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Prologue

This report contains the final small area developments gidinimers of the WP2 in the SAMPLE project.
The target of the report is to present the statistical matlogy that has been developed within the
SAMPLE project. The manuscript is organized in ten chapters

Chapter 1 introduces the basic theory of linear mixed modé#Ms). Special attention is given to
the model fitting methods and algorithms, to the calculaibEBLUP estimates and to the estimation
of their mean squared errors.

Chapter 2 describes a methodology for obtaining empirieat predictors of general, possibly non-
linear, domain parameters using unit level linear regoesanodels. The proposed method (called EB
method) is particularized to FGT poverty measures as piaticases of non-linear parameters. The
mean squared error of the proposed estimators is obtainedplyametric bootstrap for finite popula-
tions.

Chapter 3 proposes a modification of the EB method, calledEBsmethod, which reduces drasti-
cally the computing time, making feasible the estimatioraihplex non-linear quantities under large
populations, whereas loosing little efficiency.

Chapter 4 introduces an area-level linear mixed model wgthtial correlation. For this model,
the EBLUP, called here Spatial EBLUP, is introduced and Md &EML model fitting methods are
described. Analytical approximations of the mean squareat é§MSE) of the Spatial EBLUP are dis-
cussed, and parametric and nonparametric bootstrap pnesefbr estimating the MSE are proposed.

Chapter 5 treats the problem of specifying the weight matriarea-level linear mixed model with
spatial correlation, which is one of the challenges in ariaty spatial data. The literature on spatial
econometrics and statistics specifies mainly two ways ofetiogl this matrix.

Chapter 6 gives a semiparametric version of the basic Fagiddenodel that is based on P-splines
and can also handle situations where the functional forrhef¢lationship between the variable of in-
terest and the covariates cannot be specified a priori. $loién the case when the data are supposed to
be affected by spatial proximity effects. In these casepliresbivariate smoothing can easily introduce
spatial effects in the area level model.

Chapter 7 deals with area-level time models. Two basic nscalel presented. The first one contains
time random effects following an auto-regressive proceR¢1Aand the second one is a simplification
where these effects are independent. Complete theordgealopments are presented as well as some
simulations to study the behavior of the fitting algorithnmgl @o investigate when it is worthwhile to
employ AR(1) random effects. Extension of the basic modmipértitioned populations are also given.



Chapter 8 introduces two area-level linear mixed model$ wWihe and spatial correlations. For
these models, the EBLUP is introduced and the REML modetdjtthethods are described. Parametric
bootstrap procedures for estimating the MSE are proposed.

Chapter 9 describes two unit-level time models. As in the cdsarea-level models, two models are
presented. The first one contains time random effects follgwn auto-regressive process AR(1) and
the second one is a simplification where these effects aspéemtient.

Chapter 10 presents M-quantile regression, nonparamétdgiantile regression and M-quantile
Geographically Weighted regression and describes howtidgian M-quantile models can be employed
for measuring area effects and estimators of cumulativalalision function. This chapter also discusses
mean squared error estimation for M-quantile small aredigi@s. It also reports several simulation
studies and empirical evaluations of the introduced esiimanethods.

This report has been coordinated by Domingo Morales (UMH)hEIs also been in charge of writing
Chapters 1, 7-9. Isabel Molina (UC3M) has been responsibléné elaboration of Chapters 2-5. Finally,
Nikos Tzavidis (CCSR) and Monica Pratesi (UNIPI-DSMAE) basoordinated the production of the
contents of Chapters 6 and 10.



Chapter 1

Linear mixed models

1.1 Linear mixed models with known variance

1.1.1 Introduction

We consider the model
y=XB+Zu-+e, 1.1

wherey1 is the vector of observationB‘OX1 is the vector of fixed effectsiq, 1 is the vector of random
effects,Xn«p andZ,,q are the incidence matrices agg 1 is the vector of sampling errors. We assume
that sampling errors and random effects are independenhamdally distributed with mean equal to
zero and known matrices of variances,

varju=E[uu]=V, and vafe] = E[e€] = V,,
depending on a paramet@&rcontaining the variance components. From (1.1) we obtain
V =varly] = ZVZ' + Ve,
whereV is assumed to be not singular.

1.1.2 Least squared estimation of

In this section we assume that the variance components oélnfbd) are known. The random term
is Zu + e, with variance vdZu + €] = ZV Z' + Ve = V. We transform the model to have uncorrelated
random terms and common variance equal to 1, i.e.

V2y =V Y2XB+VY2(Zu + ).
Assuming thay* = V~1/%y, e = V~12(Zu + e) andX* = V~1/2X; the model is
y* — X*B—Fe*

3



4 Chapter 1. Linear mixed models

with varle’] = V-Y2var[Zzu 4+ gV -1/2 = v-Y2yVv -2 = | .. Therefore, one can apply the ordinary least
squared method, i.e.

o~

B = argmirg(e”'e’).
We observe that
e*/e* — <V_l/2y—V_1/2XB)/ <V—l/2y_v—l/2XB)
= (y=XB)'V Hy—Xp)=yV ly— 28XV ly+BX'VIXB.

By taking derivatives, we obtain

ae*/e*
=-2X'V-ly+2X'VIXp.
op
The normal equations are
X'V IXB=X'Vly (1.2)
and the solution is
B= X'V IX)"IX'vly, (1.3)

whenX’V~1X andV are invertible. Under normalitﬁ is also theamaximum likelihood estimat¢MLE)
of B, i.e.

B —argmang (- 5y XBIV My~ XB) ).

1.1.3 Best linear unbiased prediction of a linear combinatn of effects

We look at the model (1.1) and define= a; (X;3+Zu), wherea, (k x 1), X, (kx p) andZ, (k x q) are
known vectors and matrices. Let= g'y +do be a linear estimator (predictor) of whereg (nx 1) and
0o (1 x 1) are such that

1. Tis unbiased, i.e.
E[tl=aX/B and E[T]=gXB+go

are equal. Thugp = 0 anda/ X, = ¢g'X.
2. T minimizes the prediction error
E[T-1)?2 = VE-1)=V(dy-aXB—aZu)=V(dy-azu)
= gVg+azZ,VyZia —2¢CZa,
whereC = cov(y,u) = ZV .
Therefore, the problem to be solved is

minimize V(T—1), restricted toa/ X, = g'X.
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Sincea Z,VZ;a, does not depend ay the Lagrangian function is
L(g,\) = g'Vg —29'CZrar + 2(g'X — & Xr)A.

By taking partial derivatives with respect gaandA, we obtain

0 = %%’A)ZZVQ—ZCZ@H-ZX)\ < Vg+XA=CZ g
0 = ang;\,A) = 29X — 28X, <= gX =aX;

In matrix form, the above equations are

vV X g\ [ CZa
X" 0 AN\ Xa
If we apply the formula

{ A B }_1: { ATO ] + { —A7'B ] (C-BA'B) ' [-BALI],

B C 0 0 |
with A=V, B=X, C =0, then we obtain
T [ o[ et
(VoI (XvIX) XV veIX (v X)L
N ( (X'V-IX)~IxX'v-1 —(X'v—ix)-1t )
Therefore

g\ [V X\ '/cza
AN TAX o0 X'a )’
g=V1CzZla -V IX(X'VIX)" X'V ICZla + V IX(X'V X)X/ 4.
The best linear unbiased predictor (BLUP)taé

with

T = dy=aX {XV X)) XVvily}+az.cCcvly

— az,CcVvIX{X'vix)"Ix'v-iy}

= g [xB+zCV iy -xB),
where

B — (leflx)flxlvfly
is the least squared estimatorf®f
As C = cov(y,u) = ZV, by takingX, =0, a, = 1 = (0,...,0,10),0,...,0)" andZ, = | we obtain
G =1,,VuZ'V iy —XB), i=1...q

or equivalently
U=V,Z'V iy -Xp).
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1.1.4 Best linear unbiased prediction of u
Thebest linear unbiased predict¢BLUP) of u is
U=V,z'v1 (y—xB). (1.4)
The predictor (1.4) has the following properties:
e “Best” in the sense that minimizéS (U — u)’A(U — u)] for any given positive definite matrik.
e Linear with respect tg.
e Unbiased:E[u—u]=0.

For more details see Searle (1971), 458-462, or chapter @afeSet al. (1992).

1.2 Linear mixed models with unknown variances
Let us consider the mixed model
y=XB+Zu1+...+Zpun+e, (1.5)

wherey = (y1,...,Yn)" is the vector of sample observatiofis= (B4, .. .,Bp)’ is the vector of fixed effects,
andu; = (Ujg,.. ., Ui, )’ is the vector containing the effects of thelevels of thei-th random factor. The
expressioni-th random factor is used to denote the veaipr Finally, e = (ey,...,e,)" is the vector
of sampling errors, ani, Z,,...,Zy are design matrices with dimensions< p, n x gz,...,N X Om
respectively.

The model (1.5) can be written in the form (1.1) if we define

m
Z=1[Z,...,Zm] and u=[u},...,u], q:_Zqi.
i=

The following assumptions ensure that the model paramatersstimable.
(F1) ug,...,um, eare independent, and
e~ An(0,05%e), Ui~ Ng(0,02%y), i=1,...,m,
with e and%,, i =1,...,m, known.
(F2) r(X) =p.
Note The assumption (F2) always holds if an adequate re-pareaiin of the model is made.

The next hypothesis states that the number of observatimngdsbe greater than the number of param-
eters.
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(F3 n>p+m+1.
If assumption (F4) holds, then the fix effects are not cordugith the random effects of any factors.
(F4) (X:Zj)>p,i=1....m

Assumption (F5) ensures that random effects of a factor areaonfused with random effects of other
factors. LetGg = 2. andG; = Z;Z,Z{,i=1,...,m.

(F5) Go,Gy,...,Gn are linearly independent, then,

m
%(XiGi =0=0;=0,i=0,1,...,m.

Finally, assumption (F6) states thHat i = 1,...,m, are standard design matrices.

(F6) Zj has only 0's and 1's. In each row there is exactly one 1, anddh eolumn there is at least one
L,i=1,....m

This assumption implies that{Z; is aq; x g nonsingular diagonal matrix(Z;) = g andg < n, i =
1,....m
Another consequence of the previous assumption is that

m
y ~ An(XB,V), with V = %oﬁei.
i=

Let 0 = (03,02,...,02)". When necessary, we will emphasize the dependendy of ¢ by writing
V(o). LetM = p+m+1 and let9’ = (B, 0’) be the vector of unknown parameters. The parameter space
is

0={6=(p,0);BcR;05>0,0°>0,i=1,...,m}. (1.6)

The likelihood of6, given a vector of observations is denoted in the same way as the joint density
function ofy given®, i.e.

fly) = (2m) "2V 2exp - Sy~ XBYV Hy - X | a7

1.3 Maximum likelihood estimation

1.3.1 Description of the method

The maximum likelihood estimat@ = (By, ... ,Ep,c?%, ...,82) of 8 is the vector satisfying

~

6 = argmaxyg fo(y) = argmax g log fe(y) .
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Note that (6) = log fg(y). We denote the vector of derivatives 3®) = (S, Sozs--- Sz ), where

ale) /al®) ald)  al®)\
S6) =8 :< B a2 aczn> '

If © exists in the interio®, then it is the solution of the likelihood equations whicle abtained by
eqguating to zero the components of the vector of scores. Byinig the log-likelihood with respect to
the parameters we obtain the score components of mode] (£.5)

S =XV Hy—Xp), (1.8)

~ 1dloglv| 1,0Vt
=3 902 VX G2

(y—XB),i=0,1,...,m.

We know that

dlog|V| 0V
=tr{V "— 1.9
do? { do? |’ (1.9
ov—1! oV
—— =-V 15Vl 1.10
d0? d0? (1.10)
SincedV /dc? = G;,we have
S = —%tr{V’lGi} + %(y— XB)YVIGV Hy—XB),i=01,...,m (1.11)
When we equate (1.8) and (1.11) to zero, we obtain the liketihequations
X'VIXB =XV ly, (1.12)
tr{V-1G} = (y—XB)V GV iy—Xp),i=0,1,....m (1.13)

These equations cannot be solved to obtain explicit exjoresf the maximum likelihood estimators.
The Newton-Raphson or the Fisher-Scoring algorithms &atiethem iteratively, starting with an initial
value®®. In each iteration, the Newton-Raphson method updatesstiraator ofe by using the formula

ei+l — ei _ H(ei)fls(ei)7

whereS(@') is the vector of derivatives artd(6') is the Hessian matrix d{8), both calculated with the
estimator obtained at the last iteratin The elements of the Hessian matrix are obtained by taking ne
derivatives, using (1.10) and applying the property thatdhrivative of the trace of a matrix is the the
trace of the derivative of the matrix, i.e.

opap

%16) _ 91(O) _ yn 1m0y 1

0208 aBaoi2——XV GV (y—XB), (1.15)
92 (8

60.2(0; = VGV G- (- XB/VIG VGV Hy - XB), (1.16)

I
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fori,j=0,1,...,m. We illustrate the calculation of the second sum on (1.181Q = %y/A‘ly, where
A-1=V-1GV-L ThenA = VG; 'V and % = VG, !G; + G;G; V. Therefore

ﬁ:

9 1 oA 1

a_fz = —Ey’A’lﬁ Ty =3V (VTIGVTIVGITG 4 GG VI(VTIGV Ty
I I

1 1
= —Ey/V‘lGjV‘lGiV‘ly— Ey’v—lcsiv—lcs,-v-ly = —yVvigvigVvly

The Fisher-scoring method replaces the Hessian matrixskgxjtectation with the sign changed, that is,
the information of Fisher matrix. The updating formula is

ei+1 — ei + F(ei)fls(ei)’

andF(6') is the Fisher information matrix defined by

and evaluated if'. Taking expectations in (1.14)-(1.16), changing the sigh@sing the result

El(y—XB)'A(y—XB)] =tr{AV},

for any not random matriA, we get the elements of the Fisher information matrix

Fap = X'V 71X, (1.17)
FGiZB: FBOiz =0,i=0,1,...,m, (1.18)
1 -
Fota? = Enr{V*leiv*G,-}, i,j=0,1,....m. (1.19)
We get
Fpp 0 0 e 0
0 Fogog Fogcri T Fcrgcrﬁ1 F 0
F(0) = 0 Fcfc% Fo%o{ Fo%o% = ( E)B) F (o) > )
0 Fo?nog Fcrzmc@ T Fcrzmcrzm

The block structure of matrik () allows to separate the updating equation separately in watens
Bi+1:Bi+F(Bi)_ls(Bi)v 0i+l:0i+F(0i)_1S(0i).
Finally

B = B+ (X'V (o)) XV (0! (v XB) = (X'V LX) XV ay.
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1.3.2 Maximum likelihood with alternative parametrization

We consider the model (1.5) and the parameters
o’=03, ¢;j=0?/05, i=1,...,m

Let 0’ = (0%,01,...,0m), & = (B',0’) andV = 0?(Ze+ 3", $iGi) = 0Z. The likelihood of6, for a
known observation vector, is

fly) = (2m) "2(0%) "2z] V2exp] 5oy~ XBYT Hy - XP) |
The likelihood function is
__n ~Mogo?_ L L voxpys iy
(8) = —5log2n—5logo” —Slog|Z| — 5 5 (y — XB) = (y — XB).

