX Z ′WZ

)−1

=

(
D11 D12

D21 D22

)
,
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D11 = (X′PX)−1, D12 = −D11X′WZG , D21 = (D12)′, D22 = G+GZ ′WXD11X′WZG , G = (Z′WZ)−1

andP = W −WZGZ ′W.

The elements of matrixG−1 = Z′WZ are

G11 = Z′
1WZ1 = diag

1≤d≤D
(1′nd

) diag
1≤d≤D

(Wd) diag
1≤d≤D

(1nd) = diag
1≤d≤D

(1′nd
Wd1nd) = diag

1≤d≤D
(wd..),

G12 = Z′
1WZ̃2 = diag

1≤d≤D

{
col′

1≤t≤md−1
(wdt.)

}
, G21 = (G12)′,

G22 = Z̃′
2WZ̃2 = diag

1≤d≤D

{
diag

1≤t≤md−1
(wdt.)

}
.

The elements of matrixG are

G11 = [G11−G12(G22)−1G21]−1

=

[
diag

1≤d≤D
(wd..)− diag

1≤d≤D

(
col′

1≤t≤md−1
(wdt.)

)
diag

1≤d≤D

(
diag

1≤t≤md−1
(w−1

dt. )
)

diag
1≤d≤D

(
col

1≤t≤md−1
(wdt.)

)
]−1

=

[
diag

1≤d≤D

(
wd.. −

md−1

∑
t=1

wdt.
)
]−1

= diag
1≤d≤D

(w−1
dmd.),

G12 = −G11G12(G22)−1 = − diag
1≤d≤D

(w−1
dmd.) diag

1≤d≤D

(
col′

1≤t≤md−1
(wdt.)

)
diag

1≤d≤D

(
diag

1≤t≤md−1
(w−1

dt. )
)

= − diag
1≤d≤D

(
w−1

dmd. col′
1≤t≤md−1

(wdt.) diag
1≤t≤md−1

(w−1
dt. )
)

= − diag
1≤d≤D

(w−1
dmd.1

′
md−1),

G22 = (G22)−1 +(G22)−1G21G11G12(G22)−1 = diag
1≤d≤D

(
diag

1≤t≤md−1
(w−1

dt. )
)

+ diag
1≤d≤D

(
diag

1≤t≤md−1
(w−1

dt. ) col
1≤t≤md−1

(wdt.)w−1
dmd. col′

1≤t≤md−1
(wdt.) diag

1≤t≤md−1
(w−1

dt. )
)

= diag
1≤d≤D

(
diag

1≤t≤md−1
(w−1

dt. )
)
+ diag

1≤d≤D

(
w−1

dmd.1md−11′md−1

)
.

To obtain a computationally efficient formula forP = W −WZGZ ′W, we need some previous calcula-
tions.

WZGZ ′W = diag
1≤d≤D

(Wd)[Z1, Z̃2]

(
G11 G12

G21 G22

)[
Z′

1

Z̃′
2

]
diag

1≤d≤D
(Wd)

= diag
1≤d≤D

(Wd)
[
Z1G11Z′

1+Z1G12Z̃′
2 + Z̃2G21Z′

1 + Z̃2G22Z̃′
2

]
diag

1≤d≤D
(Wd)

= Z11+Z12+Z21+Z22.
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We have

Z11 = diag
1≤d≤D

(Wd1ndw−1
dmd.1

′
nd

Wd) = diag
1≤d≤D

(w−1
dmd.wndw

′
nd

),

Z12 = − diag
1≤d≤D

(
Wd1ndw−1

dmd.1
′
md−1

[
diag

1≤t≤md−1
(1′ndt

),0
]
Wd
)

= − diag
1≤d≤D

(
w−1

dmd.wnd1′md−1

[
diag

1≤t≤md−1
(w′

ndt
),0
])

= − diag
1≤d≤D

(
w−1

dmd.wnd

[
col′

1≤t≤md−1
(w′

ndt
),0
])

= − diag
1≤d≤D

(
w−1

dmd.diag
[

col
1≤t≤md−1

(wndt) col′
1≤t≤md−1

(w′
ndt

),0
])

,

Z22 = diag
1≤d≤D

(
Wd
[

diag
1≤t≤md−1

(1ndt),0
]′

diag
1≤t≤md−1

(w−1
dt. )
[

diag
1≤t≤md−1

(1′ndt
),0
]
Wd
)

+ diag
1≤d≤D

(
Wd
[

diag
1≤t≤md−1

(1ndt),0
]′

w−1
dmd.1md−11′md−1

[
diag

1≤t≤md−1
(1′ndt

),0
]
Wd
)

= diag
1≤d≤D

([
diag

1≤t≤md−1
(wndt),0

]′
diag

1≤t≤md−1
(w−1

dt. )
[

diag
1≤t≤md−1

(w′
ndt

),0
])

+ diag
1≤d≤D

(
w−1

dmd.

[
diag

1≤t≤md−1
(wndt),0

]′1md−11′md−1

[
diag

1≤t≤md−1
(w′

ndt
),0
])

= diag
1≤d≤D

(
diag

[
diag

1≤t≤md−1
(w−1

dt. wndtw
′
ndt

),0
])

+ diag
1≤d≤D

(
w−1

dmd.

[
col

1≤t≤md−1
(wndt),0

]′[
col′

1≤t≤md−1
(w′

ndt
),0
])

.

To calculate the quadratic formX′PX we make a decomposition, i.e.

X′PX = X′WX −X′Z11X −2X′Z12X −X′Z22X,

where

X′WX = col′
1≤d≤D

(X′
d) diag

1≤d≤D
(Wd) col

1≤d≤D
(Xd) =

D

∑
d=1

md

∑
t=1

X′
dtWdtXdt,

X′Z11X = col′
1≤d≤D

(X′
d) diag

1≤d≤D
(w−1

dmd.wndw
′
nd

) col
1≤d≤D

(Xd)

=
D

∑
d=1

w−1
dmd.

( md

∑
t=1

X′
dtwndt

)( md

∑
t=1

X′
dtwndt

)′
,

X′Z12X = − col′
1≤d≤D

(X′
d) diag

1≤d≤D

(
w−1

dmd.diag
[

col
1≤t≤md−1

(wndt) col′
1≤t≤md−1

(w′
ndt

),0
])

col
1≤d≤D

(Xd)

= −
D

∑
d=1

w−1
dmd.

(md−1

∑
t=1

X′
dtwndt

)(md−1

∑
t=1

X′
dtwndt

)′
,
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X′Z22X = col′
1≤d≤D

(X′
d) diag

1≤d≤D

(
diag

[
diag

1≤t≤md−1
(w−1

dt. wndtw
′
ndt

),0
])

col
1≤d≤D

(Xd)

+ col′
1≤d≤D

(X′
d) diag

1≤d≤D

(
w−1

dmd.

[
col

1≤t≤md−1
(wndt),0

]′[
col′

1≤t≤md−1
(w′

ndt
),0
])

col
1≤d≤D

(Xd)

=
D

∑
d=1

md−1

∑
t=1

w−1
dt. X

′
dtwndtw

′
ndt

Xdt +
D

∑
d=1

w−1
dmd.

(md−1

∑
t=1

X′
dtwndt

)(md−1

∑
t=1

X′
dtwndt

)′
.

To obtain a computationally efficient formula forGZ ′WX , we do some previous calculations.

GZ ′WX =

(
G11 G12

G21 G22

)(
Z′

1

Z̃′
2

)
WX =

(
R11+R12

R21+R22

)
,

where

R11 = G11Z′
1WX = diag

1≤d≤D
(w−1

dmd.) diag
1≤d≤D

(1′nd
) col
1≤d≤D

(WdXd) = col
1≤d≤D

(
w−1

dmd.

md

∑
t=1

w′
ndt

Xdt
)
,

R12 = G12Z̃′
2WX = − diag

1≤d≤D
(w−1

dmd.1
′
md−1) diag

1≤d≤D

([
diag

1≤t≤md−1
(1′ndt

),0
])

col
1≤d≤D

(WdXd)

= − col
1≤d≤D

(
w−1

dmd.1
′
md−1 col

1≤t≤md−1
(w′

ndt
Xdt)

)
= − col

1≤d≤D

(
w−1

dmd.

md−1

∑
t=1

w′
ndt

Xdt
)
,

R21 = G21Z′
1WX = − diag

1≤d≤D
(w−1

dmd.1md−1) diag
1≤d≤D

(1′nd
) col
1≤d≤D

(WdXd)

= − col
1≤d≤D

(w−1
dmd.1md−1w′

nd
Xd) = − col

1≤d≤D

(
col

1≤t≤md−1

(
w−1

dmd.

md

∑
t=1

w′
ndt

Xdt
))

,

R22 = G22Z̃′
2WX =

[
diag

1≤d≤D

(
diag

1≤t≤md−1
(w−1

dt. )
)
+ diag

1≤d≤D

(
w−1

dmd.1md−11′md−1

)
]

· diag
1≤d≤D

([
diag

1≤t≤md−1
(1′ndt

),0
])

col
1≤d≤D

(WdXd)

= col
1≤d≤D

( col
1≤t≤md−1

(w−1
dt. w

′
ndt

Xdt))+ col
1≤d≤D

(
col

1≤t≤md−1

(
w−1

dmd.

md−1

∑
t=1

w′
ndt

Xdt
))

.

The calculation of matrix

A = (X(3)tWX (3))−1 =

(
D11 D12

D21 D22

)
=




D11 A12 A13

A21 A22 A23

A31 A32 A33




is given below.

D11 = (X′PX)−1 = (X′WX −X′Z11X −2X′Z12X −X′Z22X)−1,

D21 = −GZ ′WXD11 = [A21,A31]′, D12 = (D21)′ = [(A21)′,(A13)′] = [A12,A13],

A21 = −[G11Z′
1+G12Z̃′

2]WXD11 = −[R11+R12]D11,

A31 = −[G21Z′
1+G22Z̃′

2]WXD11 = −[R21+R22]D11,
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The matrixD22 admits the decomposition

D22 = G+GZ ′WXD11X′WZG =

(
A22 A23

A31 A33

)

where

A22 = G11+[R11+R12]D11[R11+R12]
′, A23 = G12+[R11+R12]D11[R21+R22]

′,

A32 = G21+[R21+R22]D11[R11+R12]
′, A33 = G22+[R21+R22]D11[R21+R22]

′.

Finally, we calculate the quadratic formy′M3y.

y′M3y = y′Wy−y′W[X,Z1, Z̃2]A[X′,Z′
1, Z̃

′
2]
′Wy = y′Wy

− y′W[XD11X′ +Z1A22Z′
1+ Z̃2A33Z̃′

2+2XA12Z′
1+2XA13Z̃′

2 +2Z1A23Z̃′
2]Wy

=
D

∑
d=1

md

∑
t=1

y′dtWdtydt −
{
( D

∑
d=1

md

∑
t=1

y′dtWdtXdt
)
D11( D

∑
d=1

md

∑
t=1

y′dtWdtXdt
)′

+ col′
1≤d≤D

( md

∑
t=1

y′dtwndt

)
A22[ col′

1≤d≤D

( md

∑
t=1

y′dtwndt

)]′

+ col′
1≤d≤D

( col′
1≤t≤md−1

(y′dtwndt))A
33[ col′

1≤d≤D
( col′
1≤t≤md−1

(y′dtwndt))
]′

+ 2
( D

∑
d=1

md

∑
t=1

y′dtWdtXdt
)
A12[ col′

1≤d≤D

( md

∑
t=1

y′dtwndt

)]′

+ 2
( D

∑
d=1

md

∑
t=1

y′dtWdtXdt
)
A13[ col′

1≤d≤D
( col′
1≤t≤md−1

(y′dtwndt))
]′

+ 2 col′
1≤d≤D

( md

∑
t=1

y′dtwndt

)
A23[ col′

1≤d≤D
( col′
1≤t≤md−1

(y′dtwndt))
]′
}

.

9.2.4 The EBLUP of the domain mean

The EBLUP of the linear parameterη = a′y = a′sys+a′ryr is

η̂ = a′sys+a′r
[
Xr β̂+ V̂rsV̂−1

ss (ys−Xsβ̂)
]

As Vers = 0, Vrs = ZrVuZ′
s+Vers = ZrVuZ′

s andû = VuZ′
sV

−1
ss (ys−Xsβ̂), we have

η̂ = a′sys+a′r
[
Xr β̂+ZrV̂uZ′

sV̂
−1
ss (ys−X ŝβ)

]
= a′sys+a′r

[
Xr β̂+Zr û

]

= a′
[
Xβ̂+Z1û1+Z2û2

]
+a′s

[
ys−X ŝβ−Zs1û1−Zs2û2

]
.

Under model (9.7),Ydt = 1
Ndt

∑Ndt
j=1ydt j can be written as a linear parameterη = a′y, where

a′ =
1

Ndt
(0′N1

, . . . ,0′Nd−1
,0′Nd1

, . . . ,0′Nd(i−1)
,1′Ndt

,0′Nd(i+1)
, . . . ,0′Ndmd

,0′Nd+1
, . . . ,0′ND

)

=
1

Ndt
(0′N1

, . . . ,0′Nd−1
, col′
1≤k≤md

[
δtk1′Ndk

]
,0′Nd+1

, . . . ,0′ND
) =

1
Ndt

col′
1≤ℓ≤D

{δdℓ col′
1≤k≤mℓ

[δtk1′Nℓk
]},
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with δab = 1 if a = b andδab = 0 if a 6= b. It hold thata′X = Xdt,

a′Z1 =
1

Ndt
col′

1≤ℓ≤D
{δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk
]} diag

1≤ℓ≤D
(1Nℓ

) = col′
1≤ℓ≤D

{δdℓ} = Z1,dt,

a′Z2 =
1

Ndt
col′

1≤ℓ≤D
{δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk
]} diag

1≤ℓ≤D
( diag
1≤k≤mℓ

(1Nℓk)) = col′
1≤ℓ≤D

{ col′
1≤k≤mℓ

{δdℓδtk}} = Z2,dt.

If ndt > 0, the EBLUP ofYdt is

Ŷ
eblup

dt = Xdtβ̂+Z1,dtû1+Z2,dtû2+ fdt

[
ys,dt −Xs,dtβ̂−Z1,dtû1−Z2,dtû2

]
,

whereys,dt = 1
ndt

∑ndt
j=1ydt j, Xs,dt = 1

ndt
∑ndt

j=1xdt j and fdt = ndt
Ndt

.

If ndt = 0, the EBLUP ofYdt is

Ŷ
eblup

dt = Xdtβ̂+Z1,dtû1 +Z2,dtû2.

9.2.5 Mean squared error of the EBLUP

Let θ = (σ2
0,ϕ1,ϕ2) be the vector of variance components. The mean squared errorof the EBLUP ofYdt

is

MSE(Ŷ
eblup

dt ) = g1(θ)+g2(θ)+g3(θ)+g4(θ),

where

g1(θ) = a′rZrTsZ′
rar ,

g2(θ) = [a′rXr −a′rZrTsZ′
sV

−1
es Xs]Qs[X′

rar −X′
sV

−1
es ZsTsZ′

rar ],

g3(θ) ≈ tr
{
(∇b′)Vs(∇b′)′E

[
(θ̂−θ)(θ̂−θ)′

]}
,

g4(θ) = a′rVerar .

Calculation of g1(θ)

The elements of formulag1(θ) = a′rZrTsZ′
rar are

a′r =
1

Ndt

(
0′N1−n1

, . . . ,0′Nd−1−nd−1
, col′
1≤k≤md

[
δtk1′Ndk−ndk

]
,0′Nd+1−nd+1

, . . . ,0′ND−nD

)
,

Zr = [Z1r Z2r ] , Ts = Vu−VuZ′
sV

−1
s ZsΣu =

(
T11s T12s

T21s T22s

)
,

Vu =

(
σ2

1ID 0

0 σ2
2IM

)
, Zs = [Z1sZ2s] , V−1

s = diag
1≤d≤D

{V−1
ds }.
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It holds that

VuZ′
sV

−1
s ZsVu =

(
σ2

1Z′
1s

σ2
2Z′

2s

)
diag

1≤d≤D
{V−1

ds }
[
σ2

1Z1s, σ2
2Z2s

]

=




σ4
1Z′

1s diag
1≤d≤D

{V−1
ds }Z1s σ2

1σ2
2Z′

1s diag
1≤d≤D

{V−1
ds }Z2s

σ2
1σ2

2Z′
2s diag

1≤d≤D
{V−1

ds }Z1s σ4
2Z′

2s diag
1≤d≤D

{V−1
ds }Z2s


 ,

where

Z′
1s diag

1≤d≤D
{V−1

ds }Z1s = diag
1≤d≤D

{1′nd
} diag

1≤d≤D
{V−1

ds } diag
1≤d≤D

{1nd} = diag
1≤d≤D

{1′ndV−1
ds 1nd},

Z′
1s diag

1≤d≤D
{V−1

ds }Z2s = diag
1≤d≤D

{1′nd
} diag

1≤d≤D
{V−1

ds } diag
1≤d≤D

{ diag
1≤k≤md

(1ndk)}

= diag
1≤d≤D

{1′ndV−1
ds diag

1≤k≤md

(1ndk)},

Z′
2s diag

1≤d≤D
{V−1

ds }Z2s = diag
1≤d≤D

{ diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)}.

The blocks of matrixTs are

T11s = σ2
1 diag

1≤d≤D
{1−σ2

11′nd
V−1

ds 1nd},

T12s = −σ2
1σ2

2 diag
1≤d≤D

{1′nd
V−1

ds diag
1≤k≤md

(1ndk)}, T21s = (T12s)
′,

T22s = σ2
2 diag

1≤d≤D
{ Imd −σ2

2 diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)}.

The productZrTsZ′
r is

ZrTsZ′
r = [Z1r Z2r ]Ts

[
Z′

1r Z′
2r

]′
= Z1rT11sZ′

1r +Z1rT12sZ′
2r +Z2rT21sZ′

1r +Z2rT22sZ′
2r .
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It holds that

M rr
11 = Z1rT11sZ′

1r = σ2
1 diag

1≤d≤D
{1Nd−nd} diag

1≤d≤D
{1−σ2

11′nd
V−1

ds 1nd} diag
1≤d≤D

{1′Nd−nd
}

= σ2
1 diag

1≤d≤D
{1Nd−nd [1−σ2

11′nd
V−1

ds 1nd ]1
′
Nd−nd

},

M rr
12 = Z1rT12sZ′

2r = −σ2
1σ2

2 diag
1≤d≤D

{1Nd−nd} diag
1≤d≤D

{1′nd
V−1

ds diag
1≤k≤md

(1ndk)}

· diag
1≤d≤D

{ diag
1≤k≤md

(1′Ndk−ndk
)}

= −σ2
1σ2

2 diag
1≤d≤D

{1Nd−nd1′nd
V−1

ds diag
1≤k≤md

(1ndk) diag
1≤k≤md

(1′Ndk−ndk
)},

M rr
21 = (M rr

12)
′,

M rr
22 = Z2rT22sZ′

2r = σ2
2 diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk)}

· diag
1≤d≤D

{Imd −σ2
2 diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)} diag
1≤d≤D

{ diag
1≤k≤md

(1′Ndk−ndk
)}

= σ2
2 diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′Ndk−ndk
)}

− σ4
2 diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)

· diag
1≤k≤md

(1′Ndk−ndk
)}.

As

a′r =
1

Ndt
col′

1≤ℓ≤D

[
δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk−nℓk
]

]
y fdt =

ndt

Ndt
,

we obtain

a′rM
rr
11ar = σ2

1a′r diag
1≤d≤D

{1Nd−nd [1−σ2
11

′
nd

V−1
ds 1nd ]1

′
Nd−nd

}ar

= σ2
1(1− fdt)

2[1−σ2
11′nd

V−1
ds 1nd ] = σ2ϕ1(1− fdt)

2[1−ϕ11′nd
Σ−1

ds 1nd ],

a′rM
rr
12ar = −σ2

1σ2
2a′r diag

1≤d≤D
{1Nd−nd1

′
nd

V−1
ds diag

1≤k≤md

(1ndk) diag
1≤k≤md

(1′Ndk−ndk
)}ar ,

= −σ2ϕ1ϕ2(1− fdt)1′nd
Σ−1

ds diag
1≤k≤md

(1ndk) col
1≤k≤md

[δtk(1− fdk)]

a′rM
rr
22ar = σ2

2a′r diag
1≤d≤D

{ diag
1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′Ndk−ndk
)}ar

− σ4
2a′r diag

1≤d≤D
{ diag

1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk)

· diag
1≤k≤md

(1′Ndk−ndk
)}ar

= σ2ϕ2(1− fdt)
2−σ2ϕ2

2 col′
1≤k≤md

[(1− fdk)δtk]

· diag
1≤k≤md

(1′ndk
)Σ−1

ds diag
1≤k≤md

(1ndk) col
1≤k≤md

[(1− fdk)δtk].
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Finally,
g1(θ) = a′rZrTsZ′

rar = a′rM
rr
11ar +2a′rM

rr
12ar +a′rM

rr
22ar ,

Calculation of g2(θ)

The formula forg2(θ) is

g2(θ) = [a′rXr −a′rZrTsZ′
sV

−1
es Xs]Qs[X′

rar −X′
sV

−1
es ZsTsZ′

rar ] = [a′21−a′22]Qs[a21−a22],

whereQs = (X′
sV

−1Xs)
−1 = σ2

(
∑D

d=1 X′
dsΣ

−1
ds Xds

)−1
andV−1

es = σ−2Ws. On the one hand

a′21 = a′rXr =
1

Ndt
1′Ndt−ndt

Xdt,r =
1

Ndt
∑
j∈r

xdt j = (1− fdt)X
∗
dt, whereX

∗
dt =

1
Ndt −ndt

∑
j∈r

xdt j.

On the other hand

a′22 = a′rZrTsZ′
sV

−1
es Xs = σ−2a′r(M

rs
11+M rs

12+M rs
21+M rs

22)WsXs = G11+G12+G21+G22,

where

M rs
11 = Z1rT11sZ′

1s, M rs
12 = Z1rT12sZ′

2s

M rs
21 = Z2rT21sZ′

1s = (M sr
12)

′, M rs
22 = Z2rT22sZ′

2s.

Let us definew′
ndk

= (wdk1, . . . ,wdkndk). It holds that

G11 = σ−2a′rM
rs
11WsXs =

σ2
1

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]1Nd−nd [1−σ2

11′nd
V−1

ds 1nd ]1
′
nd

WdsXds

= ϕ1(1− fdt)[1−ϕ11′nd
Σ−1

ds 1nd ]
md

∑
k=1

w′
ndk

Xdk,s,

G12 = σ−2a′rM
rs
12WsXs

= − σ2
1σ2

2

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]1Nd−nd1′nd

V−1
ds diag

1≤k≤md

(1ndk) diag
1≤k≤md

(1′ndk
)WdsXds

= −ϕ1ϕ2(1− fdt)1′nd
Σ−1

ds diag
1≤k≤md

(1ndk) col
1≤k≤md

(w′
nd j

Xdk,s),

G21 = σ−2a′rM
rs
21WsXs

= − σ2
1σ2

2

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
] diag
1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′ndk
)V−1

ds 1nd1′nd
WdsXds

= −ϕ1ϕ2(1− fdt) col′
1≤k≤md

[δtk] diag
1≤k≤md

(1′ndk
)Σ−1

ds 1nd

md

∑
k=1

w′
ndk

Xdk,s,

G22 = σ−2a′rM
rs
22WsXs

=
σ2

2

σ2Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]{ diag

1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′ndk
)

− σ2
2 diag

1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′ndk
)V−1

ds diag
1≤k≤md

(1ndk) diag
1≤k≤md

(1′ndk
)}WdsXds

= ϕ2(1− fdt) col′
1≤k≤md

[δtk]

[
Imd −ϕ2 diag

1≤k≤md

(1′ndk
)Σ−1

ds diag
1≤k≤md

(1ndk)

]
col

1≤k≤md

(w′
ndk

Xdk,s).
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Calculation of g3(θ)

The formula forg3(θ) is

g3(θ) ≈ tr
{

(∇b′)Vs(∇b′)′E
[
(θ̂−θ)(θ̂−θ)′

]}
,

where

b′ = a′rZrVuZ′
sV

−1
s = a′r [Z1r , Z2r ]diag

{
σ2

1ID, σ2
2IM
}

[Z′
1s, Z′

2s]
′V−1

s

= a′r
[
σ2

1Z1rZ′
1s+ σ2

2Z2rZ′
2s

]
V−1

s = σ2
1a′rZ1rZ′

1sV
−1
s + σ2

2a′rZ2rZ′
2sV

−1
s

= b′
1+b′

2 = col′
1≤ℓ≤D

[δdℓ b′
1ℓ]+ col′

1≤ℓ≤D
[δdℓ b′

2ℓ],

b′
1d =

σ2ϕ1

Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
]1Nd−nd1′nd

V−1
ds = ϕ1(1− fdt)1′nd

Σ−1
ds ,

b′
2d =

σ2ϕ2

Ndt
col′

1≤k≤md

[δtk1′Ndk−ndk
] diag
1≤k≤md

(1Ndk−ndk) diag
1≤k≤md

(1′ndk
)V−1

ds ,

= ϕ2(1− fdt) col′
1≤d≤D

[δtk] diag
1≤k≤md

(1′ndk
)Σ−1

ds .

Let us defineAds = Imd + ϕ2 diag
1≤k≤md

(1′ndk
)Wds diag

1≤k≤md

(1ndk). Then

Σ−1
ds = L−1

ds −
ϕ1

1+ ϕ11′nd
L−1

ds 1nd

L−1
ds 1nd1′nd

L−1
ds ,

L−1
ds = Wds−ϕ2Wds diag

1≤k≤md

(1ndk)A
−1
ds diag

1≤k≤md

(1′ndk
)Wds.

By applying the formula∂A−1

∂γ = −A−1 ∂A
∂γ A−1, we obtain the partial derivatives ofL−1

ds .

∂L−1
ds

∂σ2 = 0nd×nd ,
∂L−1

ds

∂ϕ1
= 0nd×nd,

∂L−1
ds

∂ϕ2
= −Wds diag

1≤k≤md

(1ndk)A
−1
ds diag

1≤k≤md

(1′ndk
)Wds+ ϕ2Wds diag

1≤k≤md

(1ndk)A
−1
ds

· diag
1≤k≤md

(1′ndk
)Wds diag

1≤k≤md

(1ndk)A
−1
ds diag

1≤k≤md

(1′ndk
)Wds.

The partial derivatives ofΣ−1
ds are

∂Σ−1
ds

∂σ2 = 0nd×nd ,

∂Σ−1
ds

∂ϕ1
=

1

[1+ ϕ11′nd
L−1

ds 1nd ]
2
L−1

ds 1nd1′nd
L−1

ds ,

∂Σ−1
ds

∂ϕ2
=

∂L−1
ds

∂ϕ2
+

ϕ2
11′nd

∂L−1
ds

∂ϕ2
1nd

[1+ ϕ11′nd
L−1

ds 1nd ]
2
L−1

ds 1nd1′nd
L−1

ds

− ϕ1

1+ ϕ11′nd
L−1

ds 1nd

[
∂L−1

ds

∂ϕ2
1nd1′nd

L−1
ds +L−1

ds 1nd1′nd

∂L−1
ds

∂ϕ2

]
.
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Let θ = (θ1,θ2,θ3) = (σ2,ϕ1,ϕ2). The partial derivatives ofb′
1d y b′

2d are

∂b′
1d

∂σ2 = 01×nd

∂b′
1d

∂ϕ1
= (1− fdt)1′nd

[
Σ−1

ds + ϕ1
∂Σ−1

ds

∂ϕ1

]
,

∂b′
1d

∂ϕ2
= ϕ1(1− fdt)1′nd

∂Σ−1
ds

∂ϕ2
,

∂b′
2d

∂σ2 = 01×nd ,

∂b′
2d

∂ϕ1
= ϕ2(1− fdt) col′

1≤k≤md

[δtk] diag
1≤k≤md

(1′ndk
)
∂Σ−1

ds

∂ϕ1
,

∂b′
2d

∂ϕ2
= (1− fdt) col′

1≤k≤md

[δtk] diag
1≤k≤md

(1′ndk
)

[
Σ−1

ds + ϕ2
∂Σ−1

ds

∂ϕ2

]
.

Let us define the matrixQ = (qab)a,b=1,...,3, with elements

qab =

(
∂b′

1d

∂θa
+

∂b′
2d

∂θa

)
σ2Σds

(
∂b′

1d

∂θb
+

∂b′
2d

∂θb

)′
, a,b = 1,2,3,

and the elementsFab = Fθa,θb’s of the REML Fisher information matrix. Then

g3(θ) ≈ tr
{

QE
[
(θ̂−θ)(θ̂−θ)′

]}

≈ tr








q11 q12 q13

q21 q22 q23

q31 q32 q33







Fσ2σ2 Fσ2ϕ1
Fσ2ϕ2

Fϕ1σ2 Fϕ1ϕ1 Fϕ1ϕ2

Fϕ2σ2 Fϕ2ϕ1 Fϕ2ϕ2




−1




Calculation of g4(θ)

We have thatg4(θ) = a′rΣerar , where

a′r =
1

Ndt
col′

1≤ℓ≤D

[
δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk−nℓk
]

]
,

V−1
er = σ−2Wr = σ−2 diag

1≤d≤D
{Wdr}.

Therefore

g4(θ) =
1

Ndt
col′

1≤ℓ≤D

[
δdℓ col′

1≤k≤mℓ

[δtk1′Nℓk−nℓk
]

]
σ2 diag

1≤d≤D
{W−1

dr }
1

Ndt
col

1≤ℓ≤D

[
δdℓ col

1≤k≤mℓ

[δtk1Nℓk−nℓk]

]

=
σ2

N2
dt

1′Ndt−ndt
diag

j∈r
{w−1

dt j}1Ndt−ndt =
σ2

N2
dt

∑
j∈rdt

1
wdt j

.
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9.2.6 Simulation experiment 1

The scope of simulation experiment 1 is to analyze the behavior of the REML and H3 estimates of model
parameters. Samples are generated in the following way.

• Simulation of explanatory variable: For d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, generate

xdt j = (bdt −adt)Udt j +adt with Udt j =
j

ndt +1
, j = 1, . . . ,ndt.

Takeadt = 1, bdt = 1+ 1
md

(md(d−1)+ t), d = 1, . . . ,D, t = 1, . . . ,md.

• weights: For d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, dowdt j = 1/xℓ
dt j , ℓ = 0,1/2, (2 possibili-

ties).

• Simulation of random effects and errors: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, generate

u1,d ∼ N(0,σ2
1), u2,dt ∼ N(0,σ2

2), edt j ∼ N(0,σ2
0), con σ2

1 = 1, σ2
2 = 1, σ2

0 = 1.

• Simulation of target variable: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,ndt, generate

ydt j = βxdt j +u1,d +u2,dt +w−1/2
dt j edt j, with β = 1.

The steps of the simulation experiments are

1. Generate explanatory variables and weights.

2. RepeatK = 1000 times (k = 1, . . . ,K)

2.1. Generate a sample of sizen = ∑D
d=1 ∑md

t=1ndt, with the corresponding values of the target
vartiable, the random and fixed effects and the errors.

2.2. Calculatêβ(k), σ̂2
0,(k), σ̂2

1,(k) andσ̂2
2,(k) by using the methods H3 and REML.

3. Output 1 is the empirical mean squared error ofβ̂(k), σ̂2
0,(k), σ̂2

1,(k) andσ̂2
2,(k), i.e.

EMSE(β̂) =
1
K

K

∑
k=1

(β̂(k) −β)2 , EMSE(σ̂2
0) =

1
K

K

∑
k=1

(σ̂2
0,(k) −σ2

0)
2 ,

EMSE(σ̂2
1) =

1
K

K

∑
k=1

(σ̂2
1,(k) −σ2

1)
2 , EMSE(σ̂2

2) =
1
K

K

∑
k=1

(σ̂2
2,(k) −σ2

2)
2 .

4. Output 2 is the empirical bias of̂β(k), σ̂2
0,(k), σ̂2

1,(k) andσ̂2
2,(k):

B(β̂) =
1
K

K

∑
k=1

(β̂(k) −β) , B(σ̂2
0) =

1
K

K

∑
k=1

(σ̂2
0,(k) −σ2

0) ,

B(σ̂2
1) =

1
K

K

∑
k=1

(σ̂2
1,(k) −σ2

1) , B(σ̂2
2) =

1
K

K

∑
k=1

(σ̂2
2,(k) −σ2

2) .
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In the simulation experiment we takeD = 30,md = 5, d = 1, . . . ,D. We carry out 10 realizations of the
simulation experiments with the sample sizes presented in Table 9.2.6.1.

g 1 2 3 4 5 6 7 8 9 10

n(g)
dt 3 4 5 6 7 8 9 10 15 20

n(g)
d 15 20 25 30 35 40 45 50 75 100

n(g) 450 600 750 900 1050 1200 1350 1500 2250 3000

Table 9.2.6.1. Sample sizes in Experiment 1.

The obtained results are presented in Table 9.2.6.2.

n 450 600 750 900 1050 1200 1350 1500
nd 15 20 25 30 35 40 45 50
ndt 3 4 5 6 7 8 9 10

EMSE β 0.126 0.087 0.068 0.054 0.046 0.040 0.034 0.030
σ2

0 6.583 4.386 3.403 2.605 2.187 1.879 1.661 1.479
σ2

1 110.26 106.36 106.56 105.14 102.23 101.38 98.96 99.23
σ2

2 30.90 26.26 23.87 22.86 21.75 21.49 20.40 20.26
BIAS β 0.069 -0.069 -0.036 -0.003 0.082 -0.083 0.065 0.009

σ2
0 -0.311 1.011 0.328 -0.179 -0.184 -0.239 -0.087 -0.385

σ2
1 -8.586 -0.432 0.562 5.623 -1.291 2.186 -4.623 1.709

σ2
2 -0.542 -2.486 1.926 0.680 -0.288 0.336 -1.626 0.947

Table 9.2.6.2. EMSE and BIAS (multiplied by 103) of β̂, σ̂2
0, σ̂2

1 andσ̂2
2 for ℓ = 0.

9.2.7 Simulation experiment 2

The scope of simulation experiment 1 is to analyze the behavior of the EBLUPs. Samples are generated
in the following way.

1. Generation of deterministic elements

• Simulation of explanatory variables: for d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt, gener-
ate

xdt j = (bdt −adt)Udt j +adt with Udt j =
j

Ndt +1
, j = 1, . . . ,Ndt.

Takeadt = 1, bdt = 1+ 1
md

(md(d−1)+ t), d = 1, . . . ,D, t = 1, . . . ,md.

• Weights: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt, hacer wdt j = 1/xℓ
dt j , ℓ = 0, 1/2.

2. RepeatK = 100000 times (k = 1, . . . ,K)

(a) Generation of random elements

• Simulation random effects and errors: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt,
generate

u(k)
1,d ∼ N(0,σ2

1), u(k)
2,dt ∼ N(0,σ2

2), e(k)
dt j ∼ N(0,σ2

0), with σ2
0 = σ2

1 = σ2
2 = 1.
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• Simulation of the target variable: For d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt,
generate

y(k)
dt j = βxdt j +u(k)

1,d +u(k)
2,dt +w−1/2

dt j e(k)
dt j, with β = 1.

(b) Extraction of samples. Ford = 1, . . . ,D, t = 1, . . . ,md, select thendt units of the leveldt in

positions
[

Ndt
1+ndt

]
j, j = 1, . . . ,ndt.

(c) Calculatêβ(k), σ̂2
0,(k), σ̂2

1,(k) andσ̂2
2,(k) by using the REML method.

(d) Ford = 1, . . . ,D, t = 1, . . . ,md calculateŶ
eblup,(k)

dt .

3. Output: Ford = 1, . . . ,D, t = 1, . . . ,md calculate

EMSEdt =
1
K

K

∑
k=1

(
Ŷ

eblup,(k)

dt −Y
(k)
dt

)2

, BIASdt =
1
K

K

∑
k=1

(
Ŷ

eblup,(k)

dt −Y
(k)
dt

)
.

EMSE=
1
M

D

∑
d=1

md

∑
t=1

EMSEdt, BIAS=
1
M

D

∑
d=1

md

∑
t=1

BIASdt

whereY
(k)
dt = 1

Ndt
∑Ndt

j=1y(k)
dt j.

The simulation experiment is carried out withD = 30,md = 5, d = 1. . . ,D. The obtained results appears
in Table 9.2.7.1.

N 4500 6000 7500 9000 10500 12000 13500 15000
Nd 150 200 250 300 350 400 450 500
Ndt 30 40 50 60 70 80 90 100
ndt 3 4 5 6 7 8 9 10

BIAS 0.00043 -0.00004 0.00122 -0.00010 0.00008 -0.00034 0.00001 0.00007
MSE 0.25191 0.19521 0.15969 0.13521 0.11699 0.10357 0.09280 0.08401

Table 9.2.7.1. EMSE and BIAS of̂Y
eblup

dt for md = 5 andℓ = 0.

9.2.8 Simulation experiment 3

The scope of simulation experiment 1 is to analyze the behavior of the mean squared error estimators of
the EBLUPs. Samples are generated in the following way.

1. Generation of deterministic elements

• Simulation of explanatory variables: For d = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt, gen-
erate

xdt j = (bdt −adt)Udt j +adt with Udt j =
j

Ndt +1
, j = 1, . . . ,Ndt.

Takeadt = 1, bdt = 1+ 1
md

(md(d−1)+ t), d = 1, . . . ,D, t = 1, . . . ,md.

• Pesos: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt, dowdt j = 1/xℓ
dt j, ℓ = 0, 1/2.
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2. RepeatK = 100000 times (k = 1, . . . ,K)

(a) Generation of random elements

• Simulation of random factors and errors: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt,
generate

u(k)
1,d ∼ N(0,σ2

1), u(k)
2,dt ∼ N(0,σ2

2), e(k)
dt j ∼ N(0,σ2

0), with σ2
0 = σ2

1 = σ2
2 = 1.

• Simulation of target variables: Ford = 1, . . . ,D, t = 1, . . . ,md, j = 1, . . . ,Ndt, generate

y(k)
dt j = βxdt j +u(k)

1,d +u(k)
2,dt +w−1/2

dt j e(k)
dt j, with β = 1.

• Extraction of samples. Ford = 1, . . . ,D, t = 1, . . . ,md, select thendt units of the leveldt

in positions
[

Ndt
1+ndt

]
j, j = 1, . . . ,ndt.

• Calculatêβ(k), σ̂2
0,(k), σ̂2

1,(k) andσ̂2
2,(k) by using the REML.

• Ford = 1, . . . ,D, t = 1, . . . ,md calculateŶ
eblup,(k)

dt andmse(Ŷ
eblup,(k)

dt ).

(b) Ford = 1, . . . ,D, t = 1, . . . ,md read the values ofEMSEdt calculated in Simulation 2.

3. Output: Ford = 1, . . . ,D, t = 1, . . . ,md calculate

Edt =
1
K

K

∑
k=1

(
mse(Ŷ

eblup,(k)

dt )−EMSEdt
)2

Bdt =
1
K

K

∑
k=1

(
mse(Ŷ

eblup,(k)

dt )−EMSEdt
)
,

E =
1
M

D

∑
d=1

md

∑
t=1

Edt, B =
1
M

D

∑
d=1

md

∑
t=1

Bdt

The simulation experiment is carried out withD = 30,md = 5, d = 1. . . ,D. The obtained results appears
in Table 9.2.8.1.