The components of the vector of scores are

$ = éx’rl(y_xs) (1.20)
St = gt ey XBYT Y- XB), (L21)
S = —:—2Ltr( 1G)+—(y XB)YZ Gz Yy—XB), i=1,...,m (1.22)

By makingS; = 0 andS;2 = 0 we obtain
B=(X'="X) X'z ly and o®= %(y —XB)Z Yy —XB).
Partial derivatives of the log-likelihood function are

Hpg = — & X'Z 71X, Hpoe = — & X'Z 1y — XB),

Hpg = — X' 'GIZ Y — XB), Hegzeo = 274 06<y XB)'Z y —XB),
Hozg, = — 522 (Y — XB)'Z1GiZ 1 (y — XPB),

Hpo, = 5tr(Z1Gj21Gi) — & (y— XB)Z G Z1GZ Yy — XB).

Taking expectations and changing the sign, we obtain threexits of the Fisher information matrix, i.e.
FBB = 0_—12>(/Zi:l'>(7 FBO'Z - O FB(I), = 07
Foeg2 = %, Fo2g; = 202 tr(Z- 1G; i), Foio; = %tr(Z*GjZ*lGi).

1.4 Residual maximum likelihood estimation

1.4.1 Description of the method

Residual maximum likelihood estimation (REML) is intro@uaicto reduce the bias of the maximum like-
lihood estimators of the variance components. For this,setkansforms the vectorin two independent
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vectorsy; = K1y andy; = Kyy, with the condition that the distribution gf does not depend on the
fixed effectf. LetK; be a matrix such th& ;X = 0. Therefore

E[y{] = E[K]_y] = E[Kl(XB+ Zui+...ZmUm+ 6)] =0.
The vectory; is selected to be independentygf Then it has to satisfy
Elyiys] = KiE[yy']K; = K1VK5 =0.

Rowsk’ of matrix K; are calledcontrasts as they fulfillk’X = 0. The maximum number of contrasts
linearly independent ie —r(X). We suppose that has full rankp, so that rank oK1 is n— p. Matrix
K is selected with ranip.

To introduce matriX 1, we consider the model without random effects

y=XB+¢, with €~ A (0,Z). (1.23)
The maximum likelihood estimator @in (1.23) is
B= (X' 1X) "Xz ly.
We define the transformed vector (normalized residual)
Yi=Z My = XB) =Tt (y - X(X'Z X)Xz ty) = Kay,

whereK; = 3.1 — Z-IX(X/Z1X)~IX/5 1. Further we seled€, = X'V~1,
SinceK; = K, it holds that

Elyi] = EKuy]=(Z'-Z XX X)X ) XB=0,
Ely3) E[K2y] = X'V~ IXB,
Vil = E[yiyi]=KiVKy,
VIy;] = KoVK,=X'V-ivw-Ix=x'v-1x,
Elyiys] = KiE[yy]K5=KiVK5; =KW X =KX =0.

As the maximum number of columns linearly independeri gfis n—r(X), after the selection afi—
r(X) of these columns we can construct a sub-maktixvith the ordern x (n—r(X)) and satisfying
K’X = 0. We define the vectong = K’y andy, = y3. Since (X) = p we have that

Y1~ An-p(0,K'VK), yp ~ ap(X'VIXB,X'V7IX) are independent.

We defines = (03,02,...,02) andP = K (K'VK)~1K’. The likelihood function of; is

1 1 1
|(0) = =5 (n—p)log 2r—  log|K'VK| — Sy; (K'VK) "y,
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whereV =3, 0?Gj andy; = K'y. By taking partial derivatives with respectd, we obtain

dl (o) 10 , 10 ., , 1,
= = -2 {log|K'VK |} — Z— {yK (K'VK ) K

- _%tr((K’VK)*lK’GiK)+%y’K(K’VK)*1(K’GiK)(K’VK)*1K’y
1 1
= _Etr(PGi) + Ey/PGi Py.

As
0P K (K'VK)~1K'|

007 N 002

the second order partial derivatives are

= —K(K'VK)'K'G|K (K'VK) 'K’ = —PG;P,

d(o) 1
——5 = =tr (PG;PG;) — YPG;PG;Py.
If we take expectations and change the sign, we obtain theFisformation matrix. To calculate this
matrix we use the relatio3X = 0 andPVP = P, and the following result.

If Ely]=p and vafy] =V, then E[y'Ay] = tr(AV) + AL (1.24)
The elements of the Fisher information matrix are

dl(o) 1
F0J20i2 = — [aoizaolz = —Etl’ (PGjPGi) +tr(PGjPGiPV) + B/X/PGjPGiPXB

1 1
= —Etr(PGjPGi)+tr(GjPGiPVP) = Etr(PGjPGi).

To calculate the residual maximum likelihood estimatdns, Eisher-scoring method uses the following
updating formula
Oki1 = Ok + F (oK) ~'S(ok),

whereF (o) is the Fisher information matrix calculated ap. We observe tha(o) is a matrix(m+
1) x (m+1); however the Fisher information matrix needed to calcuts@gimum likelihood estimators,
F(8),is(p+m+1) x (p+m+1).

Fisher-scoring algorithm gives the estimateoofif we plug that estimate in the likelihood function
of y», we consider it as a constant, and we maximizelpme get the REML estimators @ The
likelihood function ofy; is

1 1 B
1(B) =~ log2= 3109 Vx| =5 (2 =XV IXBY (X'V 1) (v X'V XB)

By taking partial derivatives with respectfp and equating to zero, we obtain

0= %g) = X'V~ IX (x’v-lx)*1 (y2—X'VIXB) = X'V 1y — XB).
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Therefore
) -1y ) 7t iG-1v ) Tyrg-1
BrewL = (x v x) Yo = (x v x) X'Vl

whereV = " 62G; andd3,62, ..., 52 are the REML estimators af2, 02, ...,02,
By taking again derivatives with respectfipwe get

Feg = —E [0%1(B)/0BaR'] = X'V X,

that is the same value &}g obtained with the maximum likelihood procedure.

Theorem 1.4.1 implies that residual maximum likelihood moet does not depend on the selected
matrix K (with K’X = 0).

Theorem 1.4.1.LetK’ be a full rank(n—r) x n matrix. LetV be a symmetric and positive definitex n
matrix. LetX ann x p matrix with rankr < p. If K’X =0, then

K(K'VK) XK' =P,  with P=V 1V IX(XV1IX)"xXVv1i
1.4.2 Residual maximum likelihood with alternative paramerization
In the model (1.5), we consider the parameters
0’=03, ¢;j=0?/05, i=1,....m

Letd' = (02,01,...,0m), 0 = (B/,0') andV = 02 (Ze+ I, $;Gj) = 0°Z. For the REML method, the
log-likelihood associated to the this parametrization is

1 1 1 1
() =~ 5(n= p)log2r- 5(n— p)logo? - 5 log|K 'K | - 5—5y'Py.

whereP = K (K/3K) 71K’ =371 -3 IX(X'z71X)"1X’3~L. The components of the vector of scores are

n-p 1 ,
- —yP
Sy 557 T 553V PY
1 1 .

Second partial derivatives of the log-likelihood are

H0202 = %) - %y/Py7 H02¢i = _%y/PGI Pya
H¢i¢j = %tr(PGjPGi) — 0—12y/PGjPGi Py.

By taking expectations, changing the sign and appl{#Xg= 0 andPZP = P, we obtain the elements of
the Fisher information matrix

P, Ly =P

1 1
%% T o '[I'(PGi), F¢i¢j = Etr(PGjPGi).

20t o0 = 502

Fo'2 02 —
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Observation 1.4.1. From equatior;. = 0, we get

1
g2=—yP 1.2
O =apY Py (1.25)
which allows to introduce an algorithm that updatgswith (1.25) and the remaining componentespof
with
0"t =0'+F(¢) 'S(9)).

1.5 The Henderson 3 method

1.5.1 Description of the method

The maximum likelihood method gives at the same time thenegéis of models coefficienfs and
components of variancmﬁ, ...,a2. In this section we present tmeethod of fitting constants estimate
the components of variance. The regression paranfeteestimated by the least squared method and
random effects are predicted by using the BLUP theory, bpiaocing the components of variance by
its obtained estimates. The predictorwfs called EBLUP (empirical BLUP). The method of fitting
constants is also known &tenderson 3 methosince its introduction by Henderson (1953). We write
the general linear mixed modgl—= Xp + e, in the form

y = X1 +X2B,+ €, (1.26)

wheree ~ N(0, 0(2)W‘1) andW is a known symmetric and positive definite matrix. We assunag t

X'WX and XjWX are invertible. The partition simply dividg®in two groups of effect, andf,,

without taking into account if they represent fixed or randeffects. This issue will be considered later.
We apply the transformation

Wl/Zy _ W1/2xlBl+Wl/2XZBZ+Wl/Ze
and we denotg* = W1/2y, X3 = W¥2Xy, X5 = W¥2X, ande* = W¥2e. The new model is
Yy =XiB; +X5B, + €, (1.27)

with " ~ N(0,03 ).
If we fit the model (1.27) under the assumption tBatand 3, are fixed effects, the total sum of

squares is

SST=y"y* =y'Wy. (1.28)
The residual sum of squares is

SSHPB,,B,) =y'My, (1.29)
whereM = [I, — X (X'WX)~IX'W]'W[I , — X (XWX )~1X'W]. The reduction of sum of squares (regres-
sion sum of squares) is

SSRB,,B,) = SST-SSHB,,B,) =y'Qy,
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whereQ = WX (X'WX)~1X'W.
If we fit the submodel
y* = XiP; + €,

under the assumption th@j is a fixed effect, the residual sum of squares is

SSHB;) =y'Myy, (1.30)

where M1 = [I5 — X1 (X{WX 1) " IX W)Wl n — X1 (X{WX 1) 1X W]. The reduction of the sum of
squares (regression sum of squares) is

SSRB;) = SST-SSHEB;) =y'Quy,

whereQ; = WX 1(XjWX1)~1X]W. The reduction of the sum of squares because of the intrioduot
X2 in the model, that only had,, is

SSRB,|B1) = SSRB1,B,) — SSRB,) = SSEP,) — SSEP,, By).

To introduce the Henderson 3 method, we first calculate thectation ofSSRpB,|B,) andSSRpB,,B,).

In a second step we modify these statistics to make them sedhiaNote that all the considered sums
of squares are quadratic functionsypfso that we will apply (1.24) systematically. For a genersdr
modely = XpB + e, where3 may contain fixed or random effects, we hdvg] = XE[B] and vafy| =
Xvar[B]X’ +a3W 1. From (1.24), we obtain

Ely'Qy] = tr(Q[XvarB |X' +G3W ™ ]) E[B]'X'QXEB]

@
= tr(QXvar X') + agtr (QW 1) +tr (QXE[BIE[B]'X')
= tr(QXE[BR|X") +adtr (QW 1)
= tr(XQXE BR) +ajtr (QW ).

The expectation of the total sum of squares appearing i8)1s2
E[SST = E[y'Wy] = tr (X'WXE[BR']) + 0dtr (In) = tr (X'WXE[BB']) + noj (1.31)
The expectation of the sum of residual squares in (1.29) is
E[SSEB,.B,)] = ElyMy] = tr (X'MX E[BB) + o3tr (MW ).
This expression can be simplified if we take into account that

X'MX = X[Iy = X(X'WX)"IX'W]'W(l,, = X (X'WX) " IX'W]X = X'WX
—  2X'WX (X'WX)"IX'WX + XWX (X'WX) ~IX'WX (XWX ) ~IX'WX
= 0
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and
MWL = [, = X(X'WX) " IX'W'W[I, — X(X'WX)~IX'ww 1
[1n — X (X'WX) " IX'W] I, = WX (X' WX ) ~1X]
In — 2WX (X'WX) ~IX" + WX (XWX )~ IX'WX (XWX ) ~1X’
= Ip—WX(X'WX)" X,
SinceX’'WX (X'WX)~1 is equal to the identity, we obtain that
tr(MW 1) = tr(1n— WX(X'WX) X') =n—tr (X'WX (X'WX) )
= n—p=n-r(X),
where (X) denotes the rank of. This result can be proved in the ca$¥y < p too. Therefore
E[SSHB,,B,)] = 05 [n—r(X)] (1.32)
and also with (1.31) and (1.32) we obtain that
E[SSRB,,B,)] = E[SST —~ E[SSEPB,, B,)] = tr (X'WXE[BB']) + a5r(X).
From the model (1.26) it follows that

X! XiWXq1 XWX
X'WX = /1 W (X1, X2) = /1 1 /1 2 7

consequently

E[SSRB,.By) = tr{ ( W X ) E[BB’]} () (1.33)

From (1.30) and (1.24) we obtain
E[SSEB,)] = tr{X'M:XE[BB]}+adtr {M;W 1}
= tr{X'MXE[BR]} +05[n—r{Xs}]. (1.34)
From (1.31) and (1.34), we have that
E[SSRB,)] = E[SST — E[SSER,)] = tr {X'QXE[BR]} +0fr {X1},
whereQ; = W — M1 = WX 1 (X WX 1) ~IX W. If XWX is invertible, then

X'QuX

X! _
( X’l )le(x/lwxl) IXIW (X1 X2)
2

_ XWX 4 XIWX 1 (X]WX 1)~ IX]WX 2
L XOWX (XWX ) TIXEWX . XEWX 1 (XWX 1) T IX WX,

[ XWXy XWX o
L XOWX g XOWX 1 (XWX ) T IX WX,
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and
XiWX 1 XjWX2
XHWX 1 XHWX 1 (X[WX 1)~ IXIWX o

E[SSRB,)] = tr{ (

Therefore, applying (1.33) and (1.35), we obtain
E[SSRB,|B,)] = E[SSRB,,B,)] —E[SSRB,)]

- ”{ ( 0 x’zw[wl_xl(xo’lwxl)lx’l]wa ) E[BBI]} + 5l (X) ~rx)
= tr XEW[W T — X (X{WX 1) "X WX E[B2B2 ]} + a3 (X) — r(Xa)]. (1.36)

We observe thaE [SSRf,|B;)] is simply a function ofE [BZB’Z] and o3. It does not depend on
E [B1P1] andE [B,B5]. We also observe that (1.36) has been obtained without dmisgmptions about
the form ofE [BR']. Therefore (1.36) holds for any structure of covariancerixaf f.