N 4500 6000 7500 9000 10500 12000 13500 15000
Nd 150 200 250 300 350 400 450 500
Ndt 30 40 50 60 70 80 90 100
ndt 3 4 5 6 7 8 9 10
B 0.6933 0.6859 0.6760 0.6710 0.6681 0.6653 0.6668 0.6625
E 0.5096 0.4966 0.4813 0.4727 0.4689 0.4647 0.4673 0.4607

Table 9.2.8.1.E andB of mse(Ŷ
eblup

dt ) for md = 5 andℓ = 0.



Chapter 10

M-quantile methods

In recent years there have been significant developments in model-based small area estimation. The
most popular approach to small area estimation employs random effects models for estimating domain
specific parameters (see Rao (2003)). An alternative approach to small area estimation that relaxes
the parametric assumptions of random effects models by employing M-quantile models was recently
proposed by Chambers and Tzavidis (2006) and Tzavidis et al.(2010). This model is presented in
section 10.1 and estimation of small area means and quantiles under the M-quantile model is discussed.
We further discuss the estimation of the Mean Squared Error (MSE) of the small area estimators and
we present model-based simulation results for assesing thepropoerties of point and MSE estimators.
Having developed the methodology for estimating small areaaverages and quantiles, in Section 1.2
we focus on the estimation of poverty indicators which present a special case of estimating small area
quantiles. We consider estimation for two popular poverty indicators namely, the Head Count Ratio
(HCR) and the Poverty Gap. In addition, we also consider estimation for fuzzy set indicators that have
more recently attracted interest in poverty studies. Two methods of poverty estimation are considered
namely, the EBP approach (Molina and Rao, 2009), see Chapter2, and the M-quantile approach that is
based on the methodology proposed in Tzavidis et al. (2010).The two approaches are then contrasted in
a model-based study and in a design-based simulation study.

When the functional form of the relationship between the response variable and the covariates is
unknown or has a complicated functional form, an approach based on use of a nonparametric regression
model using penalized splines can offer significant advantages compared with one based on a linear
model. Pratesi et al. (2008) and Pratesi et al. (2009) have extended the p-spline regression model to the
M-quantile method for the estimation of the small area parameters using a nonparametric specification
of the conditional M-quantile of the response variable given the covariates. The model is discussed in
section 10.3.

M-quantile models assume independence of the small area effects. In some applications, however,
observations that are spatially close may be more related than observations that are further apart. This
spatial correlation can be accounted for by assuming that the regression coefficients vary spatially across
the geography of interest. In a recent paper Salvati et al. (2008) proposed an M-quantile Geographically
Weighted Regression (GWR) small area model extending the traditional M-quantile regression model by
allowing local rather than global parameters to be estimated. The model is shown in section 10.4.
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10.1 Linear M-quantile regression models

A recently proposed approach to small area estimation is based on the use of M-quantile models (see
Chambers and Tzavidis 2006)). M-quantile regression provides a “quantile-like” generalization of re-
gression based on influence functions (see Breckling and Chambers (1988)). M-quantile models do
not depend on strong distributional assumptions nor on a predefined hierarchical structure, and outlier
robust inference is automatically performed when these models are fitted. The M-quantile of orderq
for the conditional density ofy given X is defined as the solutionQq(x;ψ) of the estimating equation
R

ψq(y−Q) f (y|X)dy = 0, whereψ denotes the influence function associated with the M-quantile. In
a linear M-quantile regression model theq-th M-quantileQq(x,ψ) of the conditional distribution ofy
givenX is such that

Qq(x;ψ) = Xβψ(q) (10.1)

whereψq(r iqψ) = 2ψ{s−1r iqψ}
{

qI(r jqψ > 0)+ (1−q)I(r jqψ ≤ 0)
}

ands is a suitable robust estimate
of scale, e.g. the MAD estimates= median

∣∣r jqψ
∣∣/0.6745. A popular choice for the influence function

is the Huber Proposal 2,ψ(u) = uI(−c≤ u≤ c)+csgn(u). However, other influence functions are also
possible. For specifiedq and continuousψ, an estimatêβψ(q) of βψ(q) is obtained via iterative weighted
least squares. Note that there is a different set of regression parameters for eachq.

10.1.1 Estimation of small area means and quantiles

We now consider the problem of estimating the small area meanand the cumulative distribution func-
tion of a given variable of interest using M-quantile modelsunder a unified estimation framework for
estimating any small area target parameter that was defined by Tzavidis et al. (2010).

Let Ωd = {1, . . . ,Nd} be the population of aread. Let yd = (y1, . . . ,yNd)
′ denote the variable values

for the Nd small area population elements. We consider a samplesd ⊂ Ωd, of nd ≤ Nd units, and we
denote withrd = Ωd −sd the set of non sampled units. For each population unitj, let x j = (x1 j , . . . ,xp j)
denote a vector ofp known auxiliary variables. The small area specific empirical distribution function
of y for aread is

Fd = N−1
d

[
∑
j∈sd

I(y j 6 t)+ ∑
j∈rd

I(y j 6 t)
]
. (10.2)

The problem of estimatingFd(t) given the sample data essentially reduces to predicting thevaluesy j

for the non-sampled units in small aread. One straightforward way of achieving this is to simply replace
the unknown non-sample values ofy (10.2) by their predicted values ˆy j under an appropriate model,
leading to a plug-in estimator of (10.2) of the form

F̂d = N−1
d

[
∑
j∈sd

I(y j 6 t)+ ∑
j∈rd

I(ŷ j 6 t)
]
. (10.3)

An estimator of the meanYd of y in aread is then defined by the value of the mean functional defined
by (10.3). This leads to the usual plug-in estimator of the mean,

Ŷd =

Z ∞

−∞
tdF̂d(t) = N−1

d

(
∑

x∈sd

y j + ∑
j∈rd

ŷ j

)
.
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The predicted value of a non-sample unitj in aread corresponds to an estimate ˆµj of its expected value
given that it is located in aread.

Following Chambers and Tzavidis (2006), an alternative to random effects for characterizing the
variability across the population is to use the M-quantile coefficients of the population units. For unitj
with valuesy j andx j , this coefficient is the valueθ j such thatQθ j (x j ;ψ) = y j . These authors observed
that if a hierarchical structure does explain part of the variability in the population data, units within
clusters (areas) defined by this hierarchy are expected to have similar M-quantile coefficients. When the
conditional M-quantiles are assumed to follow a linear model, with βψ(q) a sufficiently smooth function
of q, this suggests an estimator of the distribution function:

F̂MQ
d (t) = N−1

d

{
∑
j∈sd

I(y j ≤ t)+ ∑
j∈rd

I(x j β̂ψ(θ̂d) ≤ t)

}
(10.4)

wherex j β̂ψ(θ̂d) is used to predict the unobserved valuey j for population unitj ∈ rd. When there are no

sampled observations in aread thenθ̂d = 0.5.
Using the empirical distribution function and the linear M-quantile small area models one can defined

the estimator of the small area mean as:

Ŷ
MQ

d (t) =

Z ∞

−∞
tdF̂MQ

d (t) = N−1
d

{
∑
j∈sd

y j + ∑
j∈rd

x j β̂ψ(θ̂d)

}
. (10.5)

We refer to the small area estimator that can be expressed as functionals of (10.3), with non-sample
predictions derived as estimates of expected values.

Chambers and Tzavidis (2006) observed that the naive M-quantile mean estimator (10.5) can be
biased. The distribution function estimator (10.3) underlying (10.4) is not consistent in general. Thus,
when the non-sample predicted values in (10.3) are estimated expectations that converge in probability
to the actual expected values, we see that

∑
j∈rd

I(ŷ j 6 t) = ∑
j∈rd

I(y j − (y j − ŷ j) 6 t) = ∑
j∈rd

I(y j 6 t + ε j) 6= ∑
j∈rd

I(y j 6 t),

whereε j are the actual regression errors. If these errors are independently and identically distributed
symmetrically about zero we expect that the summation on theleft hand side above will closely approx-
imate the summation on the right for values oft near the median of the non-sampled aread values ofy
but not anywhere else. More generally, for heteroskedasticand/or asymmetric errors this correspondence
will typically occur elsewhere in the support ofy, although one would expect that in most reasonable sit-
uations it will be “close” to the median ofy. In other words, it is not advisable to use (10.3) to predict a
quantile of the aread distribution ofy other than the median.

By combining a smearing argument (Duan, 1983) with a model for the finite population distribution
of y, Chambers and Dunstan (1986) (hereafter referred to as CD) developed a model-consistent estimator
for a finite population distribution function. In the context of the small area distribution function (10.2),
and assuming that the residuals are homoskedastic within the small area of interest, this is of the form

F̂CD
d (t) = N−1

d

{
∑
j∈sd

I(y j ≤ t)+ ∑
k∈rd

n−1
d ∑

j∈sd

I(ŷk +(y j − ŷ j) ≤ t)

}
. (10.6)
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It can be shown that under the CD estimator of the small area distribution function the mean functional
defined by (10.6) takes the value

Ŷ
CD

d =
Z ∞

−∞
tdF̂CD

d (t) = N−1
d

{
∑
j∈sd

y j + ∑
j∈rd

ŷ j +( f−1
d −1) ∑

j∈sd

(y j − ŷ j)

}
(10.7)

where fd = ndN−1
d is the sampling fraction in aread, ŷ j = x j β̂ψ(θ̂d) and ŷ j can be obtained under the

linear M-quantile small area model. We refer to (10.7) as thebias adjusted M-quantile mean predictor.
Due to the bias correction in (10.7), this predictor will have higher variability than (10.5) and so it should
only be used when (10.4) is expected to have substantial bias, e.g. when there are large outlying data
points. An alternative approach for dealing with this bias-variance trade off is to limit the variability
of the bias correction term in (10.7) by using robust (huberized) residuals instead of raw residuals. In
particular,

F̂CDRob
d (t) = N−1

d

{
∑
j∈sd

I(y j ≤ t)+ ∑
k∈rd

n−1
d ∑

j∈sd

I (ŷk + ν jψ{y j − ŷ j} 6 t)

}
(10.8)

whereν j is a robust estimate of scale for area individualj in aread.
Wang and Dorfman (1996) pointed out that the CD estimator (10.6) is model-consistent but design-

inconsistent. An alternative to this estimator that is bothdesign-consistent and model-consistent has been
proposed by Rao et al. (1990) (hereafter referred to as RKM).Under simple random sampling within the
small areas the RKM estimator of the finite population distribution function is

F̂RKM
d (t) = n−1

d

{
∑
j∈sd

I(y j ≤ t)+N−1
d ∑

k∈rd

n−1 ∑
j∈sd

I(y j − ŷ j ≤ t − ŷk) (10.9)

−(n−1
d −N−1

d ) ∑
k∈sd

n−1
d ∑

j∈sd

I(y j − ŷ j ≤ t − ŷk)

}
.

Chambers et al. (1992) compared the large-sample mean squared errors of (10.6) and (10.9) and
concluded that neither dominates the other. When the model is correctly specified we expect (10.6) to
outperform (10.9). However RKM demonstrated that (10.6) can be substantially biased when model
assumptions fail, while (10.9) is much less sensitive. Herewe just note that the RKM estimator can be
used to define an estimator of a small area characteristic that can be represented as a functional of the
small area distribution function in exactly the same way as the CD-type estimator (10.7) can be used for
this purpose. In general, the resulting estimators will notbe the same. An exception is the RKM-based
estimator of the aread mean, which is the same as the CD-based estimator of this meanunder simple
random sampling.

Turning now to the small area quantiles we note that an estimator of theqth quantile of the distribution
of y in aread is straightforwardly defined as the solution to the estimating equation

Z µ̂qd

−∞
dF̂d(t) = q, (10.10)

whereF̂d(t) is suitable estimator of the aread distribution ofy such as the CD or the RKM estimators and
µ̂qd is the estimatedqth quantile in small aread. As the preceding discussion makes clear, we anticipate
that a better approach for quantiles other than the median isto use either the CD-type specifications or
the RKM specification forF̂d(t), with ŷ j defined by an M-quantile linear small area model.
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10.1.2 Mean Squared Error (MSE) estimation for estimators of small area means and
quantiles

A robust mean squared error estimation method for the naive M-quantile estimator (10.5) was described
in Chambers and Tzavidis (2006). Here we extend this argument to define an estimator that is a first
order approximation to the mean squared error of the estimator (10.6) of the small area mean when this
is based on an M-quantile regression fit. A more detailed discussion of this approach to mean squared
error estimation is set out in Chambers et al. (2008). To start, we note that since an iteratively reweighted
least squares algorithm is used to calculate the M-quantileregression fit at̂θd, we have

β̂ψ(θ̂d) = (X′
sWsdXs)

−1X′
sWsdys

whereXs andys denote the matrix of samplex values and the vector of sampley values respectively, and
Wsd denotes the diagonal weight matrix of ordern that defines the estimator of the M-quantile regression
coefficient withq = θ̂d. It immediately follows that (10.5) can be written

Ŷ
MQ

d = w′
sd

ys, (10.11)

wherewsd = (w jd) = n−1
d ∆sd +(1−N−1

d nd)WdXs(X′
sWdXs)

−1{xrd −xsd} with ∆sd denoting then-vector
that “picks out” the sample units from aread. Herexsd andxrd denote the sample and non-sample means
of x in aread. Also, these weights are ’locally calibrated’ onx since

∑
j∈s

w jdx j = x̄sd +(1− fd)(x̄rd − x̄sd) = x̄d.

A first order approximation to the mean squared error of (10.11) then treats the weights as fixed and
applies standard methods of robust mean squared error estimation for linear estimators of population

quantities (see Royall and Cumberland (1978)). With this approach, the prediction variance ofŶ
CD

d is
estimated by

V̂ar(Ŷ
CD

d ) =
d

∑
g=1

∑
j∈sg

λ jdg

(
y j −x j β̂ψ(θ̂g)

)2
, (10.12)

whereλ jdg = {(w jd −1)2 +(nd −1)−1(Nd −nd)}I(g = d)+ w2
jgI(g 6= d). This prediction variance es-

timator implicitly assumes a model where the regression ofy on x varies between areas, and that this
variation is consistently estimated by the fit of the M-quantile regression model in each area. Further-

more, since the weights defininĝY
CD

d are locally calibrated onx, it immediately follows that (10.6) is
unbiased under the same model and hence no correction for itsbias is necessary when estimating its
mean squared error. This can be compared with the estimator of the mean squared error of the naive

M-quantile estimator̂Y
MQ

d described in Chambers and Tzavidis (2006), which includes asquared bias
term.

The linearization-based prediction variance estimator (10.12) is defined only when the estimator of
interest can be written as a weighted sum of sample values. Consequently, it cannot be used with quantile
estimators defined by solving (10.10). In this section we describe a nonparametric bootstrap approach to
MSE estimation of small area quantiles that was described inTzavidis et al.(2010) and is based on the
approach of Lombardı́a et al. (2003).
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We define two bootstrap schemes that resample residuals froman M-quantile model fit. The first
scheme draws samples from the empirical distribution of suitably recentered residuals. The second
scheme draws samples from a smoothed version of this empirical distribution. Using these two schemes,
we generate a bootstrap population, from which we then draw bootstrap small area samples. In order
to define the bootstrap population, we first calculate the M-quantile small area model residualsε jd =

y jd − β̂ψ(θ̂d).
A bootstrap finite populationU∗ = (y∗jd ,x jd), j ∈U,d = 1, · · · ,D with

y∗jd = x jd β̂ψ(θ̂d)+ ε∗jd
is then generated, where the bootstrap residualsε∗jd are obtained by sampling from an estimator of the dis-

tribution functionĜ(u) of the model residualsε jd. In order to defineĜ(u) we consider two approaches:
(i) sampling from the empirical distribution function of the model residuals and (ii) sampling from a
smoothed distribution function of these residuals. In eachcase sampling of the residuals can be done in
two ways, (i) by sampling from the distribution of all residuals without conditioning on the small area
- we refer to this as the unconditional approach; (ii) by sampling from the conditional distribution of
residuals within small aread - we refer to this as the conditional approach. The empiricalunconditional
distribution of the residuals is

Ĝ(u) = n−1
D

∑
d=1

∑
j∈sd

I(ε jd − ε̄s ≤ u)

where ε̄s is the sample mean of theε jd . Similarly, the empirical conditional distribution of these
residuals in aread is

Ĝd(u) = n−1
d ∑

j∈sd

I(ε j − ε̄sd≤ u)

where ε̄sd is the sample mean of theε jd in aread. A smoothed estimator of the unconditional
distribution is

Ĝ(u) = n−1
D

∑
d=1

∑
j∈sd

K
(u− (ε jd − ε̄s)

h

)

whereh > 0 is a smoothing parameter andK is the distribution function corresponding to a bounded
symmetric kernel densityk,

K(u) =

Z u

−∞
k(z)dz.

Similarly a smoothed estimator of the conditional distribution in aread is

Ĝd(u) = n−1
d ∑

j∈sd

K
(u− (ε jd − ε̄s)

hd

)

, wherehd > 0 andK are the same as above.K is defined by the Epanechnikov kernel,

k(u) =
3
4
(1−u2)I(|u| < 1),

while the smoothing parametersh andhd are chosen so that they minimize the cross-validation criterion
suggested by Bowman et al. (1998). That is, in the unconditional caseh is chosen in order to minimize

CV(h) = n−1
D

∑
d=1

∑
j∈sd

Z (
I
(
(ε jd − ε̄s) ≤ u

)
− Ĝ− j(u)

)2
du,
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whereĜ− j(u) is the version ofG(u) that omits sample unitj with the extension to the conditional
case being obvious. It can be shown (see Section 1.5 in Li and Racine (2007)) that choosingh and
hd in this way is asymptotically equivalent to using the MSE optimal values of these parameters. In
the simulation studies reported in the next section, we compute both the conditional and unconditional
smoothed distribution functions of residuals using thenp package of Hayfield and Racine (2008) in the
R software environment (R Development Core Team (2008)) thatimplements the above approach. In
either case, bootstrap sampless∗d are then drawn using simple random sampling within the smallareas
and without replacement. In what follows we denote byFN,d(t) the unknown true distribution function
of the finite population values in aread, by F̂CD

d (t) the CD estimator ofFN,d(t) based on samplesd, by
F∗

N,d(t) the known true distribution function of the bootstrap populationU∗
d in aread, and byF̂∗,CD

d (t)
the CD estimator ofF∗

N,d(t) based on bootstrap samples∗d. We then estimate the mean squared error of
the CD estimator (10.6) as follows. Starting from samples, selected from a finite populationU without
replacement, we generateB bootstrap populations,U∗b, using one of the four above mentioned methods
for estimating the distribution of the residuals. From eachbootstrap population,U∗b, we selectL samples
using simple random sampling within the small areas and without replacement in a way such thatn∗d = nd.
Finally, bootstrap estimators of the bias and variance of the CD estimator of the distribution function in
area j are defined respectively by

B̂iasd = B−1L−1
B

∑
b=1

L

∑
l=1

(
F̂bl,CD

d (t)−F∗b
N,d(t)

)

and

V̂ard = B−1L−1
B

∑
b=1

L

∑
l=1

(
F̂∗bl,CD

d (t)− ˆ̄F∗bl,CD
d (t)

)2
,

, where
ˆ̄F∗bl,CD
d (t) = L−1∑ F̂∗bl,CD

d (t)

is the distribution function of thebth bootstrap population and̂F∗bl,CD
d (t) is the CD estimator ofF∗,b

N,d(t)
computed from thel th sample of thebth bootstrap population,(b= 1, · · · ,B, l = 1, · · · ,L). The bootstrap
estimator of the mean squared error of the CD-based small area estimate is finally calculated as

M̂SEd

(
F̂CD

d (t)
)

= V̂ard + B̂ias
2
d. (10.13)

Note that the above bootstrap procedure can also be used to construct confidence intervals for the
value ofFN,d(t) by “reading off” appropriate quantiles of the bootstrap distribution of FCD

d (t). Clearly,
the procedure can be used with any small area estimator, and so can be used to compute bootstrap
estimates of the mean squared errors of the M-quantile estimates of the small area means as well as
associated confidence intervals, which can be contrasted with the estimates derived using the analytic
mean squared error estimator.