Let us consider again the model (1.5)

) E[BB/]} +agr(Xa). (1.35)

y=XB+Zui+...+ZmUm+e€,
with e ~ A,(0,03W 1), anduj ~ A (0,0%1 ), i = 1,...,m. We define
BY = (B up,oug) Yy ul = (ul
Fori=1,...,mwe consider the case

X1= Xg_l) = (X,Zl,-- . ,Zi—l)7 Bl - B(i)v

X=Xy = (Zi,...Zm),  By=ul
and define
M = wW—wx P x P wx ) tx P,
L = zZww —xPxPwx ) 1xMwz; .
Then (1.32) and (1.36) becomes
E[SSER",u")] = E[SSEB,u)]=03ln—r(X2)] (1.37)
E[SSRuVBY)] = S tr{Li} ok +0g[r(XZ) =r(X,Z1,...,Zi-1)] (1.38)
k=1

From (1.37) and (1.38), and applying the method of momerggyet the following linear and triangular
system of equations.

SSEB,U) = 0gIN—r(X,Z4,...,Zm)]
SSRUM|B™) = G3[r(XZ)—r(X,Z1,...,Zm-1)] + O3tr {Lm}
SSRuUMV|B™ ) = G3[r(XZ) ~r(X,Z1,...,Zm2)] + OGtr {Lm} + 0% qtr {Lm 1}

SSRUVIBY) = ofr(X2)~r(X)]+ 5 oL}
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From the first equation we obtain an unbiased estimato%pf

~, SSHB,u)
03 = nrXZ) MSE(B,u). (1.39)

From the second equation we get an unbiased estimatif;, of

5 _ SSRu™|B™) —G2[r(X Z) —r(X,Z1,...,Zm-1)]
m tr{Lm} '

From the third equation we get an unbiased estimatmﬁgf ,

(1.40)

> SSRU™YIB™ D) _GRK(XZ) (X, Z1,...,Zm 2)] — Ot {Lum}
Om1= ’
tr {L m—l}

and so on.
As SSRu® (M) = ssEBM) — ssEpBY, u®) = SSEBR") — SSEB, u), then the previous formula
can be expressed as a function of residual sum of squaresisTha

62 — _YMmiy
n—r(Xy™")
. YMmy —YMm,1y — 53 [r(Xl("”l)) - f(Xl(m))]
Om = tr(Lm)
,  YMiy—yMm1y -G O™ ) = rx{)| = 5T L)
o= tr(Ly)
L, YMy—YMaay =83 g™ ) —r(x{?)| - 5T, 8% )
01 -

tr(L 1)

For more details see the Searle at al. (1992), 202-208, ateSE®71), 443-445. If we replace the
variance components3, a2, ...,02, by their estimatorg3, 62, ...,62, in (1.3) and (1.4), we obtain the
estimator off and the predictorsy,. .., Un.

Observation 1.5.1.If we use the alternative parametrization the system of @op&is not linear any
more. Consequently, by solving the transformed system oae dot obtain unbiased estimators.
1.6 The area-level Fay-Herriot model

1.6.1 The model

Let us introduce the following notations and assumptions:
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1. LetXq = (Xd1,---,Xdp) be known vectors containing explanatory variables for érgeit variable
Ug =Yq.,d=1,...,D, whereYy. is the domain mean of variabje

2. Assume that thgg's are independent with distributidd(xq B, 02), wheref is a vector of dimen-
sion p containing the regression parameters, jies (U, ..., Up)" ~ N(XB, %) with X, = 6?lp.

3. Lety = (Y4.,...,Yp.)’ be a vector of direct estimators pfwith distributionN(p, Ve), whereVe =
diag(a?,...,03) and the diagonal element® are assumed to be known.

The area-level Fay-Herriot model is
Vg =Hd+€ Y Hd=XdB+Ug, d=1,...,D, (1.42)

wheree = (ey,...,ep) andu = (up,...,Up) are independent with distributioN(0,Ve) and N(0, %)
respectively. If we write (1.41) in the forid + Zu + e, we get

V. X11 ... Xip B1 Vi e
Yb. Xp1 ... Xpp Bp Up €D
It holds thatZ = Ip, tr(Z'Z) =D, r(X,Z) = D, Coy,u] = Z%,,
V =varly) = 23,72 +Ve= 3+ Ve =diagc2+02,...,02+03),

and
vl =diag((02+0?)7L,..., (0% +03) D).

If a2 is known, then the best linear unbiased estimator (BLUE yaadictor (BLUP) of = (By,.. ., Bp)’
andu = (ug,...,up)" are

B=(XV X)XVl and U=32ZV1 (y— xE) .
It is easy to check that the componentsiaire

_ o’

¥ —X d=1,...,D,
97 02+ 04 <yd dB)
wherexgq is the rowd of matrix X.
The BLUP ofpy = X4+ uq is
~blup ~ a? a? o3 ~
Y, =T4=xXqB+Ug=x < — ) d__x 1.42
d fa = XaB+ Uy = XB+ —— @+ Ya. — %aB 2+02Yd‘|’ 74 a2 aP (1.42)

Proposition 1.6.1.The best predictor gl is

o2
ElglVa] = 7+ Ya. +

21 g2
03+ 0
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so that the BLUP can be obtained from the BP SubStitL(Bilth.
Proof. As V4. ~ N(XdB, 03+ 03), Yg.|Ug ~ N(XaB + Ug,03) andug ~ N(0,03), then

1 1
f(ugly f(Yq.|ud) f(Ug) = ——=exp{ — = (Ya —XdaB —u
(Ualyg.) o f(Va.|ua)f(ua) N p{ 20§(Yd dB—ua)?} 2\/— exp{ — 55 ug }
1 o’
o exp = uj — 0ST%‘E(Y(L—XOIB)Ud :
05+03

which corresponds to a normal distribution with mé&dog|yy.| = %ﬁoz(%. —Xg) and variance vaug|yy.] =
d u

od ou
oj+o

. Therefore

2 2
o2 o2 o3
—Xd
02 + 02 7 (Yo —xaP) = 2+02 Ya. 02+ 02

E[MglVa.] = XaB+ E[ug|¥q.] = XaB+ XaP.

Definition 1.6.1. The empirical BLUP (EBLUP) of the domain meaf, under the model (1.41) is
obtained plugging an estimat6g in the place o2 por un estimadod?, i.e.

~FH 82 03 ~
== .+ = X 1.43
d O_a + O_S Ya O_a i 0_5 dB ( )

in the case that theg's are known, or

~FH 62 62
Yd = d

—x4B, 1.44
02+02yd 62+ 04 ab (1.44)

with 63 =V (¥4.),d = 1,..., D, otherwise.

1.6.2 Random effect variance estimation

We consider three procedures for estimatidg (1) Moments, (2) Maximum likelihood, and (3) residual
maximum likelihood.

The method of moments
An unbiased estimator af? 1s

1 D D D -1
0i=—— |SB-S 03[ 1-xq Xixa | x4 |1,
D-p =1 =1 =1

wherelg = ¥4 — Xqf andp = (X'X)~1X'y = (So_1X4Xd) - (S3-1X4¥q)-
It may occur that? takes negative values, bBt(G2 < 0) tends to 0 whem — . If G2 is negative,
we equate it to zero and we define
&5 = max{GZ, 0} (1.45)
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Maximum likelihood method

In what follows we particularize the results of Section h3te casen=1,q; =D, oi = Gﬁ, Q1 =Ip.
It holds thaty ~ N(XP,V), with covariance matri% = diag,_y-p (02 + 03). The log-likelihood is

(0 Biy) =~ In2r- ZIniV| 2 (y—XBYV Xy~ XB).

The partial derivatives of the log-likelihood are

whereG, = 0V /002 =

(1.16) to obtain

D

S = XV iHy-Xp)= dz 5 (Ya — XaB),

02+03

NI

Srﬁ = - tr(v_lGu)+E(y_XB)/V_leuV_l(y_XB)

10 1 10 1

Y 55+ —5—55a—xdB)%
2 £ 03403 2(;(05%5)2

Ip. To calculate the second order partial derivatives we uséditmulas (1.14)-

Hgg = —X'V !X, Hpgz =XV 3(y—Xp),

Haﬁaﬁ = %tr(viz)_(y—XB)lvig(y—XB)

The components of the Fisher information matrix are

FBB = X V-~ 1X CZ ded? FBGE = FGaB = O’

Fro = —Sr(v2)+u(vov) = tev3 =L
op = 3 _z; 02+0d '

Observation 1.6.1. Let

T=(Ve'+0,%p) =0jlp—oiv .

Applying the formula

with A= 0;2Ip, B

Therefore

(A+BCD) '=A1-A1B(C1+DA1B) DA

=1p,C=Vg!=diag_y.p(04?) andD = Ip, we get

o’llp—T

_ ~2 4y /-1 -1_
T =0oylp—oyV y V= 5
u

1 ) o1 2 1.

u u u
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The updating formulas of the Fisher-scoring algorithm are

2(k+1)

20 | - k1) _ p) -
ol = ol + Faﬁ<1k>oﬁ<k> San, BV =pY4 Fonp Spo-

Residual maximum likelihood method

In what follows we particularize the results of Section h4he casan=1,q; =D, ¢; = oﬁ, 0?2 =1,

Q1 = Ip. The REML log-likelihood is

D—p
2

(R(OGY) = —

Loqnxx| — ~Logxv-ix|— Ly
log 2+ 2Iog|X X| 2Iog|V| 2Iog|X V—X| 5y Py,
whereP = V~1 - V-IX(X'V-1X)"IX’V~1 It holds that

VLV IV VTV S R SN 1
002 le (02 + 03)2 ’

and
1 1 1 1
P==(lp—=R), tr(P)== |D—=tr(R
03<D 03)’ P) oa[ 02”}’

u

where
R = T+M, M=TV_ XXV IX)"IXV1IT,

2 ~2
_ o0
T = (Vil+gd 1:oliagJ —umd )
(Ve u1o) <d<P\o02+0?

First order derivative of the log-likelihood is

1 1
D - str(R =
o3 ( )]Jrz

g 1 1,0P 1
- = P —_ — _— = ——
002 2 "P) 2y acﬁy 202

Second order derivative of the log-likelihood is

0%(R 1 2 o3
s02002 — 2" (P —YPY

As PVP = P, the Fisher amount of information associatedrﬁds

1 1 1 2 1
Fo=—=tr(P?) +tr(P?V) = =tr(P?) = — |D — =tr(R) + —tr(R?)| .

The REML estimators may be obtained by applying the foll@wkiisher-scoring algorithm.

1. Set the seeds], = 65 = max{G3,0} andp, = B, whereG2 andp are the moment estimators given
by (1.45).
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2. Fork=1,2...,do

-1
D / D /
2 XgXd XdYd =2 =2 -1
Bk = ;Adi ;Ai » Ok =Ouk-1t R 1S1,
= 0-57k—1+0-5 = 0ﬁ,k-1+05 " " Kt
whre
1 tr(R)) 12 1 ~
S = 5= |D-—= +5 ) w2 Yd —Xdb)%
257, \° 7 e, ) T2, 1 ogr XM
1 2 ~ 1 ~
N = —— D—A—tr{Rk}—i-A—tr{RE ,
Zcﬁ,k Gﬁ,k Gﬁ,k
tr{Re} = tr(T)+tr(My), tr{RZ} =tr(T2)+2tr(TkMy) +tr(M2),
= o 044 ~ 2 0ja8
(M) = > == tr(To) —dz P o f
=1 O-u7k_|_ 04 =1 (Gu,k + Gd)
- VERE A 0 xxg ) |
tMd = w3 & o)\ 2@ ) |
& (Ojx+0g) & 0y +0q
~ o~ [ D g% 02X Xd D X\ X 1]
w(Tdhg = w)( 5 ML P ).
& (04 +0g) =1 Oyx 1+ 04
—~ -1
. D 0'37kX:de D Xéi Xd
tr(Mg) = tr dz s dz =
& (05 x+93) = Oy + 04

3. Stop if |67, — G54/ < € and [(Ek_ﬁk—l)/(/p;k —Bk_l)]

~2 =~
OyML = Oyk

1/2 . .
< €. Output: By = By, Ug = Ugx and

Alternatively the following algorithm can be used.

1. Setthe seeds{, = 65 = max{G3,0} andp, = B, whereG2 y B are the moment estimators given

by (1.45).
2. Fork=1,2,...,do

1
0 D XXq D X4V
k = =2 2 dz =2 2 |
(Zl Ouk—110g =1 O k—11 Oy
o ~ D 52 02
—~ uk—1 = uk>d
Uik = =55 (Ya—XdB1), t(Tk) = ; = 2
(O4k_110g) 7 =1 Okt 04 7
D =2
52 _ 2d-1Ugk
wk D— A tr(T 1))

A2
o-u,k—l
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o SR 112 A -
3. Stop whengj, — 67 4| < €and [(Bk —B 1) (Bc—B1)| <& Output: By =By, g = Uk

~2 =
Y OumL = Ouk

1.7 The EBLUP and its mean squared error

1.7.1 Introduccion

Let us consider model (1.1) witK in the place oh. Letsandr denote subsets dfL,... N} with sizes
n andk respectively. Subsetcontains the indexes of observed componentes of vgctmd subset
is used to define a linear combination of fixed and random w&ffeblote that we do not assume that
n+k =N holds. let us define = a; (X, +Z;u), wherea, is a vector containing known constants. We
are interested in predictingby using the EBLUP.

We consider 3 cases:

1. B, 60,04,...,6m are known,
2. 60,01,...,6, are knownp is unknown,

3. All the model parameters are unknown.

All the model parameters are known
Assume thaf and6g, 01, ... ,6, are known. The BLUP of is
T=a/(X;B+2Z:U), with U=CNVs'(ys—XsB)

whereCs = Couys, U) = ZsV,. The prediction error is thus— 1= &, Z,(U—u). The mean squared error
is
MSET) =E[T-1)]=V(T—1) =aZVarU—u)Z,a

It holds that

Var(—u) = Var(U)+Var(u) —2CouU,u) = CoVs WVVg'Cs+ V, — 2CVS 1Cs
= V-V ZV1ZVy.

We know thatv ! = (Ves+ZsV,Z5) L. By using the inversion formula
(A+BCD) 1=A1_AlB(Ct+DAIB) DAL, (1.46)

we get
Vel =Ves —VedZs(Vy +ZVed Zs) 'Z(Ved-

We can writeVs as a function off s = (V14 ZLV 2Zs)~1 in the following manner

vit=vl-v lzoa2v .
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Similarly, by applying (1.46) td s we get
Ts=Vu—ViZiVes+ZVZL) 12V =V, -V ZWV1ZeV,
Therefore
Var(u—u) =Ts.
and
MSE(T) = AqZ TsZra = 01(0).
The variance components are known but the regression paranters are unknown

In this case we assume tHeat 6, ..., 6, are known, buf is unknown. Let us defin®s = (X4Vg1Xs) ™t
andCs = CoMWys,U) = ZsV,. The BLUP oft is

{[\blup = d(XrE+ZrU),

where
U=CV'(ys—XB) Yy B=(XVs™Xs) XV5lys = QeXVilys.

It holds that

all'Zl'TSz;aﬁ
%2(0) = [aXr —qZiTsZV g Xe|Qs[Xrar — XV ZsTsZrar].

Q
fcy
—
D
~—~
I

All the parameters are unknown

When the componentes &f= (8¢, 61,. . .,6m) are known, the BLUP of is Tpiup = T(6). If 6 is unknown,
then it is replaced by an estimator to obtain the EBLUPR, éfe.

The mean squared errorﬁfbmpis

MSE({[\equp) = E [({[\eblup—{[\blup—F{[\blup—T)Z}
= MSE({[\blup) +E [({[\eblup—/fblup)z] +2E [(/feblup_/fblup) (/fblup -1)].

Kackar and Harville (1981) showed thatBft(0)] is finite andd is an even and translation invariante

(as the Henderson 3, Ml and REML estimators are), thgn, = 1(0) is unbiased. Further, under these
assumptions, Kackar and Harville (1984) proved that

E [(Teblup— Tolup) (Thiup— T)] = 0. (2.47)
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Here we assume that (1.47) holds, so that
MSE(?equp) = MSE(?qup) +E [({[\eblup—{[\blup)z} . (1-48)
In what follows an approximation to
E [(?eblup—{[\blup)z] .

is given. For this sake, consider an admisible valegyo, v, - - ., Ym) of 6 and definal (0) = (dy(8),d1(0),...,dm(0))’,
where

d;(8) = M| i _g1...m

ayj o

A first order Taylor series expansion tfy) around6 yields to

By doing the substitutioy = 0, we get
o~ o~ m o~ o~ o~
Teblup~ Thiup + Z)dj (8)(8; —8;) = Toiup+d'(8)(6—6).
J:

Let us now assume thatis asymptotically unbiased, i.e.

E[@,-—ej]—m, ji=0,1,....m

n—oo

Then
E [ (febiup— Toup)?] ~ E |(d'(6)(®-6))?] :iiE di(6)(6—6)d;(0)(8;~6)|.  (149)
1=0]=
Further, it holds
E[dj(8)]=0, j=0,1,...,m.

As d(B) =d(8,u) is a random vector, the summafidj) in (1.49) is
E [ch(8)d;(0)(8i —01) (8; — 85)| = Eq | (B —8)(8; —6;)Eq [d: ()} (8) 8] |
Now we have
Eq [di(e)d,-(e) |§] - COV(di(G),dj (0) |6) :

In the case tha is obtained from data independent of the data used to cmcig@p =T(0), we have
that
Cov(d(6),d;(6) |8) = Cov(ci(8),;(8))
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and therefore

E [ch(0)d;(6)(6 —8)(8; —8;)] = Cov(di(6).d;(0))E | (& —0)(8; - 8))
— Cov(di(6),d;(6))Cov8;,6))

The second summand in (1.48) can be written as

whereG(6) andB(8) are the covariance matricesaf®) and® respectively.
In the case tha andTyup = T(6) are calculated from the same data, Kackar and Harville (1984
propose the approximation

E [(Teblup— Tbiup)?] ~ tr {G(6)B(8)}.
Therefore an approximation of the MSEﬁtﬂupis
MSE(Tebiup) = MSE(Toiup) +tr {G(6)B(8)} .
Prasad and Rao (1990) gave the new approximation
tr{G(0)B(6)} ~ tr{(mb/)vs(mb/)’E [(@- )@ e)’} } : (1.50)

whereb’ = (by,...,by) = &Z,V,ZLVs+?

o' aby by
06p 08p Tt 06
o' by 9bn
ob' _foby db\ o | ooe [ _| o, o om
08; \06;"" 08 : : :
o' by Obn
%, B 0B ) (mit)xn

Finally, if the componentes of the vector of varian&s: (6,01,...,0) are know, we have the
approximation

MSE(Tepiup) = 91(8) +02(8) +g3(6),

01(8) = aZ/TZa.
®(8) = [&X; —&Z TsZVesXs|Qs[Xrar — XV s ZsTsZ 1],
%(0) ~ tr{(Db’)Vs(Db’)/E (6-9)(6—9)’]}.
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1.7.2 Mean squared error estimation

A simple estimator oMSE(T) is obtained by pluggin@ in the placed to obtain
mse (Teblup) = 91(8) + 92(8) + gs(8). (1.51)

If consistent estimator of 6 are used, theE[gz(é)] >~ 02(0), E[gg(ﬁ)] =~ g3(0). However this property
does not hold for fog;.

To evaluate the bias le(é), we expand); @) in Taylor series arourtd We get

—~

(6—0)'0%01(8)(8—0) 2 g1(8) + A1+ 4,

NI

01(8) ~ g1(8) + (8 8)'0gs1(8) +

whereg; (8) is the vector of first order derivatives gf(8) with respect td and[%g; () is the matrix
of second order derivatives. @ is unbiased fo8, thenE[A;] = 0. In general, if the ternE[A] ~

b/é(e)Dgl(e) is of inferior order tharE[A;], wherebg(8) is an approximation to the bia‘s[é— 6], then

the following approximation té&[g;(0)] is obtained
N 1 ) PN
El0(®)] ~ 0a(8) + 5tr (Pea(B)V[B)) (152)

whereV[@] is the asymptotic variance covariance matri>@oﬂ:urther, ifV has a linear structure i,
then (1.52) becomes

-~

E[91(6)] ~ 91(8) — ga(6). (1.53)
From (1.51) and (1.53) we have that the biasnsi (Tepiup) is
E[mse (Teblup)] — MSE(Teblup) ~ (91(6) — 93(6) +92(6) + g3(8)) — (92(6) + 92(6) +93(6)) = —gs(6).
ThereforeM SE(Tepiup) can be estimated with
Ms&Tepiup) = 01(6) + 02(8) +293(8). (1.54)

Formula (1.54) is valid iD is estimated by using the Henderson 3 or the REML method,wgricduces
unbiased or quasi-unbiased estimatBrsf 6. However for MLE estimator§ we have thaE|[A;] ~
b’é(G)Dgl(e) # 0. In this casM SE(Tepiyp) is estimated with

MS&Tebiup) = 01(8) + 2(6) + 205(8) — b}y(8) 0 (0). (1.55)
The termbg(0) can be calculated more easilyMfis a block diagonal matrix
V =diag(V1,...,Vm)

with
V= ZiVuiZi/‘FVei, i = 1,....m
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In this case the components of model (1.1) can be writteraifimy = (y7,...,ym), X = (X1, ..., X)),
Z =diag(Z1,...,Zm), u=(Uf,...,up), e=(€,...,€,), whereX; esn; x p, Zj esn; x g, yi esn; x 1,
n=y",nyqg=73y",q. Amodel of this type can be decomposedrnsubmodels

Vi = XiB+Zjui+¢g, i=1...,m (1.56)

Under the model (1.56), Bis the MLE of6, an approximation to the bias is (see e.g. Rao (2003))

oo (o]

where col [a;] is a column vector with elemengs, j =1,...,m,
1<j<m

() _ Vit 10Viy 10V 10V
v Z it Vi Vi vt Vi) |
T " gg, Vi and 1@ 2th 38,

Prasad and Rao (1990) obtained the estimator of ECM giveh.5#) for moments estimators and
special cases of the general linear mixed model with bloagatal covariance matrix. Harville and Jeske
(1992) proposed (1.54) for a more general linear mixed m@d&), under the hypothesE[@— 6] =0.
Das, Jiang and Rao (2001) gave rigorous proofs of approimsafl1.54) and (1.55) for ML and REML
estimators. Finally Lahiri and Rao (1995) have studied tireistness of the above cited approximations.

bg(8) = 1 {1‘1(6) col [tr

2m 1<j<m
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Chapter 2

EB prediction of non-linear domain
parameters with unit level models

This chapter describes a methodology for obtaining ermadibest predictors of general, possibly non-
linear, domain parameters using unit level linear regoesanodels. The proposed method is particu-
larized to FGT poverty measures (Foster et al., 1984) agpkat cases of non-linear parameters. The
mean squared error of the proposed estimators is obtainedplyametric bootstrap for finite popula-
tions. This chapter is based on the results of Molina and R@bQ). The chapter is organizes as follows.
Section 2.1 describes the empirical best predictor of alime@r population parameter. Section 2.2 is
devoted to the estimation of domain parameters. This is doder normality and using a Monte Carlo
approximation of the empirical best predictor. Sectioni@t®duces the nested-error model and gives a
fast way for generating multivariate normal vectors fordeenains. This method makes feasible the ap-
plication of the proposed empirical best prediction metimogkal situations with large domains. Section
2.4 describes the parametric bootstrap for mean squaredestimation. Section 2.5 particularizes de
proposed method to the estimation of domain FGT poverty oreas Section 2.6 describes the method
of Elbers et al. (2003) for the estimation of domain paramsetand it discusses its properties when
estimating domain means in comparison with the method meghdiere. Sections 2.7 and 2.8 describe
the results of model-based and design-based simulaticeriexgnts respectively, conducted to analyze
and compare the performance of empirical best predictinegtdestimators and estimators obtained by
the method of Elbers et al. (2003) for the FGT poverty measure

2.1 Empirical best predictor under a finite population

Lety be a random vector containing the values of a random variatitee units of a finite population.
Let ys be the sub-vector of corresponding to sample elements gndhe sub-vector of out-of-sample
elements and consider without loss of generality that tamehts ofy are sorted ag = (ys,y;)’. Now
consider a real measurable functida- h(y) of the random vectoy. The target is to predidi = h(y)

31
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using the sample data. Letd denote a predictor @l. The mean squared error (MSE)SDIS defined as
MSE(3) = Ey[(5-8), (2.1)

whereEy denotes expectation with respect to the joint distributbthe population vectoy. The BP of
3 is the function ofys that minimizes (2.1). Consider the conditional expectaid= Ey, (3]ys), where
the expectation is taken with respect to the joint distidubf y, givenys and the result is a function of
sample datgs. Subtracting and addindf in the MSE, we obtain

~

MSE(®) = E,[(6-8+8-8)
= E[(6-8)3 +2E,[(5-8)(8°—8)] +E,[° - 8)?

In this expression, the last term does not depena.cﬁor the second term, observe that

E,[(6-8)(8"-8)] = E,{E |G- -5y
= E.{3-8[8-E,@y)] }
= 0

Thus, the BP 0b is the predicto® that minimizesEy[(S— &%)2]. Since this quantity is non-negative and
its minimum value is zero, the BP ofis

&° =& = Ey, (3lys)- (2.2)
Note that the BP is unbiased in the sense EW%B —8) =0 because

Ey.(8°) = Ey.{Ey, (3lys)} = Ey(5).

Typically, y follows a distribution depending on an unknown parametetord®. This parameter is
previously estimated using the sample dataThen, the empirical best predictor (EBP)&fdenoted
8EB, is equal to (2.2), with the expectation taken with respethé distribution ofy, |ys with 6 replaced
by an estimato. The EBP is not exactly unbiased, but the bias coming fromeiienation of the
parameteB is typically negligible.

Observation 2.1.1. Assume thay = (ys,y;)’ follows a Normal distribution with mean vector=uX,
for a known matrixX, with sample and out-of-sample decompositos: (X%, X;)’, and positive definite
covariance matrix/ decomposed accordingly as

VSS Vsr
V= .
( Vis Vir >
Assume also that the target paramedeis a linear function ofy, that is,d = a'y, wherea = (a,a;)’.
Then, the BP 0d = alys+ &y, is given by
&% = alys+a) [XiB+ ViV (ys— XsP)] - (2.3)

Replacingp by the weighted least squares estimafor: (X.V2Xs) XV lys in in (2.3), we obtain
the best linear unbiased predictor (BLUP)®#= &y as defined by Royall (1976).
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2.2 Empirical best predictors of small domain non-linear paameters

The BP of a non-linear measurable functide: h(y) can be obtained as soon as the population vector
follows a distribution such that the distribution yflys is known. Under this condition, the EB method
allows the estimation of practically any characteristiadinite population. Here we concentrate on the
estimation of domain characteristics. For thisygt= (v, Yy,)' be the subvector of for d-th domain
and letdq = h(yq) be the target parameter, for a real measurable funttidien the BP ob is given by

88 = Ey,, (8alyas). (2.4)

When the domain vectongy, d = 1,...,D, are independent following a Normal distribution, the
distribution ofyg,|yq4s is also Normal and then the expectation in (2.4) can be edsiliyed. Thus, we
consider that

Yd ~indN(py,Vae), d=1,...,D, (2.5)

where the mean vecty; and the covariance matriXy can be partitioned in submatrices corresponding
to sample and out-of-sample elements

Mds Vas Vdsr >
= s V = . 2.6
Hy ( Mar > d ( Vars  Var (2:6)
Then, the distribution ofq|ygs iS
Yar|Yds ~ N(“dr|57vdr\s)v (2.7)

where

Mar(s = Mar — Vdrsvaé(Yds_ Hgs) and Vgys=Var— Vdrsvaslvdsr-

For complex non-linear domain paramet&gs= h(yq), the expectation in (2.19) cannot be calculated
analytically, but an empirical Monte Carlo approximati@neasy to obtain. For this, generate a large
numberL of vectorsyy, from (2.7). Letyff? be the vector generated in tiieh replication. Attach this
vector to the sample vectggs to obtain the population vector fakth domain,ygf) = (Yo (yfj?)’)’. Let
6ff) = h(yff)) be the target parameter for the corresponding domain cdcoief'nmmyéz). A Monte Carlo
approximation to the BP dlq is simply the average aﬂff) = h(yff)), (=1...,L, thatis,

A 1L
8 = Bulnvalived ~ £ 3 hivg): (2:8)
=1

Typically, the mean vectors and covariance matrices in) ([BJ®lve an unknown parameter vector
8, that is,ply = 14(0) andVy = V4(8). An estimatord of 8 is replaced in (2.7). Then the EBP &,
denotedEB, is obtained by generating out-of-sample vecyﬁ%from the distribution ofyq4,|ygs, with 6
replaced b)é, and applying (2.8).
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2.3 Empirical best predictor under a nested error model

A possible model for the elements of the population vegttivat can be used to evaluate the EBP is the
nested error regression model, introduced by BattesegHand Fuller (1988). This model relates the
population variable¥y; (e.g., log-earnings) to a vector pfexplanatory variablegy; for all domains,
and includes random domain-specific effagisalong with the usual individual erroeg;:

Ydj:xij+ud+edj, jZl,...,Nd, d:l,...,D,
Ug ~ iid N(0,02), eqj ~ iid N(0,02). (2.9)

where the domain effectsy and the errorey; are independent. Let us define vectors and matrices
obtained by stacking the elements for domain

ya=_col (Ygj), Xa=_ col (x4j), es=_col (egj).