10.1.3 Model-based simulations for the estimators of smallarea means and quantiles

In this section we present results from a simulation study used to compare the performance of the robust
M-quantile small area estimators. In particular, we considered a model-based simulation in which small
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area population and sample data were simulated based on a two-level linear mixed model with different
parametric assumptions for the area and unit level random effects.

Two methods were used to simulate bivariate population values(y,x) in d = 30 small areas. In both,
N = 232,500 withNd = 500 in aread. For each aread, we selected a simple random sample (without
replacement) of sizend = 30, leading to an overall sample size ofn = 900. The sample values ofy and
the population values ofx were then used to estimate the small area target parameters,which were taken
to be the small area means and selected quantiles ofy. This process was repeated 1000 times.

The first simulation experiment (scenario 1) generated population values ofy usingy jd = 5+ x jd +
γ j +ε jd , with thex jd generated as independently and identically distributed realisations fromN(ξd,ξ2

d/36).
The small areax-meansξd were themselves drawn at random from the uniform distribution on the in-
terval (40, 120), and held fixed over the simulations. Similarly, the random effectsγd and ε jd were
independently and identically generated asN(0,1) andN(0,64) realisations respectively. The second
simulation experiment (scenario 2) generated values of thetarget variable using the same linear model as
in scenario 1, but in this case values ofx jd were generated as independently and identically distributed
realisations fromχ2(Zd), with theZd drawn at random from the integers 1 to 200, and held fixed over
the simulations. Also, the random effectsγd andε jd were independently and identically generated as
mean-correctedχ2(1) andχ2(3) realisations respectively. The purpose of scenario 2 was toexamine the
effect of misspecification of the Gaussian assumptions of a mixed model. Two different types of small
area linear models were fitted to the sample data obtained in these Monte Carlo simulations. These were
(a) a linear mixed model, and (b) a linear M-quantile regression specification. The random intercepts
model used in (a) was fitted using the default settings of the lme function (see Section 10.3 in Venables
and Ripley (2002)) in the R software package. The M-quantilelinear regression fit underpinning (b) was
obtained using a modified version of the rlm function (see Section 8.3 in Venables and Ripley (2002)) in
R. Estimated model coefficients obtained from these fits werethen used to compute a range of EBLUP
and M-quantile-based estimators of means and quantiles in the different areas.

Biases and mean squared errors over these simulations, averaged over the 30 areas, are set out in Table
10.1 (scenario 1) and in Table 10.2 (scenario 2). Under scenario 1 all estimators performed reasonably
well. The differences between the estimators were much morepronounced under scenario 2 (area effects
distributed as chi-squared). Here we see that the use of naive estimators led to substantial biases as
far as quantiles were concerned. In contrast, the estimators (both EBLUP and M-quantile) based on
(10.6) and (10.9) were essentially unbiased, even for extreme quantiles, with the CD-based estimators
somewhat more efficient. On the basis of these results it would appear that estimators that are defined as
functionals of the CDF estimators (10.6) or (10.9) are preferable if there is concern about misspecification
of the distribution of area effects.
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Method Target Parameters
10th 25th 50th Mean 75th 90th

Relative Bias (%)
EBLUP/Naive 0.088 0.041 -0.002 -0.002 -0.036 -0.062
EBLUP/CD 0.096 0.046 0.051 -0.002 0.072 0.160
EBLUP/RKM 0.005 0.015 -0.024 -0.002 0.015 0.105
M-quantile/Naive 0.090 0.044 0.003 0.003 -0.030 -0.055
M-quantile/CD 0.058 0.003 -0.003 -0.002 0.008 0.064
M-quantile/RKM -0.011 0.002 0.008 -0.002 0.009 0.014

Relative RMSE (%)
EBLUP/Naive 0.29 0.23 0.20 0.23 0.19 0.19
EBLUP/CD 0.34 0.25 0.22 0.24 0.21 0.26
EBLUP/RKM 0.31 0.25 0.21 0.24 0.20 0.20
M-quantile/Naive 0.46 0.38 0.33 0.32 0.31 0.30
M-quantile/CD 0.34 0.25 0.21 0.24 0.21 0.24
M-quantile/RKM 0.32 0.25 0.22 0.24 0.21 0.22

Table 10.1: Model-based simulation results for Scenario 1 (Gaussian area effects) averaged over 30
small areas. The target parameters are the small area means and selected percentiles of the small area
distributions.

Method Target Parameters
10th 25th 50th Mean 75th 90th

Relative Bias (%)
EBLUP/Naive 22.48 9.731 0.420 0.024 -4.708 -6.969
EBLUP/CD 0.373 0.205 0.079 -0.018 -0.073 -0.186
EBLUP/RKM 0.216 0.599 0.125 -0.018 -0.348 0.001
M-quantile/Naive 17.24 5.653 -2.641 -1.794 -7.021 -8.787
M-quantile/CD 0.373 0.176 0.028 -0.018 -0.086 -0.188
M-quantile/RKM 0.211 0.596 0.124 -0.018 -0.348 0.003

Relative RMSE (%)
EBLUP/Naive 22.56 9.99 2.86 1.97 4.93 7.03
EBLUP/CD 3.23 3.08 3.01 2.01 3.32 3.90
EBLUP/RKM 4.10 3.56 3.30 2.01 3.46 4.12
M-quantile/Naive 17.60 6.70 3.30 2.49 7.04 8.80
M-quantile/CD 3.23 3.09 3.11 2.01 3.48 3.89
M-quantile/RKM 4.11 3.56 3.36 2.01 3.46 4.12

Table 10.2: Model-based simulation results for Scenario 2 (Chi-squared area effects) averaged over 30
small areas. The target parameters are the small area means and selected percentiles of the small area
distributions.
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In order to evaluate the performance of the linearization-based MSE estimator (10.12) and the boot-
strap MSE estimator (10.13), we carried out a further model-based simulation study. In this study we
focussed on MSE estimation for the 25th, 50th and 75th percentiles using the bootstrap estimator (10.13),
and for the mean using either the linearization-based estimator (10.12) or the bootstrap estimator (10.13).
A total of 200 Monte Carlo simulations were carried out for each percentile and 100 Monte Carlo sim-
ulations for the mean, with the bootstrap MSE estimation implemented by generating a single bootstrap
population at each Monte Carlo simulation and taking L = 500 bootstrap samples from this population.
The bootstrap population was generated unconditionally, with bootstrap population values obtained by
sampling from the smoothed residual distribution generated by the sample data obtained in each Monte
Carlo simulation. Although it would have been theoretically preferable to have generated multiple boot-
strap populations from each Monte Carlo sample, computing limitations restricted our investigation to B
= 1. Since the estimates generated by the bootstrap procedure were then averaged over the 200 Monte
Carlo simulations in our evaluation, this limitation is notas severe as it might appear to be, since the
Monte Carlo simulations themselves serve as proxies for multiple bootstrap populations. Simulation re-
sults evaluating the resulting MSE estimators are set out inTables 3 and 4 and in Figure 10.1. Focusing
first on Table 10.3, we note that under both simulation scenarios, the linearization-based and the boot-
strap MSE estimators tracked the true MSEs of the small area mean estimators very well, and provided
coverage rates that were close to the nominal 95%.

Method MSE estimator for the small area mean
Min 25th 50th Mean 75th Max

Gaussian area effects
True 0.271 0.331 0.411 0.419 0.481 0.783
Linearization 0.289 0.317 0.400 0.416 0.500 0.680
Bootstrap 0.282 0.319 0.401 0.418 0.504 0.715
Coverage Linearization 0.88 0.93 0.95 0.94 0.97 0.99
Coverage Bootstrap 0.88 0.94 0.96 0.96 0.97 0.99

Chi-squared area effects
True 0.344 0.453 0.549 0.589 0.736 1.051
Linearization 0.411 0.453 0.552 0.592 0.689 0.980
Bootstrap 0.398 0.444 0.559 0.589 0.706 1.003
Coverage Linearization 0.87 0.89 0.92 0.93 0.96 0.98
Coverage Bootstrap 0.92 0.95 0.96 0.96 0.97 1.00

Table 10.3: Across areas distribution of true (i.e. Monte Carlo) mean squared error and average over
Monte Carlo simulations of estimated mean squared error andcoverage rates of nominal 95% confidence
intervals for the M-quantile/CD estimator 10.11. Estimated mean squared errors based on (10.13) using
the smoothed unconditional approach (Bootstrap) or (10.12) (Linearization). Intervals were defined as
the M-quantile/CD estimator (10.11) plus or minus twice itsestimated standard error, calculated as the
square root of (10.12) or (10.13).

Focusing next on Table 10.4 and Figure 10.1 we see that the bootstrap MSE estimator also performed
well in terms of approximating the true MSEs of the small areaquantile estimators. Again, coverage rates
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generated by 95% prediction intervals based on these MSE estimates were close to their nominal level.

MSE Percentiles of across areas distribution
Min 25th 50th Mean 75th Max

Gaussian area effects
0.25 quantile True 0.354 0.391 0.491 0.514 0.595 0.887

Estimated 0.345 0.383 0.475 0.500 0.598 0.857
0.50 quantile True 0.311 0.353 0.444 0.469 0.547 0.761

Estimated 0.314 0.348 0.433 0.455 0.543 0.774
0.75 quantile True 0.339 0.386 0.495 0.516 0.611 0.909

Estimated 0.338 0.375 0.471 0.495 0.592 0.867
Chi-squared area effects

0.25 quantile True 0.289 0.357 0.454 0.471 0.569 0.919
Estimated 0.314 0.346 0.437 0.458 0.554 0.795

0.50 quantile True 0.376 0.454 0.575 0.594 0.735 1.087
Estimated 0.395 0.439 0.554 0.578 0.696 1.001

0.75 quantile True 0.594 0.678 0.848 0.893 1.035 1.727
Estimated 0.592 0.666 0.843 0.877 1.058 1.579

Table 10.4: Across areas distribution of the true (i.e. Monte Carlo) mean squared error and average over
Monte Carlo simulations of estimated mean squared error forthe CD estimates of 0.25, 0.50 and 0.75
quantiles from (10.10). Estimated mean squared error for quantiles is based on (10.13) using smoothed
unconditional approach.
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Figure 10.1: Distribution of area-specific coverage rates of nominal 95% confidence intervals for small
area quantiles in the model-based simulations. Intervals were defined as the M-quantile/ CD estimator
(10.10) plus or minus twice its estimated standard error, calculated as the square root of (10.13).

10.2 Small Area Models for Poverty Estimation

In this report we have already discussed small area estimation of averages and quantiles using the unit-
level nested error regression model and the M-quantile small area model. Both models can be also
utilized for estimating more complex statistics such as small area poverty indicators (Foster et al., 1984).
Recently, Molina and Rao (2009) proposed the Empirical BestPrediction (EBP) approach to poverty
estimation under the nested error regression model. Under this model, the EBP approach provides the
best estimator of the target parameter. Nevertheless, withreal data the assumptions of statistical models
may hold only approximately and in fact, on many occasions there are significant departures from the
model assumptions. An alternative approach to poverty estimation is based on the M-quantile small
area model. The M-quantile method does not impose strong distributional assumptions and is outlier
robust. Hence, the use of the M-quantile model for poverty estimation may protect us against departures
from assumptions of the unit-level nested error regressionmodel. In this section we contrast these two
small area methodologies for poverty estimation both when the assumptions of the unit-level nested error
regression model hold and when these assumptions are violated.

10.2.1 Definitions of poverty indicators

Although small area averages are widely used in small area applications, relying only on averages may
not provide an very informative picture about the distribution of wealth in a small area. In economic
applications for example, estimates of average income may not provide an accurate picture of the area
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wealth due to the high within area inequality. Here we focus exclusively on the estimation of two poverty
indicators i.e. the incidence of poverty orHead Count Ratio F0 and thePoverty Gap F1 (see Foster et al.
(1984)). Denoting byt the poverty line, the FGT poverty measures for a small aread are defined as

Fαd = (
t −y jd

t
)αI(y jd 6 t). (10.14)

Settingα = 0 defines theHead Count Ratiowhereas settingα = 1 defines thePoverty Gap.

10.2.2 The M-quantile approach for poverty estimation

In this section we discuss estimation of the poverty indicators of interest under the M-quantile model. To
start with, the target is to estimateFad using the M-quantile small area model

Fαd = N−1
d

[
∑
j∈sd

Fαd + ∑
j∈rd

Fαd

]
, (10.15)

The question again is how to estimate the out of sample component in the expression above. This can
be achieved using the ideas we described in Section 10.1.1 for estimating the small area distribution
function under the M-quantile small area model. As we mentioned in Section 10.1.1, using the empirical
distribution of the small area population distribution function may provide biased results especially when
the aim is to estimate small area quantiles. Poverty estimation is a special case of quantile estimation
since we are interested in estimating the number of individuals/households below a threshold. As a result
one approach to estimatingFαd is by using a smearing-type estimator of the distribution function such as
the Chambers-Dunstan estimator. In this case, an estimatorF̂MQ

αd of FMQ
αd is

F̂ad = N−1
d

{
∑
j∈sd

I(y j ≤ t)+ ∑
k∈rd

n−1
d ∑

j∈sd

I(ŷk +(y j − ŷ j) ≤ t)

}

The above can be evaluated using the following procedure.

1 Fit the M-quantile small area model (1.1) using the rawys sample values and obtain estimates of
β andqd;

2 draw an out of sample vector using

y∗jdr = x jdr β̂(θ̂d)+e∗jdr ,

wheree∗jdr is a vector of sizeNd − nd drawn from the Empirical Distribution Function (EDF) of

the estimated M-quantile regression residuals or from a smooth version of this distribution and̂β,
θ̂d are obtained from the previous step;

3 repeat the processH times. Each time combine the sample data and out of sample data for esti-
mating the target using

F̂MQ
ad = N−1

d

[
∑
j∈sd

I(y j 6 t)+ ∑
j∈rd

I(y∗j 6 t)
]
;



194 Chapter 10. M-quantile methods

4 average the results overH simulations.

At this point, we should elaborate on some aspects of the approach used for estimating the poverty
indicators under the M-quantile small area model. To start with, we must point out that one can use
different approaches for drawinge∗jdr . One can draw conditional (upon the small area) or unconditional
residuals from the EDF or from a smoothed version of the EDF. The outlined approach for estimating the
poverty indicators, although less parametric, is similar in spirit to the EBP approach proposed by Molina
and Rao (2009). Note for example thaty∗jdr is generated usingx jdr β̂(θ̂d) i.e. from the conditional M-

quantile model plus a draw from the empirical distribution of residuals. Under this approachθ̂d play the
role of the area random effects in the M-quantile modelling framework. These area-specific M-quantile
coefficients are not fixed i.e. they are estimated under the M-quantile model using fewer assumptions
than the ones utilized by the unit-level nested error regression model for estimating the area random
effects. Of course, when the assumptions of the random area effects model hold, the EBP approach of
Molina and Rao (2009) offers the best predictor. However, when the assumptions of the random area
effects model are not met, the M-quantile approach for estimating the incidence of poverty may offer a
competitive alternative. A mean squared error of the M-quantile estimates of the incidence of poverty
can be obtained using the non-parametric bootstrap approach described in Tzavidis et al. (2010). In the
following section, we use two model-based simulation scenarios for contrasting the EBP and M-quantile
approaches to poverty estimation. Under the first scenario the assumptions of unit-level nested error
regression model are perfectly met and we assess the efficiency gains from using the EBP approach.
Under the second scenario we generate population data underalternative parametric assumptions and we
aim at assessing whether the less parametric M-quantile approach offers any efficiency gains in this case.

10.2.3 A Model-based Simulation

The model-based simulation scenario we consider is exactlythe same as the one employed by Molina
and Rao (2009). In particular, we simulated populations of size N = 20000 for 80 small areas with
Nd = 250. The response variable for the population unitsy jd was generated from a linear mixed model
taking as auxiliary variables two dummies plus an interceptterm. The values of these two dummies for
the population units were generated from Bernoulli distributions with success probabilities increasing
with the area index for X1 and constant for X2 and more specifically,

p1d = 0.3+
0.5d
80

, p2d = 0.2,

and welfare variables are exponential functions of the responsesy jd . A set of sample indicessd with
nd = 20 was drawn independently in each aread using simple random sampling without replacement.
The values of the auxiliary variables for the population units and the sample indices were kept fixed over
theH = 5000 Monte Carlo simulations. The intercept and the regression coefficients associated with the
two auxiliary variables used to generate populations wereβ = (3,0.03, .0.04) and the poverty linet was
fixed as 0.6 times the median of they. We considered two scenarios for generating the area-leveland
unit-level residuals.

• Scenario 1: Scenario 1:ud ∼ N(0,0.152) andejd ∼ N(0,0.52)

• Scenario 2: Mean-centeredX2 with ud ∼ X2(2) andejd ∼ X2(4).
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For each Monte-Carlo population we computed the true poverty indicatorsFTR
ad and we also used

three small area estimators (a) the direct estimatorF̂Dir
ad , (b) the EBPF̂EBP

ad , and (c) the M-quantilêFMQ
ad .

The performance of these three estimators is evaluated using the following two measures

• Bias: RBd = 1
H

H
∑

h=1

(F̂ad−FTR
ad )

FTR
ad

• Root Mean Square ErrorRRMSEd = [ 1
H

H
∑

h=1
(F̂ad−FTR

ad )2]
1
2

The results of the model-based simulations are summarised in Figures 1.2-1.5. As expected when the
assumptions of the unit-level nested error regression model hold, the EBP approach offers estimates with
the smallest MSE. The M-quantile estimates have a bit largerMSE and the direct estimates are the most
inefficient. On the other hand, when the Gaussian assumptions of the unit-level nested error regression
model do not hold, we notice that the M-quantile approach offers small area estimates of poverty that
are more efficient while the EBP estimates are more efficient than the direct ones. These results indicate
that the less parametric M-quantile approach can protect usagainst model mispecification. However, if
we are certain that the model assumptions are met, the EBP approach will always offer the most efficient
method to poverty estimation.
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Figure 10.2: Model based simulations: MSE of the EBP (red), direct (black), and MQ (blue) estimators
of HCR, for each area when the normality assumptions hold.
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Figure 10.3: Model based simulations: MSE of the EBP (red), direct (black), and MQ (blue) estimators
of PG, for each area when the normality assumptions hold.
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Figure 10.4: Model based simulations: MSE of the EBP (red), direct (black), and MQ (blue) estimators
of HCR, for each area when the chi-square assumptions hold.
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Figure 10.5: Model based simulations: MSE of the EBP (red), direct (black), and MQ (blue) estimators
of PG, for each area when the chi-square assumptions hold.



10.2. Small Area Models for Poverty Estimation 199

10.2.4 A Design-based Simulation

The aim of this section is to empirically contrast the two methodologies using a design-based simulation
that utilizes real data from the 2007 European Survey on Income and Living Conditions (EU-SILC) in
Italy. Our target is the estimation of the incidence of poverty for 29 Italian Provinces in three Regions:
Lombardia (Northern Italy), Toscana (Central Italy) and Campania (Southern Italy). Data on the house-
hold equivalised income, on household characteristics (size of the household in square meters) and on
individual characteristics of the head of the household (gender, education, marital status and employ-
ment) are available.