1<j<Ny 1<j<Ny 1<j<Ny

Then, the domain vectosg are independent and follow the model
Ya = XaB+Ugly, +€1, € ~indN(0,02ly,), d=1,...,D,

whereuq is independent o&y. Under this model, the mean vector and the covariance mattiyy are
given by
by =XaB and Vg =0l 1y, + 05N

Consider the decomposition g into sample and out-of-sample elemewgs= (y;,,Yys)', and the
corresponding decomposition pf = E(yq) andVq = Var(yq) as in (2.6). The distribution of the out-
of-sample vectoly, given the sample datgys is given by (2.7) where, for this particular model, the
conditional mean vector and covariance matrix are given by

Harjs = XarB+ 05—y 1, Ve (Yas — XasB), (2.10)
Vdrls: oﬁ(l_yd)lNd—ndlf\ldfnd +0§|Nd—nd7 (211)

with yg = 02(02 + 02/ng) L. Observe that the application of the Monte Carlo approxionaf2.8) in-
volves simulation oD multivariate Normal vectors of sizég; —ng, d =1,...,D, from (2.7). Then this
process has to be repeatetimes, something computationally unfeasible. This canvo@ad by noting
that the conditional covariance matiky,s, given by (2.7), corresponds to the covariance matrix of a
vectoryqyr generated by the model

Ydr = Hgrs + VdIng—ng + Edr, (2.12)
with new random effectgy and errorggy, that are independent and satisfy
Va ~ N(0,02(1—vg)) and &gy ~ N(Ony ny, 02Ny ny)-

Using model (2.12), instead of generating a multivariatemrad vector of sizeNy — ng, we need to
generate only univariate normal variablgs~ N(0,03(1—vy)) andeqj ~ N(0,02) independently, for
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j € rq, and then obtain the corresponding out-of-sample elemgntom (2.12) using as means the
corresponding elements gfs given by (2.10). As mentioned before, in practice the modeame-

ters® = (B',02,02)’ are replaced by suitable estimatérs- (B’,ag,ag)/, and then the variableg;j are
generated from (2.12) with replaced b)é.

2.4 Parametric bootstrap for MSE estimation
The MSE of the EB estimatcﬁﬁB with respect to the model is given by
MSE(358) = E [(855— 5d)2} : (2.13)

Note that here the target paramedgris a random variable, so the usual decomposition of the MSE in
terms of squared bias and varianceé®p® does not hold. However, (2.13) can be decomposed as

MSE(358) = [E(SCE,B— 6d)r+V(SEB— 5a). (2.14)

Thus, the MSE is equal to the sum of the squared model biashendatiance of the prediction error.
Since the model bias of the “best” estimaﬁﬁris exactly zero, the squared bias of the “empirical best”
estimatorf)EB in (2.14) is typically very small relative to the variancetb prediction errofSE,B— Od
whenmis large. In this case, the MSE is dominated by the variante i@ (2.14).

Analytical approximations to the MSE are difficult to derimethe case of complex parameters such
as the FGT poverty measures. We therefore obtain a parameistrap MSE estimator by following
the bootstrap method for finite populations of Gonzalezxdima et al. (2008). This bootstrap method
can be readily applied to other complex parameters. Thepeiric bootstrap method works as follows:

1. Fit model (2.9) to sample daya and obtain model parameter estima&eéﬁ andé3.
2. Generate bootstrap random domain effects;as iid N (O, 62),d=1,...,D.

3. Generate, independently of the random effefitsbootstrap random errom;; ~ iid N(O, G2),
j=1,...,Ng,d=1,....D.,

4. Construct a bootstrap population vegtdr= ((y;)',...,(y5)) using the estimated model,
Y =xaip+us+e€, j=1...,Ng, d=1,...D, (2.15)
and calculate the true domain quantities for this bootgteulation,d) = h(y;), d=1,...,D.

5. Take the eIementtij‘j of the population vectoy* with indices contained in the sampdedenoted

ys. Fit model (2.9) again to bootstrap datg obtaining new model parameter estimaﬁ%séﬁ*
andg2*.

6. Using the bootstrap sample dgtaand the known matriX, apply the EB method as described in
Section 2.2 and calculate bootstrap EB(B'g_sB,*, d=1,...,D.
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Observe that the bootstrap elemem?ﬁ given the original sample datg, preserve properties of
the original population model. LdE, andVar, denote expectation and variance with respect to the
distribution defined by the bootstrap model (2.15) given@ardatays. Then bootstrap random effects
ug and errorsey; are iid with

E.(Uj) =0, Var(uj) =063 E.(ej)=0, Var.(ej) =05 (2.16)

Observe also that the mean vectors and covariance matfites lnootstrap domain vectoyg are given
by
E.(ya) =XaB and Var.(yy) = cA)ﬁlNd f\ld +6(23| N-

Thus, the distribution of the bootstrap populatior(given the sample daig) imitates that of the original
populationy. Then an estimator cWISE(éEB) is the bootstrap MSE of the bootstrap EBP, that is

MSE (85%) = E. | (85™ - 8%

In practice, this quantity is approximated through a Monégl@€procedure. For this, repeat steps 2—6
a large number of time$. Then we have generat&ibootstrap populations with their corresponding
true values of parameters and EBPs. An approximation fobtwstrap MSE is obtained then by
averaging the squared errors over Bheeplicates. More specifically, Ie‘tf,(b) and SEB*@ be the true
domain parameter and its corresponding EBP for the boptséaplicateb, for b=1,...,B. Then the
final bootstrap estimator of the MSE is

2 18 /seB (b) 2
msdd®) — - Z <6d . ) : (2.17)
It is possible to obtain a better MSE estimator, in terms ftige bias, by using a double bootstrap

method (Hall and Maiti, 2006). However, under the finite dagian setup, in which full populations are
generated in each bootstrap replication, the double braptstay be computationally infeasible.

2.5 Empirical best estimators of small domain FGT poverty masures

Consider the FGT family of poverty measures for donthin

1 8 /z—Eqg;\°
Fad:_z< zdj> I(Eqj<2), a=0,12 (2.18)
=1

whereEyg; is the value of a quantitative welfare measure jfdh individual withind-th domain anazis
the given poverty line. Far = 0 we obtain the proportion of individuals under the poveirtg | which is
called poverty incidence. For= 1 we obtain the domain mean of relative distances to the poiree,
which is called poverty gap. While the poverty incidenceaats for the quantity of people under the
poverty line, the poverty gap measures the degree of powéthe people under the poverty line.
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The BP of the FGT poverty measubg = Fyq is given by

'fol(Bd = Eydr(':ud|yds)-

Thus, in order to obtain the BP &4, we need to expresds,y in terms of a domain vectoyy, for
which the conditional distribution of the out-of-samplect@ yq4, given sample datgys is known. The
distribution of the welfare variableSy; is seldom Normal due to the typical strong right-skewness of
these kind of economical variables. However, many times jgassible to find a transformation of the
Eqj’s whose distribution is approximately Normal. This traorshation can be chosen from a suitable
family such that the Box-Cox power family of transformaton

Thus, here we suppose that there exists a one-to-one trarafon Yy; = T(Eqj) of the welfare
variablesEqj, which follows a Normal distribution. In particular, we Widssume that th¥y;’s follow
the nested error model (2.9). Lef = (v, Yy,)' be the vector containing the values of the transformed
variablesyy; for the sample and out-of-sample units within doméiThenFyq is function ofyq, that is

Fad:N_dZ 7

1 N (z—T—l(Ydj)
=1

> (T (Y4)) <2) = ha(ya), o=0,1,2.

Thus, the FGT poverty measure of orders a non-linear functiomy (yq) of yg. Then the BP ofqgq is
given by

i = Eyg, [Na(Ya)lYas] = /Rhu()’d)f()’drl)’ds) dYar, (2.19)

wheref (yqr|Yds) is the joint density oy, given the observed data vectgi obtained from (2.7). Due to
the complexity of the functiohy (-), there is not explicit expression for the expectation id92. but this
expectation can be approximated by Monte Carlo as explam&ection 2.2. Then, an approximation
to the best predictor df,q is

Typically, the mean vectony and the covariance matriXq depend on an unknown vector of pa-
rameterd). Then the conditional densitf/(yqr|Yas) depends o, and we make this explicit by writing
f(Yar|ydas,0). We take an estimatd® of 8 such as the maximum likelihood (ML) or restricted ML
(REML)estimator. Then the expectation can be approximhtedenerating values from the estimated
density f (Yar|Yds, é). The result is the EBP, denot@@f‘.

2.6 ELL estimators of small domain non-linear parameters

The method of Elbers et al. (2003), called ELL or World BankBJAmethod, assumes a nested er-
ror model on the transformed population valugs, similar to (2.9) but using random cluster effects,
where the clusters may be different from the small areasadt) the small areas are not specified in ad-
vance. They compute estimators of domain paraméteby applying a method similar to the bootstrap
procedure described in Section 2.4. More concretely, theakthod follows the steps below:
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1. With the original sample datag, fit a linear model with cluster random effects,

Ydj:deB—{—Uc+edj, ji=1,...,Nq, d=1,...,D, c¢=1,...,C,
Ue ~ iid N(0,0%), eqj~ iid N(0,02). (2.20)

whereu is the random effect of cluster Let 3, 62 and62 be the estimators df, 02 ando? in
this model.

2. Generate bootstrap cluster effegts- iid N(0,62),c=1,...,C.

3. Independently of the cluster effects, generate bogtstradel errors
ey ~ iid N(0,62), j=1,...,Ng,d=1,...,D.

4. Construct a population vectgt from the bootstrap model

Yj =xgjB+ui+ei, j=1,...Ng, d=1...,D, c=1....C. (2.21)

5. Calculate the true bootstrap domain parameiges h(y;), d=1,...,D.

6. The ELL estimator 0bq is then the bootstrap mean
o5 = E.(8)),

and the bootstrap variance is used as an estimator of the Mg &LL estimatorSELL, that is,
the ELL method uses
msdd5-") = Var, (5;) = E.[5; — E.(8)))%,

Note thatE.(3}) is trackingE (8¢) andVar. (&) is trackingV (8q) = E[8¢ — E(84)]?. In practice,
ELL estimators are obtained from a Monte Carlo approxinmatiy generating a large numbeX, of
population vectorg*(® = ((yz(a))’, e (yf;(a))’)’, a=1,...,A, calculating the bootstrap domain param-
eters for each populatioa in the form&;? = h(y;®), d =1,...,D, and later averaging over thfe
populations; that is, taking

12 50 1A 2
Gt~ Z\Z =5 and msdd§‘t) ~ Z\Z( )

Note that ELL population vectong® do not contain the observed sample data in contrast to the EB
method described in Section 2.2.

To illustrate the ELL method and compare it with the EB methmmhsider the special case of esti-
mating the domain means, thatdg,= Yy, where

Ya=N; dzvd,, d=1,...,D.
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The ELL estimator of the domain meqis the bootstrap mean
Y =E.(Y), (2.22)
and the ELL estimator of the MSE &L is the bootstrap variance
mséYFHh) = Var, (Yg).

In many cases, as in some establishment surveys, there atasters. Then, the ELL method fits
the linear model

Yaj =XajB+€j, €gj~iidN(0,02), j=1,...,Ng, d=1,...,D, (2.23)

and uses this model to construct bootstrap populationsud.eonsider, for simplicity of exposition, that
all the parameters involved in the model are known. The Ii@gtsnean fod-th domain is given by

_ Ny 1 Ny N _
* _ n—1 X . ) _ yvoYN *
Yo =Ny JZlej = Ng JZl(XdJB+edJ) =Yg "+Eqg,
whereEj =Ny 5™ e, andY;Nis used to denote the synthetic estimataB, whereXq = Ng 1514, xa;.
The synthetic estimator is obtained by predicting all papah element¥y; through the linear model
(2.23) by\?dj = X4jB and then taking the mean over tti¢h domain, that is,

SYN 13,
Yo' = ZY‘”'

By (2.22), the ELL estimator is given by

a

Y =B = B (M B = BN EL(ED =

due to property (2.16) of the bootstrap method. On the othed the EB estimator &f under the linear
model (2.23) is obtained by predicting only the out-of-s&mgbservations and keeping the sample data,
that is,

VEB _ i . 7, -

n‘m{i“*i“}

=t =
Let us compare the MSEs of ELL and EB estimators. Taking tleeame of (2.23) over the elements

in d-th domain, we can express the true mean as

Yg = XgB+ Eq,

whereXg = Ny 23 xaj andEq = Ny 1 5™ eqj. Now let us express the ELL estimatorgs™- = Xqp.
Then, it holds that
YE — Yo = XaB— (XaB+Eq) = Eq,
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and then the MSE of ELL estimator is

_ Var(eqj) _og

MSE(YF ') = E{(Yg'"" — )2} = E(E?) .
Ny Ny

On the other hand, for the MSE ng, observe that the difference between the EB estimator and th
true mean is equal to
- 1
YLdEB_Yd e Z edja

j€rg
which implies that the MSE o?dEB is given by

2 2
— (o] Ny (o]
MSE(YE®) = E[(Y® —Ya)?] = <€ ( 1—F ) < <& = MSE(YEH).
Ny Ny Ny
Thus, under model (2.23) with known model parametensy it 1, the EB estimator has always smaller
MSE than the ELL estimator due to the more efficient use of tr@lable information, namely the
sample data. When the sampling fractigfyNy is negligible, both estimators have a similar MSE.
Moreover, the ELL estimator of the MSE is
B Var.(e};) o2

— e (2.24)

msaVFH) = B[ — E.(G))7 = E.[(E)2 = — " = §F.

which is the true MSE of the ELL estimator under model (2.28hus, when fitting a linear model
without cluster effects, the ELL estimator of a small areaam@s essentially the synthetic estimator,
which is a good estimator when there are not domain effecdtamtrue model is (2.23). In this case,
the ELL estimator of the MSE tracks the true MSE.

However, many times there is extra domain variation thatoisfully explained by the auxiliary
variables; that is, the true model is (2.9). However, whardahare no clusters, the ELL method fits
model (2.23). In this case, the true meandeth domain is given by

Yg = XaB + Ug + Eg.

This means that the MSE of the ELL estimator under the trueahisd

Oe

MSE(YG) = El(us + Ea)?] = 0f + ¢

(2.25)
Summarizing, when the true model is (2.9), the ELL estimatqual to the synthetic estimator, is not
accounting for the domain effects, and the ELL estimatohefMSE has a bias equal &, compare
(2.24) with (2.25). Thus, this MSE estimator can lead tosesunderestimation when the domain effects
have a substantial variancg.

Now, if we take the clusters in the ELL method equal to the soh@inains, then due to (2.16), the
ELL estimator under the correct model is again the syntheignator, that is,

?dELL _ E*(\‘(“dSYN+ uj -+ E—éﬁ) :YLdSYN.
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Moreover, the ELL estimator of the MSE is

2

mséVEtt) = Var, (Yq) = E.[(Y — E.(Y¢))% = E.[(Uj + Eg)?) = o2+ ﬁ—d

which is equal to the true MSE given in (2.25). This indicatest when the clusters are equal to the
small areas, the ELL estimator remains essentially equal ggnthetic estimator, but in this case the
ELL variance estimator is unbiased. Actually, when the tinaglel is the nested-error model (2.9), the
difference between ELL and EB methods is that the targettgiggnare not the same. The EB method
tries to estimate (or better predict) the actual domain m&anwhile the ELL method is estimating
instead the marginal expectatioBi$Yy) along with the marginal varianca&ar(Yy).

2.7 Model-based simulation experiment

We consider in this section a simulation study to check th€ BE®del in terms of measures (2.18) with
a poverty incidence and a poverty gap-€ 0 anda = 1 respectively). We simulated populations of size
N = 20000, composed @ = 80 areas withNg = 250 elements in each arda=1,...,D. The response
variablesYy; we generated from (2.9) using two binary (auxiliary) valésX; andX; plus an intercept.
The binary variables were simulated from Bernoulli disitibns with

pg = 0.3+0.5d/80;
P2d = 0.2,

d=1,...,D, namely wherepyg is directly proportional to the area index f& and pyq is constant. We
consider sample indicesg with ng = 50 drawn independently in each akkhy simple random sampling
without replacement. Variable§ andX, for population units and sample indices were the same for all
Monte Carlo simulations.

The transformatiorT (-) defined in Section 2.5 i§(x) = log(x), in this way, the welfare variables
Eqj are the exponential of the model responggs

The intercept and the regression coefficientXpand X, were = (3,0.03,—0.04)’. By using this
values , In this way, the mean welfag; is larger from cas¢X; = 0,X; = 0) to (X; = 1,X; = 0), but
decreases froriX; = 0,X; = 0) to (X3 = 0,X; = 1). It can be interpreted as the higher income level is
reached wheX; = 1 andX; = 0.

Note thatpiq of X; = 1 increases with the area index lpgty of Xo = 1 is constant, then the last areas
will have more individuals with largeYy; and then the FGT poverty measures will decrease with the area
index.

We fixed the following values in the model:

(i) Random area effects varianeg, = (0.15)2.

(ii) Error varianceg? = (0.5).
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(iii) The poverty linez= 12 (roughly 0.6 times the median of the welfare varialidgsfor a population
generated as mentioned above). Hence, the poverty in@denahe simulated populations is
approximately 16%.

Therefore, we generatéd= 10000 population vectorg’) from the true model and for each popula-
tion i, we considered these steps:

(@) The FGT measures far = 0 anda = 1 (true area poverty incidences and gaps) for each area
d=1,...,D and each populationare obtained as

a

1 N [z E(i.> ) ) .
dj I(Ec(,'j) <), Ec(,'j) = exp(YOf'J)).

z

(b) Using the sample part of theh population vectoryé”, direct estimators dFOE'd) were calculated

as
a

z—E) .
2 P 1EY <2).

) _
ad ™y &, z
(c) The nested-error model given in (2.9) was fitted to sardpba(ys' ,Xs). Then, substltutlng the
estimated model parameters in (2.10) and (2.LH;, 50 out-of-sample vectorys =1,....L
were generated from the conditional distribution (2.7nggi2.12) ford = 1,...,D. The sample
datay(s) was attached to the generated out-of-sample yﬁa ato form a populatlon vectoy®).
The domain poverty measures for= 0,1 andd = 1,...,D were obtained for each population
vectory(¥) as
. a
. Ng [ 72— E('.Z) . . .
i _ 1 dj (i6) (i) _ (it) _
Then the Monte Carlo approximations to the EBPs of povertasues fora = 0,1 andd =
1,...,D were calculated as

(d) Finally, we compute the ELL estimators of the poverty mgas. Therefore, we applied the model
(2.9) with the sample datg, and generaté = 50 populations by means of a parametric bootstrap
(see Section 2.4). In each population the poverty measures @omputed and then averaged over
the A = 50 populations, in order to find the ELL estimat(ﬁg%u(i) for eachi (see Section 2.6).

Observation 2.7.1.Note that we used £ A = 50for the EB and ELL methods in the simulation studies.
A limited comparison of EB estimators for=L50 with the corresponding values for= 1000showed
that the choice L= 50 gives fairly accurate results. In practice, however, whemlghg with a given
sample data set, it is advisable to use larger values of L sisdh> 200
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Means over Monte Carlo populations= 1,...,| of the true values of the FGT measures of order
o = 0,1 were computed as

Fad I z ad’ ..7D.

-B) — E(Faa), g(ﬁad) ~ E(Faq) and E(FEH) — E(Fuq), and MSEs over Monte
B — Fud)? E(Fag — Fag)? @andE (FEF- — Fyq)? of the three estimators were com-

Similarly, biasesE (FE]
Carlo populationds (FE!
puted.

Figures 2.1 a) and b) report respectively the biases and BEIWf the estimators for the poverty
gap @ = 1). Figure 2.1 a) shows that the EB estimator has the smaltestiute bias followed by ELL
estimator, but compared to the corresponding values of NFBjti(e 2.1 b)), the square of the model bias
is negligible for all the three estimators. Hence, the MSEeke estimators is dominated by the model
variance of the prediction error, as explained at the baéginof Section 2.4. Itis clear from Figure 2.1 b)
that the EB estimator is significantly more efficient than Edrd direct estimators. Surprisingly, Figure
2.1 b) also reveals that, in these simulations, the ELL egtimis less efficient than the direct estimator,
showing that the prediction error variance is larger forEhé method. Results for the poverty incidence
(o = 0) were similar and are not reported here.

a) b)
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Figure 2.1: a) Bias X100) and b) MSE %10%* over simulated populations of EB, direct and ELL
estimators of the poverty gdfq for each areal.

Turning to MSE estimation, the parametric bootstrap prapedescribed in Section 2.4 was imple-
mented withB = 500 replicates and the results are plotted in Figure 2.2h#pbverty gapd = 1). The
number of Monte Carlo simulations was= 500 and the true values of the MSE were independently
computed with = 50000 Monte Carlo simulations. Figure 2.4 shows that thedb@p MSE estimator
tracks the pattern of the true MSE values. Similar result®webtained for the poverty incidenae £ 0).
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Figure 2.2: True MSEX10%) of EB predictor of poverty gapa(= 1) and bootstrap MSE estimate with
B = 500 for each ared.

2.8 Design-based simulation experiment

Now, we deal with the performance of the estimators whenioibig repeated samples drawn from a
given population. In this way, we generate a population Withsame parameters as showed in Section
2.7, and drawl = 1000 replicates. In each replicate another sample is takeadbon a simple ran-
dom procedure without replacement within each area. We atadpn each sample, the three types of
estimators of poverty measures: EBP, direct and ELL.

In Figures 2.3 a) and b) the design bias and design MSE of tiraasrs for poverty gagpa = 1)
are shown. As expected in Figure 2.3 it represented the almeos value of the Monte Carlo design bias
of the direct estimator and a greater value of the EB estimato

In Figure 2.3 b) it is shown that ELL estimators have small M$& some of the areas and large for
the other areas, while the MSE of EB and direct estimatorsiaal for all areas. Morteover, for most
areas, the MSE of the EB estimator is smaller than the casreipg one of the direct estimator.
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Figure 2.3: a) Biasx100) and b) MSE % 10%) of EB, direct and ELL estimators of the poverty gaj

for each area under the design-based setup.
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Chapter 3

Fast EB method for estimation offuzzy
poverty measures

3.1 Introduction

The traditional poverty measures for a population are obthidoing a simple dichotomization of the
population into poor and non poor. This is done in relatiosdme chosen poverty line that represents
a percentage (generally 50%, 60% or 70%) of the median of qné/aised income distribution, see
e.g. Foster et al. (1984). On the one hand, this poverty Bnarlbitrary, and on the other, a more
appropriate measure based on some degree of poverty, weulgdirable. Moreover, this approach
is unidimensional, that is, it refers to only one proxy of edy, namely low income or consumption
expenditure. Here we consider the estimation of fuzzy nawyednd fuzzy supplementary indicators.
The former are based on assigning a degree of poverty to digdnals using a ranking of the welfare
variable used as proxy. The latter does a ranking on a scoiEbiathat is obtained after applying a
multidimensional approach that takes into account a wadEhon-monetary indicators of deprivation.

The EB method proposed by Molina and Rao (2009) for estimatinall domain non-linear poverty
indicators requires generation of full populations. Famnarge populations or for complex indicators,
like those whose computation require sorting the data, BienEthod might be unfeasible. Here we pro-
pose a modification of the EB method, called fast EB methodghwvieduces drastically the computing
time, making feasible the estimation of complex non-lingaantities under large populations, whereas
loosing little efficiency.

In simulations we compare the results of different smalh@stimation methods, including the orig-
inal and the fast EB method, of complex domain poverty indicausing a unit level linear regression
model. The indicators considered are the head count ra@&R(Halso called poverty incidence, the fuzzy
monetary (FM) indicator and the fuzzy supplementary (F8gi Moreover, the proposed approach is
applied to the estimation of HCR, FM and FS indexes in Tusgaayinces.

3.2 Fuzzy monetary and supplementary indicators

LetU = {1,...,N} be a finite population of siz8l, whereE; is the value of a welfare variable (e.g.
equivalised income) for individual Let us consider the empirical distribution function{d;,...,Ey},

47
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defined as N
1
Fe(x) = N J;I{Ej <x}, Xe€R,

wherel {Ej < x} = 1if Ej < xand 0 otherwise. Consider also the (empirical) Lorenz cugiven by

5 Ej1 {E <x)
is1

Le(x) = N , X€eR.

=1

Following the Integrated Fuzzy and Relative (IFR) approacBetti et al. (2006), the Fuzzy Monetary
Index (FMI) for individuali is defined as

EM, = {L(l— FE(Ei))}a_l{l— Le(Ei)}

N—-1
N
1 N a—1 jglEjl {Ej > Ei}
- {mZ|{Ej>Ei}} N , ieu.
= Y Ej

j=1

Here, 1- Fe(E;) is the proportion of individuals that are less poor thanviullial i. This gives a
degree of poverty of individudland it was proposed by Cheli e Lemmi (1995) as a poverty inglica
Observe thaN(1—Fg(Ej))/(N —1) is equal to 1 when individualis the poorest. Moreover,-1Lg (E;)
is the share of the total welfare of all individuals that agsl poor than this individual, indicator that was
proposed by Betti and Verma (1999). The average FMI for thmufadion is given by

1 N
FM==-S FM, (3.1)
N2,

Observe that the FMI for individualdepends on the whole population of welfare valyés, ..., Ex}.

Consider now a score variab& for i-th individual defined using the IFR approach, instead of a
welfare variableE;. These score§ are obtained by applying a multidimensional approach thiets
into account a variety of non-monetary indicators of degiibn. Then the Fuzzy Supplementary Index
(FSI) for individuali is defined analogously to the FMI, but in terms of the scd®&s..., Sy}, as

F§ — {lu—Fs(s))}a_ {1-Ls(S))

N—-1
N
{ 1 N a—1 jzlsjl {Sj >S}
— S |{Sj>S}} — , ieu.
N—:I_JZ:L ES,'

j=1

Here, Fs(x) is the empirical distribution function ands(x) the Lorenz curve of the score variables
{S1,...,S\v}. Similarly, 1— Fg(S) is the proportion of individuals who are less deprived thadividual
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i and 1- Lg(S) is the share of the total lack of deprivation score assigoed individuals less deprived
than individuali. The average FSI for the population is given by

1 N
FS= Nilezs (3.2)

Now consider that the populatiod is partitioned intoD domains or areabls,...,Up of sizes
Ni,...,Np. Let Eqj be the welfare for individualj within domaind. The average fuzzy monetary

index for domaind is N
d

1
FMg=— S FMgj, d=1,....D, 3.3
Nd; j (3.3)

whereFMgyj is the FMI for j-th individual fromd-th domain.
A random samples C U of sizen < N is drawn from the population. L&t be the subsample from
domaind, d =1,...,D. A design-based estimator of the average FMI for dondaliMy, is

——DB
——DB Ez WdJFMdJ
FMg =2 d=1,...,D, (3.4)
2 Wdj
JES

wherewy; is the sampling weight for individugl within domaind and

a—1

D D
> Y wil{Es > Egj} > > WiEql{Es > Eqj}
——DB (=liesy (=1liey
FMy; = 5 S . (3.5)
> > Wi Y > WiEy
(=1liesy (=liey

——~DB . . . : ,
Observe thaFMy; is not a direct estimators because it uses the sample datettieowhole population
and not only from domaid. The average FSI for domathis given by

1 N
st:N—dJZlst,-, d=1,...,D. (3.6)
Finally, a design-based estimatorfe®; would be
—~DB
o 3PS
F§ == d=1,...,D. (3.7)
2 Wi
i€
where
D a1 ¢ p
> Y wil{Si > Sij} > Y WaSil{Si > S}
—~DB (=liesy (=1iey
> > Wi > 2 Wi
(=1liey (=liey

In these poverty indicators, the parametecan be fixed to the value such that th&1 andFS
indicators coincide with the head count ratio computedHerdfficial poverty line (60% of the median).
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3.3 Fast Empirical Best Prediction

In order to apply the EB method of Molina and Rao (2010) toneste the domain average FMAMg,
we need to express this indicator in terms of a populatiomovgc= (ys,y;)’, for which the conditional
distribution of the non-sampled pa#t given the sample datg is known. The distribution of the welfare
variable Eyj is seldom Normal. However, many times it is possible to findamsformation whose
distribution is approximately Normal. Suppose that theiste a one-to-one transformatit¥g; = T (Eqj)
of the welfare variablé&y;, which follows a Normal distribution. Concretely, we assuthatyy; follows
the nested error linear regression model of Battese, HangbFuller (1988), defined as

Ydj:deB—l—Ud—l—edj, j=1...,Ng, d=1...D, (3.9)
ug ~ iid N(0,02), eqj~ iid N(0,02) '

wherexqj is a row vector with the values @f explanatory variablesyq is a random area-specific effect
andey; are residual errors. Lety = (Yq1,...,Ydn, )" be vector of responses for domainandy =
(Y,---,Yp) be the full population vector. Then, observe that the imtliel FMIs can be expressed as

1 D N a—1
FMdJ = {m lZI {Til(YZI) >T1(Ydj)}}
—1i=
DN 1 1
S5 THY)H{T2(Ya) > T H(Yaj) }
x (= . j=1,....Ng,d=1,...,D.

D Ny
> > T1(Ya)
(=1i=1

This means that the average FMI for domdiis a non-linear function of the population vectgrthat is,

1 N
FMg=-—YS FMgi=hq(y), d=1,...,D.
ngl j ()

Let us separate the population vector of respolysesthe sample and non-sample parts, thatis;
(Y5, Yr)', whereys corresponds to the sample aypido the non-sample. Then the BPBMy is

—B
FMg = Ey, (FMalys) = Ey, (ha(y)[ys)- (3.10)