The synthetic population data on which this simulation is based is generated by nonparametrically
bootstrapping (within each of the 29 target small areas) theEU-SILC original sample dataset. This
synthetic population was kept fixed and five hundred within province simple random samples of size
equal to the sample size of each province in the original dataset were selected independently. Estimated
values of the incidence of poverty at province level were obtained using the MQ (on the raw equivalised
income) and the EBP (on the logarithm of equivalised income)estimators described in the previouos
sections. The simulation results are set out in Figures 10.6, 10.7, 10.8 which show the relative bias, the
square root of the variance, and the root mean squared error for the estimation of the HCR. This assists
us in understanding how the different components i.e. bias and variance contribute to the mean squared
error. To start with, we note that the M-quantile-based poverty estimation method has smaller RMSE in
most provinces (Figure 10.8). To explain this result we firstfocus on the variance results. It is clear that
the EBP method has lower variance in most provinces (Figure 10.7), which we may expect given that the
EBP is based on a random effects model. This result indicatesthat the worse performance of the EBP in
terms of RMSE must be due to bias. Indeed, the bias of the EBP ishigher than the bias of the M-quantile
estimates for most provinces (Figure 10.6).

At this point it is important to remind that the synthetic population of this design-based simula-
tion is not generated under a model but by non-parametrically bootstrapping the original sample data.
One may argue that the nonparametric bootstrap for creatingthe synthetic population creates an over-
representation of influential points in this population that affects the EBP approach and favors the
M-quantile approach. For this reason, we replicated the design-based simulation this time generating
the synthetic population by non-parametrically bootstrapping the original sample using also the survey
weights. The results from this second design-based simulation are not reported here but the conclusions
about the performance of the two approaches to poverty estimation remain the same as above. One
explanation about higher bias in the EBP estimates is that this may be due to the effect of the simple ex-
ponential backtransformation. However, we are not convinced that the backtransformation is the source
of the problem. Looking at the fit of the random effects model to the sample data, we noted that the
Gaussian assumptions utilized by the EBP method are not met even when the log-transformed income
is used. Hence generating area random effects and individual errors under these assumptionsmay not be
realistic in this case. On the other hand, utilizing the empirical distribution of the residuals, as in the case
of the M-quantile approach, may protect us against the misspecification of the parametric assumptions.
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Figure 10.6: Design based simulations: relative bias of theEBP and MQ estimators of the HCR, for each
area.
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Figure 10.7: Design based simulations: square root of the variance of the EBP and MQ estimators of the
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Figure 10.8: Design based simulations: root MSE of the EBP and MQ estimators of the HCR, for each
area.

10.2.5 Alternative measures for poverty: fuzzy indicatorsat a small area level with M-
quantile models

In this section we propose estimators for the fuzzy monetaryand fuzzy supplementary indicators at
a small area level based on the M-quantile model. Fuzzy approach considers poverty as a matter of
degree rather than an attribute that is simply present or absent for individuals in the population of Betti
et al.(2009).

Fuzzy indicators have been made such that they vary from 0 to 1, where 0 indicates the richest person
in the population while 1 indicates the poorest.

The fuzzy monetary indicator is based on the equivalised income,E. For small aread is defined as:

FMd = N−1
d

Nd

∑
j=1

FM j

whereFM j is the fuzzy monetary index for thejth unit in the population:

FM j =

[
(Nd −1)−1

Nd

∑
k=1

I(Ek > E j)

]α−1[
∑Nd

k=1EkI(Ek > E j)

∑Nd
k=1 Ek

]
.

The parameterα is arbitrary, but Cheli and Betti (1999) have chosenα so that the mean ofFM j for the
whole population is equal to the head count ratio computed for the official poverty line.

An estimator ofFMd under the M-quantile model is given by
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F̂M
MQ
d = N−1

d

[
∑
j∈sd

FM j + ∑
j∈rd

F̂M
MQ
j

]
. (10.16)

Under the M-quantile model an empirical approach for estimating equation (10.16) is implemented using
the same Monte-Carlo approximation described in section 10.2.2.

1. Fit the M-quantile model (10.1) using the rawE sample values and obtain estimates ofβ(θd);

2. draw an out of sample vector using

E∗
j = x j β̂(θ̂d)+e∗j j ∈ rd,

wheree∗j , j ∈ rd is drawn from the EDF of the estimated M-quantile regressionresiduals and̂β(θ̂d)
is obtained from the previous step;

3. repeat the processH times. Each time combine the sample data and the out of sampledata for
estimating the target using

F̂M
MQ
d = N−1

d

[
∑
j∈sd

FM j + ∑
j∈rd

F̂M
MQ
j

]
,

whereF̂M
MQ
j is estimated using the observed and the predicted equivalised incomesEd = {E j , j ∈

sd ∪E∗
j , j ∈ rd}.

4. average the results overL simulations.

The fuzzy supplementary indicator put together diverse indicators of deprivation, such as housing
conditions, possession of durable goods, perception of hardship, expectations, norms and values.

To quantify and put together diverse indicators several steps are necessary (see Betti et al. (2009)):

1. Identification of items;

2. transformation of the items into the[0,1] interval;

3. exploratory and confirmatory factor analysis;

4. calculation of weights within each dimension;

5. calculation of scores for each dimension;

6. calculation of an overall score and the parameterα;

7. construction of the fuzzy deprivation measure in each dimension (and overall).
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The steps 1 to 3 are used to identify different dimensions of the poverty where each dimension is
composed of a given number of items.

Let K be the number of dimensions andkh the number of items (i = 1, . . . ,kh) within thehth dimen-
sion (h = 1, . . . ,K). The weight,w, for a given dimensionh formed bykh items and a given itemzi

is

whi ∝
[

σh,zi

1− z̄i

]

(

1+
kh

∑
i=1

rh,zi ;h,z′i
I(rh,zi ;h,z′i

< r∗h,zi ;h,z′i
)

)−1(
1+

kh

∑
i=1

rh,zi ;h,z′i
I(rh,zi ;h,z′i

> r∗h,zi ;h,z′i
)

)−1

 ,

wherez̄i andσh,zi are the mean and the standard deviation of theith item respectively.rh,zi ;h,z′i
is correla-

tion coefficient between deprivation indicators corresponding to itemzi and the other items present in the
hth dimension,r∗h,zi ;h,z′i

is the critical value of the correlation coefficient (see Betti et al. (2009)). Once
weights are calculated for each items in a given dimension they are scaled in such a way that they sum
to 1 within the dimension.

The score for thehth dimension for thejth individual is then computed as

sh, j =
kh

∑
i=1

whi
zhi, j

whi
,

wherezhi, j is the value of theith item in thehth dimension for the individualj.
An overall score for thejth individual is calculated as the following unweighted mean:

sj = K−1
K

∑
h=1

sh, j .

Finally the fuzzy supplementary for thejth individual over all dimensions is computed as:

FSj =

[
∑N

g= j+1 I(sg > sj)

∑N
g=2 I(sg > sj)

]α−1[
∑N

g= j+1sgI(sg > sj)

∑N
g=2sgI(sg > sj)

]
,

whereα is computed as for the fuzzy monetary indicator. Using the score of a given dimension we can
compute fuzzy supplementary indicators for each dimension.

At a small area level we propose to compute scores for the sampled units as mentioned before and
then use the M-quantile model (or other proper models) to predict scores for the non sampled units in
the population. Once we have the scores for each individual,wheres are observed andr are predicted1,
we can estimate the fuzzy supplementary indicator for each small areas using the same Monte-Carlo
approximation described for the fuzzy monetary index.

We remand to the final WP1 deliverable for a deepened discussion about fuzzy sets. Here, we want
just to provide a first approach to estimate fuzzy indicatorsat a small area level. The used approach is
similar in spirit to the EBP approach proposed by Molina and Rao (2009).

1Note that in this statements indicates the set of the sampled units and not the score variable.
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Bias∗105 Min. 1st Qu. Median Mean 3rd Qu. Max.
EBP −1.00 1.69 2.57 2.59 3.70 5.40
MQ −17.45 −14.93 −13.39 −12.84 −11.14 −5.07

MSE∗104 Min. 1st Qu. Median Mean 3rd Qu. Max.
EBP 5.23 5.44 5.50 5.52 5.61 5.89
MQ 5.21 5.43 5.52 5.52 5.61 5.85

Table 10.5: Distribution over areas of the bias(∗105) and mean squared error(∗104) of the EBP and MQ
estimators of the small area fuzzy monetary index

10.2.6 Model based simulation for fuzzy monetary indicatorat a small area level

The model-based simulation has been carried out using the same scenario as the one employed by Molina
and Rao (2009). This scenario has been already described in section 10.2.3 as scenario 1.

We evaluate the performance of the fuzzy monetary indicatorusing the following two measures:

• Bias:

Bd = L−1
L

∑
l=1

F̂Md −FMTR
d ;

• Mean Squared Error:

MSEd = L−1
L

∑
l=1

(F̂Md −FMTR
d )2;

whereFMTR
d is the true value of the fuzzy monetary indicator in aread, F̂Md is an estimator of the fuzzy

monetary chosen between the EBP estimator and the M-quantile estimator. The EBP estimator is based
on the EBP approach described in chapter 2.

Results for EBP and MQ estimators are summarised in Table 1.5. In Figures 10.9 and 10.10 we show
the performance in each area of the EBP and MQ estimators of the fuzzy indicator.

The EBP shows the best performance in terms of bias while the mean squared error is similar for
EBP and MQ estimator. The MQ estimator shows a bigger bias than EBP and this is probably due to
the fact that we used a scenario that fit perfectly with the parametric assumptions of the EBP so that MQ
estimator can’t reach the same level of precision.

Fuzzy supplementary indicators are thought to resume a large set of variables that are proxies for
poverty and social exclusion. Typically one have to identify a given number of dimensions with factor
analysis, where each dimension is build by a set of items. Given that, since in our scenario we considered
only two dummy variables, we decided to not include the fuzzysupplementary indicator in the simulation
study: we believe that it does not have sense to compute this indicator with a so poor set of variables.



10.2. Small Area Models for Poverty Estimation 205

0 20 40 60 80

-2
0

-1
5

-1
0

-5
0

5

Bias of Fuzzy Monetary indicator

areas

B
ia
s
*
1
0
^
5

EBP

MQ

Figure 10.9: Model based simulations: bias of the EBP and MQ estimators of the fuzzy monetary indi-
cator, for each area.



206 Chapter 10. M-quantile methods

0 20 40 60 80

5
.0

5
.2

5
.4

5
.6

5
.8

6
.0

MSE of Fuzzy Monetary indicator

areas

m
s
e
*
1
0
^
4

EBP

MQ

Figure 10.10: Model based simulations: mean squared error of the EBP and MQ estimators of the fuzzy
monetary indicator, for each area.

10.3 Nonparametric M-quantile regression models in small area estima-
tion

M-quantile models do not depend on strong distributional assumptions, but they assume that the quantiles
of the distribution are some known parametric function of the covariates. When the functional form of
the relationship between theq-th M-quantile and the covariates deviates from the assumedone, the
traditional M-quantile regression can lead to biased estimates of theβ coefficients. Pratesi et al. (2008)
and Salvati et al. (2010b) have extended this approach to theM-quantile method for the estimation of the
small area parameters using a nonparametric specification of the conditional M-quantile of the response
variable given the covariates. When the functional form of the relationship between theq-th M-quantile
and the covariates deviates from the assumed one, the traditional M-quantile regression can lead to biased
estimators of the small area parameters. Using p-splines for M-quantile regression, beyond having the
properties of M-quantile models, allows for dealing with anundefined functional relationship that can
be estimated from the data. When the relationship between the q-th M-quantile and the covariates is not
linear, a p-splines M-quantile regression model may have significant advantages compared to the linear
M-quantile model.

Let us consider only smoothing with one covariatex1, a nonparametric model for theqth quantile can
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be written asQq(x1,ψ) = m̃ψ,q(x1), where the function ˜mψ,q(·) is unknown and, in the smoothing context,
usually assumed to be continuous and differentiable. Here,we will assume that it can be approximated
sufficiently well by the following function

mψ,q[x1;βψ(q),γψ(q)] = β0ψ(q)+ β1ψ(q)x1 + . . .+ βpψ(q)xp
1 +

K

∑
k=1

γkψ(q)(x1−κk)
p
+, (10.17)

wherep is the degree of the spline,(t)p
+ = tp if t > 0 and 0 otherwise,κk for k = 1, . . . ,K is a set of fixed

knots, βψ(q) = (β0ψ(q),β1ψ(q), . . . ,βpψ(q))t is the coefficient vector of the parametric portion of the
model andβγψ(q) = (γ1ψ(q), . . . ,γKψ(q))t is the coefficient vector for the spline one. The latter portion
of the model allows for handling nonlinearities in the structure of the relationship. The spline model
(10.17) uses a truncated polynomial spline basis to approximate the function ˜mψ,q(·). Other bases can
be used; in particular radial basis functions can be used to handle bivariate smoothing. More details on
bases and knots choice can be found in Ruppert et al. (2003).

The influence of the knots is limited by putting a constraint on the size of the spline coefficients:
typically ∑K

k=1γ2
kψ(q) is bounded by some constant, while the parametric coefficients βψ(q) are left un-

constrained. Therefore, by dropping the area subscriptd for ease of notation, estimation can be accom-
modated by mimicking penalization of an objective functionand solving the following set of estimating
equations

n

∑
j=1

ψq(y j −x jβψ(q)−z jγψ(q))(x j ,z j)trace+ λ

[
0(1+p)

γψ(q)

]
= 0(1+p+K), (10.18)

assuming that
ψq(r jqψ) = 2ψ{s−1r jqψ}{(1−q)I(r jqψ ≤ 0)+qI(r jqψ > 0)}

where r jqψ = y j − x jβψ(q)− z jγψ(q), s is a robust estimate of scale, e.g. the MAD estimates =
median|r jqψ|/0.6745,x j here is thej-th row of then× (1+ p) matrix

X =




1 x11 · · · xp
11

...
...

. . .
...

1 x1n · · · xp
1n


 ,

while z j is the j-th row of then×K matrix

Z =




(x11−κ1)
p
+ · · · (x11−κK)

p
+

...
. . .

...
(x1n−κ1)

p
+ · · · (x1n−κK)

p
+


 ,

and λ is a Lagrange multiplier that controls the level of smoothness of the resulting fit. An iterative
solution is needed here to obtain estimatesβ̂ψ(q) and γ̂ψ(q). Consider the Huber proposal 2 influence
function (see Huber(1981)) an algorithm based on iteratively reweighted penalized least squares is pro-
posed in Pratesi et al. (2009) to effectively compute the parameter estimates.

Once parameter estimates are obtained, ˆmψ,q[x1] = mψ,q[x1; β̂ψ(q), γ̂ψ(q)] can be computed as an
estimate forQq(x1,ψ). The approximation ability of this final estimate will heavily depend on the value
of the smoothing parameterλ. Generalized Cross Validation (GCV) has been usefully applied in the
context of smoothing splines (see Craven and Wahba (1979)) and is used also in Pratesi et al. (2009).
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Extension to bivariate smoothing can be handled by assumingQq(x1,x2,ψ) = m̃ψ,q(x1,x2). This is
of central interest in a number of application areas when referenced responses need to be converted to
maps, as in environment and poverty mapping. In particular,the following model is assumed at quantile
q for unit i:

mψ,q[x1 j ,x2 j ;βψ(q),γψ(q)] = β0ψ(q)+ β1ψ(q)x1 j + β2ψ(q)x2 j +ziγψ(q). (10.19)

Herez j is the j-th row of the followingn×K matrix

Z = [C(x̃ j −kk)] 16 j6n
16k6K

[C(kk−kk′)]
−1/2
16k,k′6K , (10.20)

whereC(βt) = ||βt||2 log||βt||, x̃ j = (x1 j ,x2 j ) andkk, k = 1, . . . ,K are knots. See Pratesi et al. (2009) for
details on this. Here, it is enough to note that the estimation procedure can again be pursued with (10.18)
wherex j = (1, x̃ j).

The choice of knots in two dimensions is more challenging than in one. Two solutions suggested
in literature that provide a subset of observations nicely scattered to cover the domain arespace filling
designs(see Nychka and Saltzman (1998)) and theclara algorithm. The first one is based on the maximal
separation principle ofK points among the uniquẽx j and is implemented in thefields package of the
R language. The second one is based on clustering and selectsK representative objects out ofn; it is
implemented in the packagecluster of R.

It should be noted, then, that the estimating equations in (10.18) can be used to handle univariate
smoothing and bivariate smoothing by suitably changing theparametric and the spline part of the model,
i.e. once theX and theZ matrices are set up. Finally, other continuous or categorical variables can
be easily inserted parametrically in the model by adding columns to theX matrix. This allows for
semiparametric modeling, as intended in Ruppert et al. (2003), to be inherited and applied to M-quantile
regression.

10.3.1 Small area estimator of the mean and of the quantiles

Salvati et al. (2010b) have applied the P-splines M-quantile regression to the estimation of a small area
mean as follows. The first step is to estimate the M-quantile coefficientsq jd as illustrated in paragraph
10.1 for the linear case treated in Chambers and Tzavidis (2006). Recall that the M-quantile coefficient
q jd of unit j in aread is the valueq jd such thatQqjd (x1 jd ,ψ) = y jd . The unit level coefficients are
estimated by defining a fine grid of values on the interval(0,1) and using the sample data to fit the p-
splines M-quantile regression functions at each valueq on this grid. If a data point lies exactly on the
q-th fitted curve, then the coefficient of the corresponding sample unit is equal toq. Otherwise, to obtain
q jd , a linear interpolation over the grid is used. An estimate ofthe mean quantile for aread is obtained
by taking the corresponding average value of the sample M-quantile coefficient of each unit in aread.
The small area estimator of the mean may be taken as:

ˆ̄Yd =
1

Nd

{
∑
j∈sd

y jd + ∑
j∈rd

ŷ jd

}
, (10.21)

where the unobserved value for population unitj ∈ rd is predicted using

ŷ jd = x jd β̂ψ(θ̂d)+z jd γ̂ψ(θ̂d),
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whereβ̂ψ(θ̂d) andγ̂ψ(θ̂d) are the coefficient vectors of the parametric and spline portion, respectively, of

the fitted p-splines M-quantile regression function atθ̂d.
However, the estimator of the small area mean can be biased for small areas containing outliers. This

has already been noted in Tzavidis and Chambers (2006) for the estimator under the a linear M-quantile
regression model. They propose an adjustment for bias basedon the Chambers and Dunstan (1986)
estimator of the small area distribution function. This adjustment can be used also in case of p-splines
M-quantile regression models. The bias-adjusted estimator for the mean is given by

ˆ̄YNPMQ/CD
d =

1
Nd

{
∑
j∈Ud

ŷ jd +
Nd

nd
∑
j∈sd

(y jd − ŷ jd)
}

, (10.22)

whereŷ jd denotes the predicted values for the population units insd and inUd. This estimator will be
here denoted withNPMQ when using the p-splines M-quantile regression model, and with MQ when
using the linear one.

Due to the bias correction in (10.22), this predictor will have higher variability and so should only be
used when the estimator (10.21) is expected to have substantial bias, e.g. when there are large outlying
data points. An alternative approach to dealing with the bias-variance trade off in (10.22) in such a
situation is to limit the variability of the bias correctionterm in (10.22) by using robust (huberized)
residuals instead of raw residuals. In particular,

ˆ̄YNPMQ/Rob
d =

1
Nd

{
∑
j∈sd

y jd + ∑
j∈rd

ŷ jd +
Nd−nd

nd
∑
j∈sd

νdψ
(y jd − ŷ jd

νd

)}
(10.23)

whereνd is a robust estimate of scale for aread (see Tzavidis and Chambers (2007)).
Using the nonparametric M-quantile predictor for the non sampled units we can define a model

unbiased estimator of the small area distribution function(10.6):

F̂NPQM/CD
d (t)= N−1

d

{
∑
j∈sd

I(y j ≤ t)+ ∑
k∈rd

n−1
d ∑

j∈sd

I(xkdβ̂ψ(θ̂d)−z jd γ̂ψ(θ̂d)+ (y j −x jd β̂ψ(θ̂d)+z jd γ̂ψ(θ̂d)) ≤ t)

}
.