This expectation can be empirically approximated by Monggl&€simulation. For this, first fit the
nested-error model (3.9) to the sample dateo obtain estimate, 62 andd? of the model parameters
B, a2 anda? respectively. Obtain also the EB predictgy of ug, given byE (uglys) with unknown pa-
rameters replaced by estimated values. Then, using thisetss, generate a large numhesf vectors

yr from the estimated conditional distributign|ys. Let yp) be the vector generated lirth generation.
We attach this vector to the sample vector to obtain the fyfiyation vectoy!) = (v., (y!))'. Using

the elements of(), we calculate the domain parameter of intefelst|) = hy(y()),d =1,....,D. Then,
a Monte Carlo approximation to the EB predictorFd¥ly is given by

_ 1L
FMEBz[ZFMEP, d=1,...,D. (3.11)
=1
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Observe that for each populatiba=1,...,L, instead of generating a multivariate normal vector of size
N —n, we just need to generate univariate valgsirom

Ydj =xd1ﬁ+0d+vd+sdi, Va ~N(0,63(1—¥q)), €&4j ~ N(0,82), j €Ug—s4, d=1,...,D, (3.12)

whereyy = 02(02 +02/ng)~! andny is the sample size in domaih Still, for large populations and/or
complex indicators, the EB method can be unfeasible. FMjgire sorting of all population elements,
and this needs to be repeated fer 1,...,L. This is too time consuming for large and largeL. Here

we propose a faster version the EB estimator that is baseépdacing the true value of the domain

average FMI in populatiot, FM((,”, by the design-based estimator given in (3.11). Since tsegde
based estimator is obtained from a sample drawn freimpopulation, this avoids the task of generation
of the full population of responses (we need to generate tidyresponses for the sample elements)
and the sorting of all the population elements. Concrefelygach Monte Carlo replication we take a
samples(l) C U using the same sampling scheme and the same sample siziaficas in the original
samples. We take the values of the auxiliary variables correspandinthe units ins(l), that is, we
takeXqj, j € s4(l), wheresy(l) is the subsample from-th domain. Then we generate the corresponding
response¥y;j, j € s¢(l), ford=1,...,D, asin (3.12). Let us denote the vector containing thoseegalu
asyy). Withyg), calculate the design-based estimator as in (3.4) and (Ba)is, obtain

I L0

EMLo(1) = 1= , d=1,...,D, 3.13
a = S W, ( )

jesa(l)
where
D a—1 D
DB ZZl Z WZII{EZI > Edj} Zzl > I)Wﬂ Efll{Efl > Edj}
=TVl iesy(l =liesy(
Z > Wi > Y Wik

(=lieg(l) (=liesy(l)

Finally, the fast EB estimator &M is given by

—FEB

1 ——
FMd :[ b8

”MI_

As showed in the next section, a model-based simulationydtad been carried out to study the
performance of the proposed method to estimate a tradifimvarty measures, the HCR, and the average
FMI in small domains. Results indicate that the new methapkesimilar properties of the standard EB,
but it allows to overcome computational problems due todargpulations or to more complex poverty
measures such as the average FMI.

3.4 Model-based simulation experiment

A model based simulation experiment has been carried otudy she efficiency of the fast EB estimator
of the HCR in comparison with the EB estimator. On the otherdhave compared the behaviour of
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the fast EB estimator of the average FMI with that of desigedal and ELL estimators (Elbers et al.,
2003). For this, we considered a population with= 20000 units, partitioned int® = 80 domains
with Ng = 250 units in each domaid, ford = 1,...,D. The response variables for the population units
Yaj were generated from the nested-error model (3.9) using tancept and two auxiliary variables,
that is,xq; = (1,Xdj1,%dj2), Where the values of the two auxiliary variables were gereriromxgj; ~
Binom(1,0.2) andxyj> ~ Binom(1, py) and , where

pg=0.3+05d/D, d=1,...,D.

We assume that the model respon¥gs are the logarithm of the welfare variablé&g;. Thus,
Eqj = exp(Yqj). A set of sample indicesy with ny = 50 was drawn independently from each do-
maind using simple random sampling without replacement (SRSWR8.values of the auxiliary vari-
ables for the population units and the sample indices weapefkeed over all Monte Carlo simulations.
The intercept and the regression coefficients associattdtiag two auxiliary variables were taken as
B = (3,0.03,—0.04)". The random area effects variance was takemgas (0.15)? and the error variance
aso? = (0.5)2. The poverty linezwas fixed az = 12, which is equal to @ times the median of the wel-
fare variables for a given generated population. We geegtat 1000 Monte Carlo population vectors
yl) from the true model. For each populatiprior i = 1,...,1, the following quantities were computed:

1. The true domain HCRs,

HCR} = Nd (EJ) <2), EJ) =exp(Yy]), d=1,...D,
1=

and the true domain average FMIs obtaineddfes 2, that is,

I
=
o

el = LS MY g
d Ng JZ]_ dj>

where

) (=1i=1
|=|v| {N 1;12| gk>EdJ)} 5N

2. Letyg) be the sample part of theth population vectoy("), which is obtained taking the elements
of yi) whose index is contained in the original samsIeDeS|gn -based estimators of the domain

HCR and of the FMI were calculated using the data flyﬁ%

3. The nested-error model (3.9) was fitted to sample plg)teand model parametefy o2 and 2
were substituted by their estimates.

4. L= 50 non-sampled vectov;é | =1,...,L were generated from the conditional distribution
yr]ys using (3.12). The population vecty?" was formed attaching the sample dyﬁé to the

generated non-sample dgﬁ.(é\ Then the Monte Carlo approximations to the EBPs of the domai
HCRs were calculated.
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5. L =50 samples'!) were drawn from the population using the same sampling setanwith the
original samples, that is, for eacth = 1,... L, a set of indexesé") was drawn frond-th domain

using SRSWR. The corresponding responggsj € sfj"), d=1,...,D, were generated from (3.12)
and the fast EB estimators of the domain HCRs and of the agdthtis were calculated.

6. ELL estimators (Elberst al., 2003) of the domain HCRs were also calculated. For thig,ficzlel
(3.9) was fitted to sample datg and thenA = 50 censuses were generated using a parametric
bootstrap method (for details see Molina and Rao, 2009) e&oh population, the domain HCRs
were calculated and the results were averaged oveXk gopulations.

7. Means over Monte Carlo populations- 1,...,I of true values and of design-based, EB, fast EB
and ELL estimators of domain HCRs and FMIs, were calculafemt. the estimators, biases and
MSEs over Monte Carlo populatiofs= 1,...,| were also computed.

Figures 3.1, 3.2 and 3.3 show respectively the mean valiesedand MSEs of the HCR for each
area. Observe in Figure 3.1 that the mean values of the fassERators (labelled “EBnew”) are very
close to those of the EB estimators. However, the desigaebastimators (labelled as “Sample”), are
more variable across areas, whereas the ELL estimatoresse/diriable across areas, not tracking the
true values. Moreover, from Figure 3.2, we can appreciat tthe biases of the fast EB estimators
are very similar to those of the EB estimators. Biases of etlh@ators are not significantly different.
However, observe in Figures 3.3 that the MSEs of the EB andeB®stimators are considerably below
the MSEs of the other estimators for all areas, while the M&Hise fast EB estimators are only slightly
greater than those of the EB estimators. These results sige the new fast EB estimators can gain a
lot in computational workload, while loosing little efficiey as compared to the EB estimators.

Analogously, Figures 3.4, 3.5 and 3.6 show respectivelyrtban values, biases and MSEs of design-
based and fast EB estimators for the domain average FMInAgeese figures show that the bias of the
fast EB estimator is preserved small, similar to that of teeigh-based estimator, while the MSE is
uniformly smaller for all areas.
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Figure 3.1: Mean over simulated populations of true vallds,design-based (labelled “Sample”), ELL
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Chapter 4

Spatial Fay-Herriot models

In this chapter, the small area quantities of interest (bgFGT poverty measures for Spanish provinces)
are assumed to follow a Fay-Herriot model with spatial datien. For this model, the EBLUP, called
here Spatial EBLUP, is introduced and ML and REML model figtmethods are described. Analytical
approximations of the mean squared error (MSE) of the iEeBUP are discussed, and parametric and
nonparametric bootstrap procedures for estimating the Bi8proposed. A simulation study based on
the Italian Agriculture Census 2000 compares bootstrapaaatytical estimates of the MSE and studies
their robustness to non-normality. Results indicate gagithlior of the non-parametric bootstrap under
specific departures from normality. This chapter is basethemesearch of Molina and Rao (2009).

The contents of the chapter is the following. Section 4.2@mnés the spatial Fay-Herriot model and it
describes how the Spatial EBLUP is obtained from the modmiti@n 4.3 describes the available model
fitting methods. Section 4.4 discusses the estimation d¥iBE of the Spatial EBLUP, introducing some
heuristic analytical approximations of this quantity ttiger with an estimator. Section 4.5 introduces
the mentioned parametric and nonparametric bootstrapadetfor estimating the MSE. Section 4.6
describes the simulation study carried out for comparirggMEE estimators. The usefulness of the
bootstrap techniques is demonstrated through a simulatialy based on a real data set in Section 4.7,
and finally, some conclusions are drawn in Section 4.8.

4.1 Introduction

Fay-Herriot (FH) models were introduced by Fay and Herid®7Q). to obtain small area estimators of
median income in small places in the U.S. These models aleknalvn in the literature of small area
estimation (SAE) and are the basic tool when auxiliary dathe unit level are not available or there
are confidentiality reasons preventing their use, and thénamgregated data at the small area level can
be used. Even when unit-level auxiliary data are availahkse models are still useful if the small area
target parameter is not a linear function of the values ofrésponse variable in the small area units.
In the case of non-linear small area parameters, the BLURenBBLUP under a unit level model are
not defined. However, in the FH models, this need for lingdstavoided by the fact that the model
response is the direct estimator of the target parameteredster, when the target parameter is obtained
as an average over the area units of some quantities suck &&th measures, then the Central Limit
Theorem ensures that the distribution of the direct estirsgbbtained also as averages) will not be too

57
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far from the Normal distribution.

In many practical applications, data from neighboring $euaas display spatial correlation. In these
cases, between-area correlation should be somehow refgése the covariance structure of the model
unless sufficiently explaining covariates are availablewkler, the introduction of a dependence struc-
ture among small areas entails a serious conceptual differ@ith respect to the traditional framework
of SAE, where the overall covariance matrix has a block-aliad structure with block associated to the
small areas Prasad and Rao. (1990).

In the context of SAE, Cressie (1991) introduced a model wijithtially correlated random effects.
More recently, an extension of the FH model through the Snmglously Autoregressive (SAR) process
has been considered by Singh et al. (2005), Petrucci anats¢t@06) and Pratesi and Salvati (2008).
When all parameters involved in the covariance matrix amn Pratesi, M., Salvati, N. (2008) intro-
duced the Spatial BLUP.

Usually, the model covariance matrix contains unknown ipatars, called here variance compo-
nents, which must be estimated from the available data. aRig the derived estimates for the pa-
rameters in the Spatial BLUP leads to the so called SpatiallBEB Singh et al. (2005) proposed a
second order approximation of the MSE of the Spatial EBLUBvEVer, this approximation does not
tale into account the uncertainty due to estimation of tlaiapautocorrelation parameter, and as shown
by Pratesi and Salvati (2008), it might produce too optiimist conservative confidence intervals de-
pending on the strength of the spatial correlation and owahees of the sampling variances.

Resampling techniques are the alternative to heuristityiwe approximations. They are attractive
for practitioners because of their conceptual simplicitg aheir easy application to complex statisti-
cal models. Furthermore, they usually require less assangptnd their performance relies less in
the number of small areas. Some resampling procedures leavedready proposed in the small area
framework, see e.g. the jackknife method of Jiang and L&Rd02), the more recent parametric boot-
strap approaches of Gonzéalez-Manteiga et al. (2007, 2@0R8b), Hall and Maiti (2006a) and Ugarte
et al. (2008), and the nonparametric bootstrap of Hall andi N2D06b).

Here the parametric bootstrap of Gonzalez-Manteiga ef(2007) is extended to the spatial FH
model. Moreover, a nonparametric approach is introducatirdissamples both the random effects and
the errors from the empirical distribution of their respeztestimators. A simulation study compares
the efficiency of the analytical and the bootstrap MSE egtinsaintroduced in the paper for different
levels of spatial autocorrelation, and analyzes the rolasst of the bootstrap procedures to the absence
of normality in the two random components of the model.

4.2 Spatial Fay-Herriot model

Consider a finite population partitioned in small areas. The basic FH model relates linearly the
quantity of inferential interest fod-th small areafy, (e.g. thed-th area FGT poverty measure) to
a vector ofp area level auxiliary covariategy = (Xq1,Xd2,---,Xdp), and includes a random effegj
associated to the area; that is,

0y =xgB+vy, d=1,...,D. (4.2)

HereB is the p x 1 vector of regression parameters and the random effegid = 1,...,D} are in-
dependent and identically distributed, each with mean Ovanidncec?. Model (4.1) is called linking



4.2. Spatial Fay-Herriot model 59

model since all small areas are linked by the comfdoMoreover, the FH model assumes that a design-
unbiased direct estimatgy of 84 is available for each small areh= 1,...,D, and that these direct
estimators can be expressed as

Ya=64+e4, d=1,...,D, 4.2)

where{ey; d = 1,...,D} are independent sampling errors, independent of the rareffactsvy, and
whereey has mean 0 and variandg assumed to be knowd,= 1,...,D. See Ghosh and Rao (1994).
Model (4.2) is called sampling model. Combining both, timkilng model (4.1) and the sampling model
(4.2), we obtain the linear mixed model

Yd =XdB+Vqg+ey, d=1,...,D. (4.3)

Let us define vectorg= (y1,...,¥p)’, V= (vi,...,Vp) ande=(ey,...,ep)’, and matriceX = (x},...,Xp)’
and¥ = diag(ys, ..., Wp). Then the model in matrix notation is

y=XB+v+e (4.4)

Model (4.4) can be extended to allow for spatially corraladeea effects as follows. Letbe the
result of a SAR process with unknown autoregression paerpetnd proximity matriXWV (see Anselin
(1988) and Cressie(1993)), i.e.,

vV =pWvV+u. (4.5)

We assume that the matrikp — pW) is non-singular. Ther can be expressed as
v=(Ip—pW) u. (4.6)

Here,u = (uy,...,up)’ is a vector with meaf and covariance matriaﬁl p, Wherelp denotes th® x D
identity matrix ando? is an unknown parameter. We consider that the proximity imsitt is defined in
row standardized form; that i8Y is row stochastic. Therp € (—1,1) is called spatial autocorrelation
parameter Banerjee et al.(2004). Hereafter, the vectomoance components will be denoted=
(w1, ) = (02,p)". Equation (4.6) implies that has mean vectdy and covariance matrix equal to

G(w) = og[(Ip —pW)' (Ip —pW)] . 4.7)
Sinceeis independent of, the covariance matrix of is equal to
V(w) =G(w) +W.
Combining (4.4) and (4.6) the model is

y=XB+(Ip—pW) 'u+e (4.8)
Under model (4.8), the Spatial BLUP of the quantity of ingi@y = X4+ vq is
B (00) = xaB(w) + bgG(W)V H(w)[y — XB(w)], (4.9)

whereB(w) = [X'V-Hw)X] IX'V-L(w)y is the generalized least squares estimator of the regressio
parametef andb; is the 1x D vector(0,...,0,1,0,...,0) with 1 in thed-th position. The Spatial BLUP
84(w) depends on the unknown vector of variance components(a2,p)’. The two stage estimator
84(®) obtained by replacingin expression (4.9) by a consistent estimabor: (62, )’ is called Spatial
EBLUP (see Singh et al.(2005) and Petrucci and Salvati(R006
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4.3 Fitting methods based on the likelihood

Assuming normality of the random effects and the errorsyéir@ance components = (a2, p)’ can be

estimated by ML or REML procedures. In fact, under regufaciinditions, the estimators derived from

these two methods (and using the Normal likelihood) remaisistent at ordeD,(D~/2) even without

the Normality assumption, for details see Jiang(1996).