(10.24)
Similarly to M-quantile small area models, theqth quantileµ̂qd of the distribution ofy in aread is

straightforwardly estimated by the solution to

Z µ̂qd

−∞
dF̂NPQM

d (t) = q. (10.25)

10.3.2 Mean squared error estimation

Salvati et al. (2010b) also propose an estimator of the MSE ofthe small area mean. For fixedq andλ,
the ˆ̄Yj in (10.23) can be written as the following linear combination of the observedy jd plus an additional
part due to the huberized residuals. In particular,

ˆ̄YNPMQ/Rob
d =

1
Nd

∑
j∈s

w jdy jd , (10.26)
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where the weightswd = (w1d, . . . ,wnd)
T are given by

wd =
{

1+
Nd −nd

nd
b jd

}
1sd+

+W(θ̂d)[X,Z]
(
[X,Z]traceW(θ̂d)[X,Z]+ λG

)−1
(

Trd −
Nd −nd

nd
Tsd

)
(10.27)

with b jd = ψ
(

yjd−ŷjd

νd

)
/
(

yjd−ŷjd

νd

)
, 1sd the n-vector with jth component equal to one whenever the cor-

responding sample unit is in areaj and to zero otherwise,W(θ̂d) a diagonaln×n matrix that contains
the final set of weights produced by the iteratively reweighted penalized least squares algorithm used to
estimate the regression coefficients,G = diag{01+p,1K} with 1+ p the number of columns ofX andK
the number of columns ofZ, and withTrd andTsd the totals of the covariates for the non-sampled and
the sampled units in aread, respectively. Note thatTsd = ∑ j∈sd

[x jd z jd ]Tb jd .
The weights derived from (10.27) are treated as fixed and a “plug in” estimator of the mean squared

error of estimator (10.26) can be proposed by using standardmethods for robust estimation of the vari-
ance of unbiased weighted linear estimators (see Royall andCumberland (1978)) and by following the
results due to Chambers and Tzavidis (2006). The predictionvariance of (10.26) can be approximated
by

var( ˆ̄YNPMQ/Rob
d −Ȳd) ≈

1

N2
d

[
∑
j∈sd

{
d2

jd +
Nd−nd

nd −1

}
var(y jd)+ ∑

j∈s\sd

b2
jdvar(y jd)

]
(10.28)

with b jd = w jd −1 if j ∈ sd andb jd = w jd otherwise, ands\sd the set of sampled units outside aread.
Following the area level residual approach of Tzavidis and Chambers (2006), we can interpret var(y jd)
conditionally to the specific aread from which yd is drawn and hence replace var(y jd) in (10.28) by
(y jd − ŷ jd)2. Salvati et al. (2010b) develop a robust estimator of the mean squared error of (10.26) that
is given by

v̂ar( ˆ̄YNPMQ/Rob
d ) =

1

N2
d

[
∑
j∈sd

{
b2

jd +
Nd −nd

nd −1

}
(y jd − ŷ jd)2 + ∑

j∈s\sd

b2
jd(y jd − ŷ jd)2

]
. (10.29)

Since the bias-adjusted nonparametric M-quantile estimator is an approximately unbiased estimator
of the small area mean, the squared bias will not impact significantly the mean squared error estimator.
The main limitation of the MSE estimator is that it does not account for the variability introduced in
estimating the area specificq’s andλ. We note also that we can obtain an estimate only for areas where
there are at least two sampled units. Details on the propertyof the MSE estimator can be found in
Tzavidis et al. (2010) and Salvati et al. (2010a).

10.3.3 Simulations for nonparametric M-quantile models

In this section we use simulation studies to illustrate the finite-sample performance of the small area
mean estimator based on p-splines M-quantile regression –NPMQ. It is compared with the estimator
computed by standard linear M-quantile regression –MQ – and with the Empirical Best Linear Unbiased
Prediction estimators based on Battese et al. (1988) model –EBLUP – and on nonparametric regression
model by Opsomer et al. (2008) –NPEBLUP. We carried out one simulation study where the properties
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of the estimators of the small area mean and of its MSE have been assessed by Monte Carlo experiments
using models with a single covariate. These results are reported in Salvati et al. (2010b) and will be
published in theJournal of Statistical Computation and Simulation. We also consider and compare the
estimators of the small area quantiles, namely of quantiles0.25, 0.5 and 0.75. In this case

Given the number of small areasd = 30, three synthetic populations of sizeN = 10,550 are generated
under the random intercepts model

y jd = m(x jd)+ γd + ε jd

with x drawn from a Uniform distribution[0,1] and area effectsγd were independently drawn from
N(0,0.04). The true underlying relationship between the covariatex and the expected value of the
response variabley E(y|x) = m(x) were generated by the following models:

Linear. m(x) = 3+2(x−0.5): it represents a situation in whichMQ andEBLUP are based on a good
representation of the true model andNPMQ andNPEBLUP may be too complex;

Cycle. m(x) = 2sin(2πx): it defines an increasingly more complicated structure of the relationship be-
tweeny andx;

Jump. m(x) = 1+ 2(x− 0.5)I(x 6 0.5) + 0.5I(x > 0.5): it is a discontinuous function for which all
estimators are based on a misspecified model.

Two different settings are considered for the individual effectsε jd:

• Gaussian errors with mean 0 and standard deviation 0.4 for the units belonging to twenty-four
small areas and

• 15% contaminated Gaussian errors for the units belonging tothe other six small areas where 85%
percent of errors are generated from a Normal distribution with mean 0 and standard deviation 0.4
and the remaining 15% percent of errors are generated from a Normal distribution with mean 0
and standard deviation 2.

The setting for the first 24 small areas is considered as a situation of ÔregularlyÕ noisy data withρ =
σ2

γ
σ2

γ+σ2
ε
= 0.2. The setting for the second group of six small areas, on the contrary, defines a situation of

more noisy data with the likely presence of outlying observations. We will denote by contaminated data
the latter setting, while by uncontaminated data the former.

A sample of sizen = 600 was selected from the simulated population, by simple random sampling.
Each population was kept fixed for all simulation runs. A total of T = 500 simulations were carried out.
For each sampleMQ, NPMQ, EBLUP andNPEBLUP have been used to estimate the small area means.
First, second and third quantile have been computed with NPMQ and MQ models under linear, cycle and
jump signal. ForMQ andNPMQ, the Huber Proposal 2 influence function is used withc = 1.345. This
value gives reasonably high efficiency in the normal case it produces 95% efficiency when the errors are
normal and still offers protection against outliers (see Huber(1981)). Moreover, in the correction term of
theMQ andNPMQ estimators, robust (huberized) residuals instead of raw residuals are used. For each
estimator and for each small area we computed the Monte Carloestimate of the percentage relative bias

RB%d =
BdMC

Ȳd
100; (10.30)
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the Root Mean Squared Error

RMSEdMC =

√
1
T

T

∑
t=1

( ˆ̄Ydt −Ȳd)2, (10.31)

and the corresponding percentage Relative Root Mean Squared Error

RRMSE%d =
RMSEdMC

Ȳd
100. (10.32)

Figures 10.11, 10.12 and 10.13 report the RB%d, RRMSE%d values obtained for this study under the
linear, cycle and jump signal, respectively. Tables 1.6 , 1.7 and 1.8 show the behavior of quantiles
estimates under the same types of signal. MSE estimation wasmonitored comparing MSE estimates and
Monte Carlo MSEs, and by checking 95% confidence intervals coverage rates CR%. For MSE estimation
of theNPMQ estimator we used expression (10.29), whereas the MSE estimation ofMQ predictor was
carried out following the method suggested in Chambers and Tzavidis (2006). MSE estimation of the
EBLUP andNPEBLUP comes from analytical expressions introduced in Prasad andRao (1990) and
Opsomer et al. (2008), respectively. Intervals are defined by the small area mean estimate plus or minus
twice their corresponding estimated root mean squared error. Areas are arranged in order of increasing
population size and divided between uncontaminated and contaminated.

From Figure 10.11 – linear signal – we can see that in the uncontaminated areas 1-24 M-quantile
type estimators (NPMQ and MQ) have a much better performance in terms of bias than the Mixed
Model (MM) type estimators (EBLUP andNPEBLUP), while in terms of efficiency they all perform
almost the same. In the contaminated areas 25-30, on the other hand, things change. Bias becomes an
issue also for MQ estimators, although it seems that most of it comes from their poor performance in
area 27. In addition, MM estimators are less efficient than MQestimators in these areas. As of MSE
estimation investigated through coverage rates, it shouldbe noted that MQ estimators have a much better
performance than MM estimators for both contaminated and uncontaminated areas. In the former, MM
estimators have a way too low coverage, while in the latter a way too high. Finally, note that the fact that
estimators based on nonparametric models –NPMQ andNPEBLUP – have the same performance of
those based on linear models –MQ andEBLUP – shows that they do not loose efficiency under a linear
model even using a too complex model. Focusing on the estimation of the quantiles from Table 1.6 it
stems out that NPMQ and MQ have the same performance in terms of relative bias and relative mean
squared error. The result is expected as the signal is linear: both in contaminated and uncontaminated
areas the two methods give very similar results in average and median values of bias and variability.

From Figure 10.12 we can see that MQ type estimators have again smaller bias than MM estimators
for uncontaminated areas. Efficiency, in this case, heavilydepends on the model used, with the nonpara-
metric estimators having smaller variability than the linear ones.NPMQ andNPEBLUP have similar
performance, the former seems to have a better performance on average, while the latter in median. This
is due to the poor performance ofNPEBLUP in area 16. In the contaminated areas,NPMQ shows the
best performance in terms of bias and efficiency. Coverage rates are comparable to those observed in
the Linear signal simulation. Results from Figure 10.13 arevery similar in substance to those from the
Linear signal. This is due to the fact that this signal is linear for most of its domain. MQ estimators
are again better in terms of bias in the first 24 areas. Efficiency is comparable for all estimators with
NPMQ having the best performance on average. MQ estimators have abetter performance in terms of
bias and efficiency in the contaminated areas. Under the cycle setting Table 1.7 shows the results ob-
tained in the estimation of the quantiles. The main finding here is that when relaxing the assumption of
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Figure 10.11: Relative Bias (RB%), Relative Root Mean Squared Errors (RRMSE%) and 95% Coverage
Rate (CR%) in case of Linear signal. Areas are arranged in order of increasing population size.
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Figure 10.12: Relative Bias (RB%), Relative Root Mean Squared Errors (RRMSE%) and 95% Coverage
Rate (CR%) in case of Cycle signal. Areas are arranged in order of increasing population size.
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Figure 10.13: Relative Bias (RB%), Relative Root Mean Squared Errors (RRMSE%) and 95% Coverage
Rate (CR%) in case of Jump signal. Areas are arranged in orderof increasing population size.
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linearity NPMQ definitely has a better performance than the traditional MQ estimator. Relative bias and
Relative Root Mean Squared Error are always lower in the caseof non parametric model with relevant
gains especially in the last six contaminated areas. The result is confirmed under the jump setting of
Table 1.8. Here the mean and median level of bias are generally higher than in the linear and cycle
setting and also the RRMSE states a much higher variation of the estimates both in contaminated and
uncontaminated areas. However the performance of NPMQ estimator is still appreciable in comparison
with the traditional MQ estimators which rely on the linearity assumption.

Figures 10.14, 10.15 and 10.16 show how different root mean squared estimators track the true root
mean squared error of the different estimator under linear,cycle and jump signal. Each figure has the
same structure. Top left is theNPMQ predictor (10.22) with RMSE estimated using (10.29). Top right
is theMQ predictor with RMSE estimator suggested by Tzavidis and Chambers (2007). Bottom left is
EBLUP predictor with RMSE estimator suggested by Prasad and Rao (1990) and bottom right is the
NPEBLUP estimator with RMSE analytical estimator suggested by Opsomer et al. (2008).

Figure 10.14 shows the area-specific values of RMSE and average estimated RMSE in case of lin-
ear signal. Estimator (10.29) performs well, showing only asmall amount of undercoverage both for
NPMQ and MQ estimators. Given that all its underlying assumptions are met, the Prasad and Rao
(1990) and Opsomer et al. (2008) estimators of RMSE works very well in terms of empirical coverage.
However, we note that they have a smoothing effect on the estimated variability of the small areas. This
is due the fact that RMSE estimates are based on Prasad and Rao(1990) type-estimator, which targets
the unconditional RMSE, whereas in the simulation experiments each population is kept fixed, then the
empirical MSE is conditioned on the small area effects. We have also run simulations in which we ran-
domized over the small area distribution and the results show still a good performance of the conditional
RMSE estimators for the M-quantile type-estimators. As of variance estimators for mixed model-type
estimators, their performance is better than in the conditional case considered here, even if it still suffers
from the smoothing effect. Figure 10.17 shows such results in case of linear signal. The other detailed
results are available to the interested reader from the authors. However, we believe that the setting con-
sidered here, by effectively fixing the differences betweenthe small areas, constitutes a more practical
and appropriate representation of the small area estimation problem in a finite population perspective and
the conditioned RMSE is likely closer to the RMSE of interestto people using small area methods.

In case of cycle signal (Figure 10.15) theNPMQ and theMQ MSE estimators have the best per-
formance in tracking the true variability.EBLUP andNPEBLUP MSE estimators smooth the behavior
across the areas. Under the jump signal (Figure 10.16) estimator (10.29) forNPMQ andMQ estimators
tracks the true behavior of RMSE. Both Prasad and Rao (1990) and Opsomer et al. (2008) estimators
confirm their smoothing effect.
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Figure 10.14: Area-specific values of RMSE (solid line) and average estimated RMSE (dashed line) in
case of Linear signal. Areas are arranged in order of increasing population size (last six areas are the
contaminated areas).
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Figure 10.15: Area-specific values of RMSE (solid line) and average estimated RMSE (dashed line) in
case of Cycle signal. Areas are arranged in order of increasing population size (last six areas are the
contaminated areas).
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Figure 10.16: Area-specific values of RMSE (solid line) and average estimated RMSE (dashed line) in
case of Jump signal. Areas are arranged in order of increasing population size (last six areas are the
contaminated areas).
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Figure 10.17: Area-specific values of unconditional RMSE (solid line) and average estimated RMSE
(dashed line) in case of Linear signal. Areas are arranged inorder of increasing population size (last six
areas are the contaminated areas).
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Quantile 0.25 Quantile 0.5 Quantile 0.75
Area NPMQ MQ NPMQ MQ NPMQ MQ

RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE%
Uncontaminated areas

1 -0.64 5.20 -0.71 5.15 -0.06 3.97 -0.23 3.96 -0.28 3.38 -0.44 3.39
2 -0.74 5.51 -0.58 5.52 -0.65 4.48 -0.60 4.48 -0.26 3.72 -0.24 3.74
3 -0.74 4.84 -0.60 4.68 -0.41 3.86 -0.59 3.92 -0.30 3.49 -0.38 3.52
4 -0.71 4.63 -0.49 4.41 -0.44 3.78 -0.54 3.63 -0.44 3.31 -0.30 3.12
5 -0.53 4.25 -0.36 4.28 -0.32 3.58 -0.45 3.54 -0.28 3.06 -0.31 3.15
6 -0.06 5.95 -0.05 5.92 -0.16 4.65 -0.01 4.63 -0.02 4.14 -0.11 4.21
7 -0.74 4.61 -0.71 4.81 -0.07 3.67 -0.40 3.76 -0.18 3.25 -0.22 3.26
8 -0.68 6.30 -0.81 6.32 -0.69 4.97 -0.50 5.00 -0.64 4.26 -0.74 4.43
9 -0.22 4.53 -0.36 4.65 -0.44 3.84 -0.45 3.89 -0.24 3.31 -0.42 3.21
10 -0.71 4.68 -0.54 4.51 -0.47 3.49 -0.47 3.37 -0.31 3.10 -0.35 2.97
11 -0.53 4.75 -0.61 4.83 -0.27 3.75 -0.33 3.80 -0.27 3.46 -0.23 3.41
12 -0.68 4.69 -0.61 4.71 -0.31 3.74 -0.26 3.58 -0.37 3.14 -0.35 3.21
13 -0.61 4.46 -0.69 4.63 -0.41 3.32 -0.49 3.34 -0.22 2.93 -0.41 2.92
14 -0.54 4.73 -0.70 4.71 -0.58 3.74 -0.60 3.71 -0.41 3.33 -0.50 3.35
15 -0.37 4.72 -0.32 4.86 -0.37 3.86 -0.35 3.69 -0.23 3.36 -0.23 3.26
16 -0.55 6.15 -0.47 6.21 -0.31 5.06 -0.44 5.19 -0.39 4.42 -0.41 4.42
17 -1.48 5.54 -1.17 5.40 -0.77 4.35 -0.84 4.22 -0.57 3.74 -0.63 3.77
18 -0.11 5.65 -0.14 5.59 -0.15 4.42 -0.26 4.48 -0.22 3.67 -0.17 3.95
19 -0.34 4.15 -0.52 4.08 -0.40 3.41 -0.42 3.43 -0.27 2.94 -0.42 3.00
20 -0.63 4.53 -0.60 4.54 -0.53 3.68 -0.73 3.75 -0.27 3.08 -0.39 3.11
21 -0.60 4.27 -0.88 4.52 -0.60 3.64 -0.74 3.59 -0.32 3.03 -0.45 2.99
22 -1.00 5.04 -0.82 4.88 -0.43 4.11 -0.51 3.77 -0.35 3.41 -0.28 3.36
23 -0.61 5.29 -0.51 5.17 -0.40 4.22 -0.48 4.24 -0.48 3.52 -0.36 3.56
24 -0.35 5.24 -0.39 5.06 -0.24 4.14 -0.19 4.01 -0.01 3.50 -0.23 3.62
Mean 0.59 4.99 0.57 4.98 0.39 3.99 0.45 3.96 0.31 3.44 0.36 3.46
(abs. values)
Median 0.61 4.74 0.59 4.82 0.40 3.85 0.46 3.79 0.28 3.37 0.35 3.36
(abs. values)

Contaminated areas
25 0.08 5.73 0.00 5.57 -0.33 4.29 -0.39 4.13 -0.16 4.20 -0.10 4.04
26 -0.84 5.80 -0.85 6.11 -0.19 4.11 -0.24 4.16 0.29 3.78 0.25 3.77
27 -0.75 6.82 -1.24 6.98 -1.26 5.47 -1.37 5.27 -0.70 5.01 -0.95 5.21
28 -0.18 6.80 -0.42 6.72 -0.32 4.54 -0.22 4.83 -0.26 4.14 -0.14 4.23
29 -0.99 5.99 -0.93 6.03 -0.50 4.29 -0.40 4.20 -0.28 4.18 -0.31 4.37
30 -1.25 8.90 -1.51 9.61 -0.77 6.26 -0.75 6.34 -0.19 6.13 -0.28 6.32
Mean 0.68 6.67 0.83 6.84 0.56 4.83 0.56 4.82 0.31 4.57 0.34 4.66
(abs. values)
Median 0.80 6.39 0.89 6.42 0.41 4.42 0.39 4.51 0.27 4.19 0.26 4.30
(abs. values)

Table 10.6: Relative Bias (RB%) and Relative Root Mean Squared Errors (RRMSE%) in case of Linear
signal. Areas are arranged in order of increasing population size.



222 Chapter 10. M-quantile methods

Quantile 0.25 Quantile 0.5 Quantile 0.75
Area NPMQ MQ NPMQ MQ NPMQ MQ

RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE%
Uncontaminated areas

1 -0.96 9.92 3.67 14.20 -0.29 6.81 1.19 8.61 -0.27 4.91 -2.78 7.32
2 -1.61 10.14 6.42 15.01 -0.65 7.11 -1.37 8.97 -0.34 5.27 -3.80 8.14
3 -0.98 8.32 3.91 12.76 -0.43 5.46 -1.80 7.74 -0.46 4.28 -2.54 7.05
4 -0.97 8.54 0.77 11.35 -0.36 5.79 -0.03 7.44 -0.56 4.45 -1.19 6.30
5 -0.77 8.03 7.02 13.49 -0.51 5.95 -0.16 7.34 -0.13 4.08 -4.08 6.89
6 -0.27 11.16 4.40 15.05 0.19 7.25 0.39 9.75 -0.18 5.64 -2.09 7.72
7 -0.98 9.13 3.82 12.82 -0.23 6.13 1.15 8.31 -0.25 4.84 -2.82 6.81
8 -1.37 10.51 5.14 16.55 -0.84 7.55 -0.77 11.13 -0.87 5.87 -4.45 9.52
9 -1.00 9.08 8.61 15.51 -0.51 6.12 -0.09 7.67 -0.21 4.53 -4.07 7.46
10 -1.36 8.45 7.47 13.83 -0.59 5.51 -0.92 7.25 -0.59 4.09 -3.92 6.86
11 -1.07 9.01 4.36 13.47 -0.30 5.77 0.08 7.94 -0.17 4.47 -1.74 6.37
12 -1.00 8.91 4.36 12.74 -0.54 5.73 1.76 7.55 -0.50 4.41 -3.65 6.90
13 -0.70 7.60 5.13 11.84 -0.51 5.06 -1.63 7.20 -0.45 4.08 -2.51 6.13
14 -1.14 8.32 1.30 10.36 -0.54 5.78 -0.81 6.80 -0.76 4.68 -1.36 5.77
15 -0.65 8.86 8.47 15.64 -0.45 5.95 -0.32 7.98 -0.39 4.71 -4.04 7.25
16 -1.96 12.36 10.24 18.77 -0.35 8.04 -0.59 10.26 -0.58 6.15 -6.40 10.58
17 -1.85 9.80 6.75 15.39 -1.28 7.10 -0.55 9.08 -0.70 5.07 -4.73 8.51
18 -0.60 10.04 5.53 14.70 -0.52 6.80 -1.29 8.97 -0.13 5.28 -2.75 7.54
19 -0.62 7.70 7.56 12.96 -0.13 5.18 -0.61 6.91 -0.34 3.97 -4.00 6.43
20 -1.41 8.38 5.79 13.58 -0.83 5.80 0.55 7.56 -0.32 4.45 -4.21 7.38
21 -1.24 8.19 4.98 11.82 -0.98 5.61 -0.71 7.29 -0.64 4.25 -2.71 6.32
22 -1.73 8.96 5.33 14.18 -0.66 6.50 -0.90 8.13 -0.38 5.01 -3.92 7.41
23 -0.98 9.79 6.79 14.33 -0.82 6.18 -0.13 7.98 -0.39 4.96 -4.08 7.33
24 -0.69 10.11 0.13 13.94 -0.07 6.96 0.98 9.07 0.22 5.25 -1.74 7.31
Mean 1.08 9.22 5.33 13.93 0.52 6.26 0.78 8.21 0.41 4.78 3.32 7.30
(abs. values)
Median 0.99 8.98 5.23 13.88 0.51 6.03 0.74 7.96 0.38 4.69 3.72 7.28
(abs. values)

Contaminated areas
25 -0.82 11.42 6.81 15.87 -0.11 7.54 -0.31 7.93 0.28 5.22 -3.01 7.51
26 -0.70 11.19 6.95 16.50 0.20 7.32 -1.12 8.12 0.19 5.08 -2.97 7.27
27 1.24 12.78 7.73 18.78 1.72 9.18 1.80 10.44 0.27 6.41 -2.32 8.51
28 -0.94 12.17 2.99 16.23 -0.64 7.89 -0.40 8.92 -0.55 6.10 -1.46 7.82
29 -1.34 11.35 5.27 16.36 -0.55 7.60 -0.34 9.02 -0.36 5.67 -3.69 8.31
30 -3.31 16.47 1.02 21.18 -0.01 9.89 -1.23 11.87 0.45 8.20 -1.69 10.75
Mean 1.39 12.56 5.13 17.49 0.54 8.24 0.87 9.38 0.35 6.11 2.52 8.36
(abs. values)
Median 1.09 11.80 6.04 16.43 0.38 7.75 0.76 8.97 0.32 5.89 2.64 8.07
(abs. values)

Table 10.7: Relative Bias (RB%) and Relative Root Mean Squared Errors (RRMSE%) in case of Cycle
signal. Areas are arranged in order of increasing population size.
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Quantile 0.25 Quantile 0.5 Quantile 0.75
Area NPMQ MQ NPMQ MQ NPMQ MQ

RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE% RB% RRMSE%
Uncontaminated areas

1 -2,92 26,43 3,39 27,10 1,39 12,22 -6,91 13,27 -0,72 8,42 -3,03 9,00
2 -4,23 29,43 2,61 31,45 -1,65 13,39 -6,73 15,40 -1,07 9,12 -3,54 10,38
3 -4,27 26,69 3,70 28,97 -1,08 11,44 -6,36 14,01 -0,96 8,27 -3,86 9,68
4 -3,09 24,65 5,06 26,02 -0,04 11,01 -7,32 13,36 -0,88 7,50 -3,23 8,46
5 -2,52 20,02 0,19 22,37 0,03 11,21 -5,97 12,08 -0,35 7,05 -2,63 8,09
6 0,05 30,59 6,75 33,72 1,75 14,18 -5,73 15,35 -0,12 10,05 -3,30 11,29
7 -3,08 21,29 -2,71 22,65 0,89 11,09 -6,43 12,65 -0,76 7,74 -1,63 8,35
8 -4,39 31,04 2,49 34,46 -1,13 14,31 -7,25 17,00 -1,27 10,22 -5,42 12,33
9 -1,67 22,04 4,27 23,68 0,08 11,46 -6,70 13,11 -0,86 7,70 -4,20 9,08
10 -3,42 22,89 2,05 23,36 -0,39 9,69 -6,40 11,92 -0,65 7,29 -3,76 8,49
11 -2,21 21,86 -2,26 24,45 0,09 12,10 -6,83 13,18 -0,49 8,17 -1,90 9,09
12 -3,06 21,67 0,46 22,48 0,37 11,02 -6,62 12,15 -0,62 7,21 -2,36 8,19
13 -3,36 24,16 2,05 23,30 -0,90 9,84 -5,73 11,66 -0,62 7,34 -2,73 8,09
14 -2,48 23,18 2,25 24,57 -0,35 11,29 -7,07 13,93 -1,04 7,63 -3,59 9,07
15 -2,15 22,71 3,48 24,39 0,32 11,25 -5,82 12,18 -0,64 7,77 -2,85 8,75
16 -3,69 31,87 6,58 34,82 -0,07 14,88 -5,43 16,37 -1,02 10,83 -4,11 11,92
17 -6,71 28,69 2,66 29,61 -1,29 13,01 -7,77 15,16 -1,24 8,93 -4,94 10,57
18 -1,54 28,34 3,05 29,57 0,17 12,81 -4,74 14,46 -0,46 9,26 -2,26 9,86
19 -1,42 19,89 4,77 22,13 -0,20 10,45 -6,27 11,77 -0,66 7,08 -4,00 8,42
20 -3,60 21,31 0,41 21,79 -1,06 11,44 -7,33 13,03 -0,64 7,18 -2,36 8,24
21 -2,66 20,83 -0,09 22,63 -0,64 11,50 -7,38 12,93 -0,76 7,39 -3,41 8,28
22 -4,92 24,14 2,53 24,94 -1,43 12,33 -6,58 13,41 -0,64 8,20 -3,50 9,41
23 -3,77 27,58 4,41 27,64 -0,10 13,01 -6,85 14,50 -0,91 8,45 -3,59 9,84
24 -0,27 24,51 -1,11 26,77 0,46 12,85 -7,05 14,07 0,36 8,40 -0,32 9,13
Mean 2,98 24,82 2,89 26,37 0,66 11,99 6,55 13,62 0,74 8,22 3,19 9,33
(abs. values)
Median 3,07 24,15 2,64 24,75 0,42 11,48 6,66 13,32 0,69 7,97 3,36 9,07
(abs. values)

Contaminated areas
25 1,20 33,06 6,28 30,91 -1,27 13,07 -5,93 13,47 -0,47 9,23 -1,89 9,91
26 -4,09 34,34 6,21 34,32 -0,41 12,50 -5,10 13,33 0,42 8,75 -1,75 9,46
27 -5,39 35,60 -2,62 37,68 -2,96 15,58 -8,02 17,10 -0,79 11,23 -1,65 12,29
28 0,06 40,83 4,69 40,84 -0,41 14,34 -6,18 15,07 -0,39 9,57 -1,39 10,58
29 -3,78 29,62 -0,41 29,58 -0,22 13,31 -6,22 13,63 -0,47 9,09 -0,54 10,01
30 -4,69 50,00 -0,04 50,10 -1,12 18,40 -6,88 20,52 -1,00 13,73 -2,82 15,14
Mean 3,20 37,24 3,38 37,24 1,07 14,53 6,39 15,52 0,59 10,26 1,67 11,23
(abs. values)
Median 3,93 34,97 3,65 36,00 0,77 13,83 6,20 14,35 0,47 9,40 1,70 10,30
(abs. values)

Table 10.8: Relative Bias (RB%) and Relative Root Mean Squared Errors (RRMSE%) in case of Jump
signal. Areas are arranged in order of increasing population size.
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10.4 M-quantile GWR models

Typically, random effects models assume independence of the random area effects. This independence
assumption is also implicit in M-quantile small area models. In economic applications, however, obser-
vations that are spatially close may be more related than observations that are further apart. This spatial
correlation can be accounted for by extending the random effects model to allow for spatially correlated
area effects using, for example, a Simultaneous Autoregressive (SAR) model (see Petrucci and Salvati
(2006), Pratesi and Salvati (2008) and Pratesi and Salvati (2009)). An alternative approach to incorpo-
rate the spatial information in the regression model is by assuming that the regression coefficients vary
spatially across the geography of interest. Geographically Weighted Regression (GWR) (see Brundson
et al. (1996)) extends the traditional regression model by allowing local rather than global parameters
to be estimated. In a recent paper Salvati et al. (2008) proposed an M-quantile GWR small area model.
The authors proposed an extension to the GWR model, the M-quantile GWR model, i.e. a locally robust
model for the M-quantiles of the conditional distribution of the outcome variable given the covariates.
Here we report a brief description of the M-quantile GWR model.

10.4.1 M-quantile geographically weighted regression

In this Section we define a spatial extension to linear M-quantile regression based on GWR. Since M-
quantile models do not depend on how areas are specified, we also drop the area subscriptd from our
notation in this Section.

Givenn observations at a set ofL locations{ul ; l = 1, . . . ,L;L 6 n} with nl data values{(y jl ,x jl ); i =
1, . . . ,nl} observed at locationul , a linear GWR model is a special case of a locally linear approximation
to a spatially non-linear regression model and is defined as follows

y jl = xT
jl β(ul )+ ε jl , (10.33)

whereβ(ul ) is a vector ofp regression parameters that are specific to the locationul and theεil are
independently and identically distributed random errors with zero expected value and finite variance. The
value of the regression parameter ‘function’β(u) at an arbitrary locationu is estimated using weighted
least squares

β̂(u) =
{ L

∑
l=1

w(ul ,u)
nl

∑
i=1

x jl xT
jl

}−1{ L

∑
l=1

w(ul ,u)
nl

∑
i=1

x jl y jl

}
,

wherew(ul ,u) is a spatial weighting function whose value depends on the distance from sample location
ul to u in the sense that sample observations with locations close to u receive more weight than those
further away. In this paper we use a Gaussian specification for this weighting function

w(ul ,u) = exp
{
−d2

ul ,u/2b2
}
, (10.34)

wheredul ,u denotes the Euclidean distance betweenul andu andb > 0 is the bandwidth. As the distance
betweenul andu increases the spatial weight decreases exponentially. Forexample, ifw(ul ,u) = 0.5 and
w(um,u) = 0.25 then observations at locationul have twice the weight in determining the fit at location
u compared with observations at locationum. Alternative weighting functions, corresponding to density
functions other than the Gaussian, can be used. See Fotheringham et al. (2002) for a discussion of other
weighting functions.
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The bandwidthb is a measure of how quickly the weighting function decays with increasing distance,
and so determines the ‘roughness’ of the fitted GWR function.A spatial weighting function with a small
bandwidth will typically result in a rougher fitted surface than the same function with a large bandwidth.
In this paper we use a single bandwidth for our extension of GWR to M-quantile regression. This
global bandwidth is defined by minimising the cross-validation criterion proposed by Fotheringham et
al. (2002):

CV =
L

∑
l=1

nl

∑
j=1

[y jl − ŷ( j)l(b)]2,

whereŷ( j)l (b) is the predicted value ofy jl , using bandwidthb, with the observationy jl omitted from the
model fitting process. The value ofb that minimisesCV is then selected. An alternative approach is
to use optimal local bandwidths (see Farber and Páez (2007)). However, this significantly increases the
computational intensity of the model fitting process.

The GWR model (10.33) is a linear model for the conditional expectation ofy given X at location
u. That is, this model characterises the local behaviour of the conditional expectation ofy givenX as a
linear function ofX. However, a more complete picture of the relationship betweeny andX at location
u can be constructed by specifying a model for the conditionaldistribution ofy givenX at this location.
Since the M-quantiles serve to characterise this conditional distribution, such a model can be defined by
extending

Qq(x j ;ψ) = xT
j βψ(q). (10.35)

to specify a linear model for the M-quantile of orderq of the conditional distribution ofy given X at
locationu, writing

Qq(x jl ;ψ,u) = xT
jl βψ(u;q), (10.36)

where nowβψ(u;q) varies withu as well as withq. Like (10.33), we can interpret (10.36) as a local
linear approximation, in this case to the (typically) non-linear orderq M-quantile regression function of
y on X, thus allowing the entire conditional distribution (not just the mean) ofy given X to vary from
location to location. The parameterβψ(u;q) in (10.36) at an arbitrary locationu can be estimated by
solving

L

∑
l=1

w(ul ,u)
nl

∑
j=1

ψq{y jl −xT
jl βψ(u;q)}x jl = 0, (10.37)

whereψq(ε) = 2ψ(s−1ε){qI(ε > 0)+ (1−q)I(ε 6 0)}, s is a suitable robust estimate of the scale of the
residualsy jl − xT

jl βψ(u;q), e.g. s = median|y jl − xT
jl βψ(u;q)|/0.6745, and we will typically assume a

Huber Proposal 2 influence function,ψ(ε) = εI(−c 6 ε 6 c)+sgn(ε)I(|ε| > c). Providedc is bounded
away from zero, we can solve (10.37) by combining the iteratively re-weighted least squares algorithm
used to fit the ‘spatially stationary’ M-quantile model (10.35) and the weighted least squares algorithm
used to fit a GWR model. Putwψ(ε) = ψq(ε)/ε andwψ jl = wψ(ε jl ). Then (10.37) can be written as

L

∑
l=1

w(ul ,u)
nl

∑
j=1

wψ jl {y jl −xT
jl βψ(u;q)}x jl = 0.

Note that the spatial weightsw(ul ,u) in (10.37) do not depend onq. That is, the degree of spatial
smoothing is the same at every value ofq. Spatial weights that vary withqare straightforward to define by
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allowing the bandwidth underpinning these weights to vary with q. Such aq-specific optimal bandwidth
b can be obtained by minimising the following function with respect tob

L

∑
l=1

nl

∑
j=1

[y jl − ŷ( j)l(q;b)]2,

whereŷ( j)l (q;b) is the estimated value of the right hand side of (10.36) at quantile q and locationu jl ,
using bandwidthb when the observationy jl is omitted from the model fitting process. However, using
this q-specific cross-validation criterion can significantly increase the computational time. In this work
we therefore use the optimal bandwidth atq = 0.5 for all other values ofq. We note that this choice
could potentially lead to over-smoothing for small or largevalues ofq and hence bias. Nevertheless, it
is a reasonable first approximation to theq-specific optimal bandwidth that can be computed reasonably
quickly.

An R function that implements an iterative re-weighted least squares algorithm for for fitting (10.36)
is available from Salvati and Tzavidis (2010). The steps of this algorithm are as follows:

1. For specifiedq and for each locationu of interest, define initial estimatesβ(0)
ψ (u;q).

2. At each iterationt, calculate residualsε(t−1)
jl = y jl − xT

jl β
(t−1)
ψ (u;q) and associated weightsw(t−1)

ψ jl
from the previous iteration.

3. Compute the new weighted least squares estimates from

β̂
(t)
ψ (u;q) =

{
XTW∗(t−1)(u;q)X

}−1
XTW∗(t−1)(u;q)y, (10.38)

wherey is the vector ofn sample values andX is the corresponding matrix of ordern× p of sample
x values. The matrixW∗(t−1)(u;q) is a diagonal matrix of ordern with entry, corresponding to a
particular sample observation, set equal to the product of this observation’s spatial weight, which
depends on its distance from locationu, and the weight that this observation has when the sample
data are used to calculate the ‘spatially stationary’ M-quantile estimatêβψ(q).

4. Repeat steps 1-3 until convergence. Convergence is achieved when the difference between the
estimated model parameters obtained from two successive iterations is less than a very small value.

The fitted regression surfacêQq(x jl ;ψ,u) = xT
jl β̂ψ(u;q) then defines the fit of the M-quantile GWR model

for the regression M-quantile of orderq of y givenX at locationu.
One may argue that (10.36) is over-parameterised as it allows for both local intercepts and local

slopes. An alternative spatial extension of the M-quantileregression model (10.35) that has a smaller
number of parameters is one that combines local intercepts with global slopes and is defined as

Qq(x jl ;ψ,u) = xT
jl βψ(q)+ δψ(u;q), (10.39)

whereδψ(u;q) is a real valued spatial process with zero mean function overthe space defined by locations
of interest. Model (10.39) is fitted in two steps. At the first step we ignore the spatial structure in the data
and estimateβψ(q) directly via the iterative re-weighted least squares algorithm used to fit the standard
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linear M-quantile regression model (10.35). Denote this estimate byβ̂ψ(q). At the second step we use
geographic weighting to estimateδψ(u;q) via

δ̂ψ(u;q) = n−1
L

∑
l=1

w(ul ,u)
nl

∑
j=1

ψq{y jl −xT
jl β̂ψ(q)}. (10.40)

Choosing between (10.36) and (10.39) will depend on the particular situation and whether it is reason-
able to believe that the slope coefficients in the M-quantileregression model vary significantly between
locations. However, it is clear that since (10.39) is a special case of (10.36), the solution to (10.37) will
have less bias and more variance than the solution to (10.40). Hereafter we refer to (10.36) and (10.39)
as the MQGWR and MQGWR-LI (Local Intercepts) models respectively.

Note that estimates of the local (GWR) M-quantile regression parameters are derived by solving
the estimating equation (10.37) using iterative re-weighted least squares, without any assumption about
the underlying conditional distribution ofy jl given x jl at each locationul . That is, the approach is
distribution-free. For details see Salvati et al. (2008).

10.4.2 Using M-quantile GWR models in small area estimation

SAR models allow for spatial correlation in the model error structure to be used to improve SAE. Alter-
natively, this spatial information can be incorporated directly into the model regression structure via an
M-quantile GWR model for the same purpose. In this Section wedescribe how this can be achieved. We
now assume that we have only one population value per location, allowing us to drop the indexl . We also
assume that the geographical coordinates of every unit in the population are known, which is the case
with geo-coded data. The aim is to use these data to predict the aread mean ofy using the M-quantile
GWR models (10.36) and (10.39).

Following Chambers and Tzavidis (2006), we first estimate the M-quantile GWR coefficientsq j ; j ∈ s
of the sampled population units without reference to the small areas of interest. A grid-based interpo-
lation procedure for doing this under (10.35) is described by Chambers and Tzavidis (2006) and can
be used directly with (10.39). We adapt this approach to the GWR M-quantile model (10.36) by first
defining a fine grid ofq values in the interval(0,1). Chambers and Tzavidis (2006) use a grid that ranges
between 0.01 and 0.99 with step 0.01. We employ the same grid definition and then use the sample data
to fit (10.36) for each distinct value ofq on this grid and at each sample location. The M-quantile GWR
coefficient for unitj with valuesy j andx j at locationu j is finally calculated by using linear interpolation
over this grid to find the unique valueq j such thatQ̂qj (x j ;ψ,u j ) ≈ y j .

Provided there are sample observations in aread, an aread specific M-quantile GWR coefficient,̂θd

can be defined as the average value of the sample M-quantile GWR coefficients in aread, otherwise we
setθ̂d = 0.5. Following Tzavidis et al. (2010), the bias-adjusted M-quantile GWR predictor of the mean
Ȳd in small aread is then

ˆ̄YMQGWR/CD
d = N−1

d

[
∑
j∈Ud

Q̂θ̂d
(x j ;ψ,u j )+

Nd

nd
∑
j∈sd

{y j − Q̂θ̂d
(x j ;ψ,u j )}

]
, (10.41)

whereQ̂θ̂d
(x j ;ψ,u j ) is defined either via the MQGWR model (10.36) or via the MQGWR-LI model

(10.39).
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Variants of the M-quantile GWR model (10.36) can be defined bychanging the value of the tuning
constantc in the Huber Proposal 2 influence function. For example, an expectile version of the M-
quantile GWR model can be fitted by substituting a large positive value for the tuning constantc in this
influence function. Empirical comparisons of the ‘largec’ (i.e. expectile) and the more robust ‘smallc’
Huber-type M-quantile small area models are reported in Chambers and Tzavidis (2006).

There are situations where we are interested in estimating small area characteristics for domains
(areas) with no sample observations. The conventional approach to estimating a small area character-
istic, say the mean, in this case is synthetic estimation. Under the linear mixed model the synthetic
mean predictor for out of sample aread is ˆ̄YLM/SYNTH

d = N−1
d ∑ j∈Ud

xT
j β̂. The SAR model-based ver-

sion of this predictor,ˆ̄YSAR/SYNTH
d , has the same form, but substitutes the estimatorβ̂.Under the M-

quantile GWR model (10.36) the synthetic mean predictor forout of sample aread is ˆ̄YMQGWR/SYNTH
d =

N−1
d ∑ j∈Ud

Q̂0.5(x j ;ψ,u j ). We note that with MQGWR-based synthetic estimation all variation in the
area-specific predictions comes from the area-specific auxiliary information, including the locations of
the population units in the area. We expect that when a truly spatially non-stationary process underlies
the data, use of̄̂YMQGWR/SYNTH

d will lead to improved efficiency relative to more conventional synthetic
mean predictors.

10.4.3 Mean squared error estimation

A “pseudo-linearization” MSE estimator for M-quantile small area estimators was recommended by
Chambers and Tzavidis (2006) and it has now been used successfully in empirical studies reported in
a number of published papers on SAE, including the recent publications by Tzavidis et al. (2010) and
Salvati et al. (2010a). Below we extend the argument of thesepapers to defining an estimator of a first
order approximation to the mean squared error of (10.41). This extension is based on (i) a model where
the regression ofy on X for a particular population unit depends on its location, with this regression
specified by the locally linear GWR model (10.33), and (ii) the fact that estimators derived under the
MQGWR model (10.36) or the MQGWR-LI model (10.39) can be written as linear combinations of the
sample values ofy. For example, from (10.38) we see that (10.41) can be expressed as a weighted sum
of the sampley-values

ˆ̄YMQGWR/CD
d = N−1

d wT
d y, (10.42)

where

wd =
Nd

nd
1d + ∑

j∈rd

HT
jdx j −

Nd−nd

nd
∑
j∈sd

HT
jdx j . (10.43)

Here1d is then-vector with j-th component equal to one whenever the corresponding sample unit is in
aread and is zero otherwise and

H jd =
{

XTW∗(u j ; θ̂d)X
}−1

XTW∗(u j ; θ̂d),

whereW∗(u;q) is the limit of the weighting matricesW∗(t−1)(u;q) defined following (10.38).
If we assume that the weights defining the linear representation (10.42) are fixed, and that the values

of y follow a location specific linear model, e.g. (10.33), then an estimator of the prediction variance
of (10.42) can be computed following standard methods of heteroskedasticity-robust prediction variance
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estimation for linear predictors of population quantities(see Royall and Cumberland(1978)). Putwd =
(w jd). This estimator is of the form

mse( ˆ̄YMQGWR/CD
d ) = N−2

d ∑
k:nk>0

∑
j∈sk

λ jdk

{
y j − Q̂θ̂k

(x j ;ψ,u j )
}2

, (10.44)

where λ jdk =
{

(w jd − 1)2 + (nd − 1)−1(Nd − nd)
}

I(k = d) + w2
jkI(k 6= d) and

Q̂θ̂k
(x j ;ψ,u j ) is assumed to define an unbiased estimator of the expected value of y j given x j at lo-

cationu j . Since the weights defining (10.43) reproduce the small areamean ofX, it also follows that
(10.42) is unbiased for this mean in the special case where this expectation does not vary with location
within the small area of interest, and so (10.44) then estimates the mean squared error of (10.42) in this
special case. More generally, when the expectation ofyi givenxi varies from location to location within
the small area, this unbiasedness holds on average providedsampling within the small area is indepen-
dent of location, in which case (10.44) is an estimator of a first order approximation to the mean squared
error of (10.42).

Note that (10.44) treats the weights (10.43) as fixed and so ignores the contribution to the mean
squared error from the estimation of the area level M-quantile coefficients byθ̂d. This is a pseudo-
linearization assumption since for large overall sample sizes the contribution to the overall mean squared
error of (10.42) arising from the variability of̂θd will be of smaller order of magnitude than the fixed
weights prediction variance of (10.42). As a consequence (10.44) will tend to be almost unbiased. How-
ever, the potential underestimation of the MSE of (10.42) implicit in (10.44) needs to be balanced against
the bias robustness of this MSE estimator under misspecification of the second order moments ofy, and
may well lead to (10.44) being preferable to other MSE estimators based on higher order approximations
that depend on the model assumptions being true. Empirical results reported in Tzavidis et al. (2010)
indicate that the version of the MSE estimator (10.44) for the linear M-quantile predictor performs well
both in model-based and design-based studies.

10.4.4 Simulations for M-quantile GWR models

In this Section we present results from a simulation study used to examine the performance of the M-
quantile GWR small area estimators. In particular, we report results from model-based simulations where
population data are generated at each simulation using a linear mixed model with different parametric
assumptions about the distribution of errors and the spatial structure of the data, and a single sample is
then taken from this simulated population according to a pre-specified design.

In these simulations, synthetic population values are generated under two versions of a linear mixed
model and two distributional specifications for the random area effects and the individual residuals. Each
population is of sizeN = 10,500 and containsd = 30 equal-sized small areas. More specifically, under
the first model, population values ofy are generated viay jd = 1+ 2x jd + γ j + ε jd whered = 1, . . . ,350
andd = 1, . . . ,30. The valuesx jd in this model are independently generated from the uniform distribution
over the interval[0,1], denoted asx jd ∼U [0,1], and the random effects are generated under two different
distributional specifications: (a) Gaussian errors withγd ∼ N(0,0.04) andε jd ∼ N(0,0.16) and (b) Chi-
squared errors withγd ∼ χ2(1)−1 andε jd ∼ χ2(3)−3, i.e. mean corrected Chi-squared variates with
1 and 3 degrees of freedom, respectively. For the second model, random effects are still simulated as
in (a) and (b), but in addition the intercept and the slope of the linear model fory are allowed to vary
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with longitude and latitude. In particular, these simulations are based on the two-level modely jd =
α jd + β jdx jd + γd + ε jd with

α jd = 0.2× longitudejd +0.2× latitudejd ,

β jd = −5+0.1× longitudejd +0.1× latitudejd

with the known location coordinates(longitudejd , latitudejd) for each population unit independently
generated fromU [0,50]. Note that the reason for using different parametric assumptions for the error
terms of the linear mixed model is because we are interested in how the small area predictors perform
both when the Gaussian assumptions of the linear mixed modelare satisfied and when these assumptions
are violated.

This simulation design corresponds to four scenarios (Gaussian stationary, Gaussian non-stationary,
Chi-squared stationary, Chi-squared non-stationary). For each of these scenariosT = 200 Monte-Carlo
populations are generated using the corresponding model specifications. For each generated population
and for each aread we select a simple random sample (without replacement) of size nd = 20, leading
to an overall sample size ofn = 600. The sample values ofy and the population values ofx obtained in
each simulation are then used to estimate the small area means. Although a larger number of simulations
would be preferable, this is not feasible due to the computerintensive nature of the model-fitting process.
Note also that there is no specific motivation behind the choice of equal area specific sample sizes. Rep-
etition of our simulation studies with unequal area-specific sample sizes does not lead to any differences
in the conclusions that we draw below. These results of thesesimulations are not reported here, but are
available from the authors.

Four different types of small area linear models are fitted tothese simulated data. These are (i) a
random intercepts version with uncorrelated random area effects, (ii) the linear M-quantile regression
specification (10.35), (iii) the MQGWR model (10.36), and (iv) the MQGWR-LI model (10.39), with
the last two models making use of the known location coordinates for the population units. An alternative
model specification that can be used with this type of spatialdata is one where the longitude and the lati-
tude are included as covariates in the fixed part of the mixed model. This additional model specification
is also investigated in the model-based simulations and is denoted by EBLUP+longlat in what follows.
We did not include the SAR model in these comparisons becausethe spatial dependency simulated in the
non-stationary scenarios is in the mean structure of the model and so favours the two M-quantile GWR
small area models, ensuring that such a comparison would be rather one-sided.

The random intercepts model (i) is fitted using the default REML option of the lme function (see
Section 10.3 in Venables and Ripley (2002)) in R. The M-quantile linear regression model (ii) is fitted
using a modified version of therlm function (see Section 8.3 in Venables and Ripley (2002)) in Rand
so uses iteratively re-weighted least squares to fit this model (see Chambers and Tzavidis (2006)). An
extended version of this R code, available from Salvati and Tzavidis (2010), is used to fit the MQGWR
models (iii) and (iv). Both the M-quantile regression and the M-quantile GWR models use the Huber
Proposal 2 influence function withc = 1.345. Estimated model coefficients obtained from these fits
are used to compute the EBLUP, the bias-adjusted M-quantilepredictor , denoted by MQ below, and
the MQGWR and the MQGWR-LI versions of the corresponding bias-adjusted M-quantile predictor
(10.41).

The performance of the different small area estimators is evaluated with respect to three basic criteria:
the bias and the root mean squared error of estimates of the small area means and the coverage rate of



10.4. M-quantile GWR models 231

nominal 95 per cent confidence intervals for these means. Thebias for small aread is computed as

Biasd =
1
T

T

∑
t=1

( ˆ̄Ydt −Ȳdt),

and the root mean squared error for aread is computed as

RMSEd =

√
1
T

T

∑
t=1

( ˆ̄Ydt −Ȳdt)2.

The coverage performance of the confidence intervals is computed as

CR%d =
1
T

T

∑
t=1

I(| ˆ̄Ydt −Ȳdt| 6 2mse1/2
dt )×100.

Note that the subscriptt here indexes theT Monte-Carlo simulations, with̄Ydt denoting the value of the
small aread mean in simulationt and ˆ̄Ydt, msedt denoting the aread estimated value and the correspond-
ing estimated MSE in simulationt.

Key percentiles of the across areas distributions of the prediction biases and root mean squared errors
of these estimators over the simulations are set out in Table10.9. For Gaussian random effects and a
spatially stationary regression surface, we see that EBLUPand EBLUP+longlat are the best predictors in
terms of RMSE, as one would expect. The MQ, MQGWR and MQGWR-LIpredictors all have similar
bias and RMSE in this case. In contrast, when the underlying regression function is non-stationary we see
that the MQGWR and MQGWR-LI predictors are considerably more efficient than the MQ, EBLUP and
EBLUP+longlat predictors, and we also note that the RMSE of EBLUP+longlat is lower than the RMSE
of the EBLUP. Under Chi-squared random effects this relative performance is unchanged, although the
absolute differences in performance between the various predictors is much smaller. For a non-stationary
Chi-squared process the RMSEs of EBLUP+longlat and the MQGWR estimators are similar.

In Table 10.10 we show key percentiles of the across area distributions of the true and estimated mean
squared errors (the latter based on expression (10.44) and averaged over the simulations) of the MQGWR
and MQGWR-LI predictors, as well as the corresponding area level coverage rates for ‘normal theory’-
based nominal 95 per cent prediction intervals. Here coverage is defined by the number of times the
interval, defined by the estimate of the small area mean plus or minus twice its estimated MSE, contains
the ‘true’ population value. In general the proposed mean squared error estimator (10.44) provides a good
approximation to the true mean squared error. These resultsalso show that when M-quantile GWR fits
are used in (10.44), then this estimator underestimates thetrue mean squared error of the corresponding
predictor, leading to some undercoverage of associated prediction intervals. This is consistent with
both the MQGWR and the MQGWR-LI models overfitting the actualpopulation regression function.
However, this bias is not excessive, being more pronounced in the case of the MQGWR model.
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Summary of across areas distribution
Predictor Indicator Min Q1 Median Mean Q3 Max

Stationary process, Gaussian errors
EBLUP Bias -0.051 -0.034 0.001 -0.001 0.023 0.068

RMSE 0.068 0.075 0.079 0.081 0.087 0.101
EBLUP+longlat Bias -0.053 -0.030 0.001 -0.001 0.020 0.066

RMSE 0.068 0.075 0.079 0.081 0.087 0.101
MQ Bias -0.015 -0.003 0.001 -0.001 0.003 0.012

RMSE 0.074 0.083 0.088 0.087 0.091 0.100
MQGWR Bias -0.016 -0.007 -0.003 -0.002 0.005 0.008

RMSE 0.067 0.084 0.088 0.087 0.091 0.100
MQGWR-LI Bias -0.010 -0.005 0.001 -0.001 0.003 0.012

RMSE 0.073 0.085 0.087 0.086 0.090 0.097
Non-stationary process, Gaussian errors

EBLUP Bias -0.034 -0.013 -0.003 -0.002 0.011 0.031
RMSE 0.169 0.193 0.205 0.220 0.238 0.323

EBLUP+longlat Bias -0.122 -0.063 -0.010 -0.001 0.041 0.162
RMSE 0.061 0.085 0.119 0.124 0.138 0.225

MQ Bias -0.036 -0.011 0.000 -0.002 0.009 0.015
RMSE 0.164 0.181 0.188 0.188 0.193 0.219

MQGWR Bias -0.047 -0.013 -0.005 -0.004 0.005 0.027
RMSE 0.083 0.092 0.098 0.098 0.103 0.119

MQGWR-LI Bias -0.065 -0.010 -0.005 -0.004 0.007 0.047
RMSE 0.088 0.097 0.107 0.112 0.114 0.186

Stationary process, Chi-squared errors
EBLUP Bias -0.441 -0.097 0.075 -0.011 0.112 0.237

RMSE 0.399 0.457 0.482 0.489 0.511 0.651
EBLUP+longlat Bias -0.432 -0.069 0.061 -0.011 0.105 0.206

RMSE 0.421 0.461 0.482 0.489 0.511 0.631
MQ Bias -0.063 -0.043 -0.021 -0.011 0.014 0.062

RMSE 0.437 0.496 0.526 0.522 0.542 0.598
MQGWR Bias -0.075 0.002 0.035 0.028 0.060 0.113

RMSE 0.482 0.507 0.539 0.539 0.564 0.633
MQGWR-LI Bias -0.067 -0.009 0.009 0.010 0.032 0.062

RMSE 0.471 0.500 0.525 0.528 0.552 0.618
Non-stationary process, Chi-squared errors

EBLUP Bias -0.069 -0.046 -0.021 -0.014 0.008 0.069
RMSE 0.465 0.541 0.560 0.566 0.592 0.675

EBLUP+longlat Bias -0.441 -0.071 -0.059 -0.010 0.118 0.209
RMSE 0.440 0.512 0.538 0.539 0.562 0.678

MQ Bias -0.086 -0.048 -0.015 -0.014 0.021 0.051
RMSE 0.460 0.540 0.554 0.555 0.586 0.641

MQGWR Bias -0.083 -0.009 0.022 0.017 0.050 0.124
RMSE 0.482 0.507 0.534 0.535 0.562 0.619

MQGWR-LI Bias -0.085 -0.018 0.004 0.007 0.041 0.080
RMSE 0.466 0.518 0.541 0.542 0.557 0.641

Table 10.9: Across areas distribution of Bias and RMSE over simulations.
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Percentile of across areas distribution
Predictor Indicator 10 25 Median Mean 75 90

Stationary process, Gaussian errors
True RMSE 0.080 0.084 0.088 0.087 0.091 0.093

MQGWR Est. RMSE 0.076 0.078 0.081 0.081 0.083 0.085
CR% 89.51 90.34 91.72 91.88 93.71 94.48
True RMSE 0.079 0.085 0.087 0.086 0.090 0.090

MQGWR-LI Est. RMSE 0.077 0.079 0.082 0.082 0.083 0.086
CR% 90.45 91.13 93.00 92.88 94.50 95.00

Non-stationary process, Gaussian errors
True RMSE 0.090 0.092 0.098 0.098 0.103 0.106

MQGWR Est. RMSE 0.074 0.076 0.078 0.079 0.081 0.084
CR% 84.30 85.00 87.00 87.08 89.38 90.50
True RMSE 0.096 0.097 0.107 0.112 0.114 0.138

MQGWR-LI Est. RMSE 0.085 0.088 0.098 0.100 0.103 0.122
CR% 88.50 90.50 91.50 91.25 92.88 93.05

Stationary process, Chi-squared errors
True RMSE 0.489 0.507 0.539 0.539 0.564 0.577

MQGWR Est. RMSE 0.463 0.489 0.507 0.506 0.529 0.542
CR% 85.71 89.10 90.38 90.24 92.15 92.44
True RMSE 0.488 0.500 0.525 0.528 0.552 0.574

MQGWR-LI Est. RMSE 0.467 0.486 0.505 0.508 0.528 0.543
CR% 87.00 90.50 91.00 90.88 92.50 93.10

Non-stationary process, Chi-squared errors
True RMSE 0.494 0.507 0.534 0.535 0.562 0.574

MQGWR Est. RMSE 0.448 0.470 0.488 0.488 0.512 0.524
CR% 85.50 88.13 90.00 89.40 91.00 92.05
True RMSE 0.505 0.518 0.541 0.542 0.557 0.588

MQGWR-LI Est. RMSE 0.485 0.501 0.515 0.514 0.529 0.537
CR% 88.95 90.63 91.50 91.07 92.38 93.05

Table 10.10: Across areas distribution of true (i.e. Monte Carlo) root mean squared errors (True RMSE),
area averages of estimated root mean squared errors (Est. RMSE) and area coverage rates (CR%) for
nominal 95% prediction intervals. Intervals are defined by the small area mean estimate plus or minus
twice their corresponding estimated root mean squared error.

Note that the construction of confidence intervals for smallarea parameters requires careful consid-
eration. In our simulations we use the MSE estimation methoddescribed in Section 10.4.3 to generate
“normal theory” intervals based on M-quantile model-basedestimators. This use of the estimated MSE
to construct confidence intervals, though widespread, has been criticised. Hall and Maiti (2006) and more
recently Chatterjee et al. (2008), discuss the use of bootstrap methods for constructing confidence in-
tervals for small area parameters since there is no guarantee that the asymptotic behaviour underpinning
normal theory confidence intervals applies in the context ofthe small samples that characterise small
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area estimation. Further research on using the bootstrap techniques described by Tzavidis et al. (2010)
to construct more accurate confidence intervals under the M-quantile GWR model is left for the future.
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