A maximum likelihood estimator (MLE) oo = (02,p)’ is obtained maximizing the log-likelihood

of w given the data vector,

({eny) =6 5 10g V(@) ~ 3 (v~ XBYV 0y ~ XB),

wherec denotes a constant. In practice, an iterative algorithrh sisahe Fisher-scoring algorithm must
be applied to maximize the likelihood. L&w) = (S;,S)" be the scores or derivatives of the log-

likelihood with respect t@?2 andp, and letr (w) be the Fisher information matrix obtained frdifuw;y),

with elements

I(w) = ( logof o2 )

[p,oﬁ Ipp

Then the Fisher-scoring algorithm starts with an initiireate @ = (2%, p©)" and then at each

iterationk, this estimate are updated with the equation

D = ® 1 1260 5(M).

The ML equation for3 obtained by equating the corresponding score to zero yields

B(e) = X'V H@)X] X'V Hw)y.

Let us denote
C(p) = (Io—pW)'(Ip — pW)

and
P(w) =V Hw) -V @)X [X'V Y w)X]

Then the derivative o€(p) with respect te is

9Clp) _ —W — W'+ 2pW'W
op

X'V w).

and the derivatives of (w) with respect tas2 andp are respectively given by

oV (w)
007

oV (w) 2

op op

The scores associateddg andp, after replacing (4.10), are given by
1 1
Sz = —Etrace{vil(w)cil(p)} + éylp(w)cil(p)P(w)%

S = —tace(V (WA W) + 3yP@AWPW)Y.

—ci(p), — a2 (p) 2P 1p) £ Aw).

(4.10)
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The elements of the Fisher information matrix are
latoi = 3 trace(V H@)C Hp)V Hw)C H(p)}
I = Ino; = ptrace{V H WA@YV @)C(p)}.
Ipp = %trace{Vfl(w)A(w)Vfl(w)A(w)} .

A restricted maximum likelihood estimator (RMLE) of is obtained by maximizing the restricted
likelihood, which is the likelihood ofv after eliminating the vector of coefficienfis Let F be anD x p
matrix satisfyingF’X = 0. Then, the restricted log-likelihood is the likelihood bkttransformed data
F'y and is given by

tr(@ry) = o log [PV (@)F| — 5 Y F(FV(@)F) Fy.

It can be shown that

1

F [F’V((;J)F]_ F' =P(w),

so that the restricted log-likelihood becomes
1 1
(R()y) =C— > log |F'V (w)F| - EY/P((*))Y-

Using the following properties of the matriX w),

we obtain the scores corresponding to this restrictedilagithood,
1 1
s, = — 5 trace{P(@)C*(p)} + 5 YP@)C (P)P(w)y.
= - Lrace(PW)A(®)} + Y P@A(@P(@).

Finally, the elements of the Fisher information obtainemfrr are

18 %tr{P(co)Cfl(p)P(w>Cfl(P)}’

03,03 —
ofp — 'pof T

R — R %tr{P(CO)A(Q))P(w)Cil(p)}’

5= %tr{P(w)A(m)P(m)A(w)}.

4.4 Analytical approximation of the MSE

In practical applications, the Spatial EBLUR(®) should be accompanied with its estimated MSE.
Under normality of random effects and errors, the MSE of thatial EBLUP can be decomposed as

MSEBq(®)] = MSEBg(w)] + E{[Ba(®) —Ba(w))?}

= [01d(0) + 02 (W)] + gaa(w), (4.11)
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whereg;q(w) represents the uncertainty due to the prediction of thearaneffects and is of orded(1)

for largeD, gg(w) is due to the estimation ¢ and is of ordelO(D~1), and the last term measures the
uncertainty of the Spatial EBLUP arising from the estimaiid the variance components and is of lower
order (see Singh et al.(2005)). Exact analytical expressior the first two terms are easily calculated
because the Spatial BLLB?,((») is a linear function of the data vectgyand they are given by

gu(w) = bL[G(w) —G(w)V (w)G(w)by, (4.12)
Goa(w) = byllp — G(wW)VHw)]X X'V Hw)X) ™ X[Ip -V H{w)G(w)]bg. (4.13)

However, for the last termsqg(w) = E{[84(®) — 64(w)]2}, an exact analytical expression does not ex-
ist due to the non-linearity of the EBLU®(Q) in the data vectoy. Under the FH model (4.3) with
independent random effectg (diagonal covariance matriX), Prasad and Rao(1990) obtained an ap-
proximation up too(D~1) terms ofgsq(w) through Taylor linearization. Their formula can be taken as
a naive approximation of the truggy(w) under model (4.4)—(4.5). Straightforward application lugt

formula to model (4.4)—(4.5) yields
05 (w) = trace{ Lg(w)V (w)Lg(w) 1 H(w)},

h
T e [ BlC ot e on e Ko o] |
bl [A@V-1(w) — 0PIV LAV 1w)] )

Then the full MSE can be approximated by
MSE"R(Ba(&)] = g1 () + Gaa (w) + G5F(0). (4.14)

Singh et al.(2005) arrived to the same formula (4.14) fortthe MSE under a Fay-Herriot model with
random effects following a SAR process. However, this fdaris not accounting for the extra uncer-
tainty of the Spatial EBLUB(®) due to the estimation of the autocorrelation paramgter

Concerning MSE estimation, under FH models with diagonahdance matrix, Prasad and Rao
(1990) obtained an approximately unbiased estimator d#§4.Following the results of Harville and
Jeske (1992), Zimmerman and Cressie (1992) extended teadPRao MSE estimator to models with
more general covariance structure. The authors refer tstagstical models, in which the correlation
matrix is directly specified, and they assume that the camag function is linear in the parameters.
This situation is likely to occur under geostatistical misdehere the covariance function depends on
the distance between locations. Under SAR models, the ieovar is assumed to depend on a proximity
matrix that specifies the proximity between the areas. Eoe8AR models lead to a covariance function
that is similar to the Bessel variogram model by Griffith argill@g (1993). Then, following the results
of Zimmerman and Cressie (1992), whénis the REML estimator ofo, an approximately unbiased
estimator of the MSE is N

mse R[8a(©)] = g1(6) + G2 (6) + 2055 (), (4.15)

which is the same estimator derived by Prasad and Rao (1980f%ormula (4.15), the temgg’(?((b)
appears twice due to a bias correctiomf(®). If &= (62,p)’ is obtained by ML, then an approximately
unbiased estimator of the MSE is

msere [0a(&)] = 91d() + goa (@) + 2Gaa (@) — by (6) Ogra (), (4.16)



4.5. Parametric bootstrap estimation of the MSE 63

wheregiq(w) = 0g14(w) /0w is the gradient ofq(w) andby (®) is the bias of the ML estimatab
up to ordero(D~1). This bias is equal toy (&) = 1 ~1(®)h(®) /2 with h(&) = (hy (&), he(®))’ and

hy(w) = trace{ X'V Hw)X] - W } , k=12

Ignoring the last term in (4.16) could lead to underestioratf the MSE (see e.g. Petrucci and Salvati
(2006)). Finally, Singh et al. (2005) derived a different E18stimator. Wheid is obtained by REML
method, their estimator is given by

ms€°84(6)] = g1a(6) + Gaa(©) + 2054 (®) — Gaa (). (4.17)
This estimator differs from (4.15) and (4.16) in the subicacof the extra terngaq (@), wheregag(w) is
given by
0%V (w)

-1 -1
a()\)ka(wv (W)W 1, (w)bg.

12 2
Oad (W) = > kzlglbngfl(w)

When® is obtained by ML, their estimator is obtained by subtragtm (®) in (4.16).

4.5 Parametric bootstrap estimation of the MSE

In the previous section, we decompose the MSE of the spaBalJP in three component®;q(w),
O2d(w) andgsq(w). The first two have exact closed formulas which does not hafgrethe third com-
ponent. This reflects the additional uncertainty comingnftbe estimation of the variance components
w=(0Z.p).

In this section, we propose to use the parametric bootstr&oozalez-Manteiga et al. (2007) ex-
tended to the FH model with spatial correlation (4.4)—(4&Werive an estimator for the full MSE, which
is consistent if the estimators of the model parametersarsistent. In order to check the consistency
of the full MSE, we can use, as in Gonzalez-Manteiga et #0712, the asymptotic formula of the MSE
obtained by Singh et al. (2005). The extended parametritstrap is composed of 8 steps as follows:

(step 1) Obtain the estimate® = (62,p)’ and = (&) by fitting the model (4.8) to the initial data=
(Y1,---,¥p)"-

(step 9 Generate a vectai whoseD elements are independev(O, 1). Build bootstrap vectors* = Gt}
andv* = (Ip — pW)~tu*, and calculat®* = X+ v*, wherep andé are viewed as the true values
of the parameters.

(step 3 Generate a vectdr; with D independentN(0,1) elements, which is independent gt Then,
construct the vector of random errorseis= WY/2t5.

(step 4 Obtain bootstrap datg* directly applying the model* = 6* + e = Xf5+v* + €.

(step 5 Fit the model (4.8) to the bootstrap dqtausingfé and @ as the true values @ andw. The
estimates of the “truef and@are obtained based on bootstrap deitdy calculating the estimator
of B at the “true”®,

B (&) = [X'VL@X] XV @)y
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then, obtain the estimatds* based ory*. Finally, the estimator of calculated at* is ﬁ*(a)*).
(step 6 Calculate the bootstrap Spatial BLUP from bootstrap gtatasing as the true value ab,
03(®) = xaB (@) + bgG(@)V (@) My — XB(@)].
Then, compute the bootstrap Spatial EBLUP usi¥ign place of the “true’® as,

03(@") = xaB (&) + byG (@ )V H@)y" — XB (@")].

(step ) Repeat steps (2)—-(® times. In theb-th bootstrap replicatiorez(b) is the quantity of interest for

d-th area@"® the bootstrap estimate af, 8;” (&) the bootstrap Spatial BLUP ar@}” (65®))
is the bootstrap Spatial EBLUP fdrth area.

(step 8§ A parametric bootstrap estimator @f;(w) is
@ =8y [6 @) -8 @]
and a naive parametric bootstrap estimator of the full MSE ggven by
ms&2PBB, ()] = B2 Z 8% @) - 65”] g (4.18)

We can also obtain an alternative estimator of the MSE byragitiie analytical estimat@gq (&)
andgoq(®), the bootstrap estimagf (&), and a bootstrap bias correctiongfi (&) + gzq(®) to
obtain a MSE estimate similar to the one of Pfeffermann atdrTi2006). The alternative final
estimator is

B
MRy 0)) = 2101a(0) +02(@)) B 5 |010(&™®) + goa (@ ®)| + (@) (4.29)

b=1

4.6 Nonparametric bootstrap

The aim of this section is to present a honparametric bagpstr the MSE estimation. The random
effects{uj,...,u5} and random errorej, . .., € } are obtained by resampling respectively from both the
empirical distribution of predicted random effe€i,...,0p } and of residualgfs,...,fp}, whererq =
Vd —ed( ®),d=1,...,D, both previously standardized. The nonparametric bagstrmore robust to the
non-normality of any of the random components of the modwelesit does not assume any distribution
for them.

Under model (4.4)—(4.5), the BLUPs ofandv are respectively

() = GV Hw)ly —XB(w)], U(w) = (I —pW)¥(w),

with {i(w) covariance matrix given by

Vy(w) = (I = pW)G(w)P(w)G(0) (I — pW').
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Furthermore, the vector of residuals is
F(00) =y — XB(00) — ¥(w) = (y2— 81(w), ..,y — Bp(w))',

with covariance matrix
Vi(w) =¥YP(w)W.
Vu(w) andV, (w) are not diagonal since the elements of the vedides) andf (w) are correlated and,
therefore, we have to proceed by applying a standardizatitimese vectors (resampling from the empir-
ical distribution requires aiid setup). Our proposal relies on transforming btk (@) andf = F(®)
to make them as close as possible to vectors with uncordeddéenents and unit variances. The method
is the following for the( vector (the same applies to thevector): First, we obtain the spectral decom-
position ofV, = V(&) as )
Vu = QUAUQ/uv
wherel\, is a diagonal matrix with then— p non-zero eigenvalues o, andQy is the matrix with the
corresponding eigenvectors in the columns. Keep in vietftt@) lies in am— p dimension space. Sec-
ond, we square the matr}S(Jl/Z = QUAJWQ{J to obtain a generalized inverse \¢f. The transformed
{0 is obtaining as
as=v, "%,
The covariance matrix ofiS is Var(GS) = QuQ/,, which is close to an identity matrix. The explicit
expression ofiS is

~S —1/2 ~1 ~
u :QUAU / uu>

whereQ/,0 contains the coordinates &fin its principal components. The coordinates are uncdedla
with the covariance matrid,. Then, we multiply the coordinates My}l/z in order to force them to
have unit variance. Finally, we multiply the standardizedter in the space of the principal components
by Qu. This procedure assures that the standardized vectonsetarthe original space. Thus, the
transformed vecto@i® contains the coordinates of the vecmfl/ ZQ{JO, with standard elements, in the
original space.
The nonparametric bootstrap procedure works by repladeusg2) and (3) of the parametric boot-

strap by the new steps (2') and (3’) as:

(step 2) Calculate predictors of andu using the estimate® = (62, p)’ andp = fS((b) obtained in step (1)

in the following way:

U=G(OV(®) y—XB), 0=(1—pW)¥=(y,....0p)"
MakedS =V, %0 = (aS,...,08), whereV/? is the square root of the generalized invers¥ gf

obtained by the spectral decomposition. Then, re-scalelﬁrreentwg to obtain elements with
sample mean exactly equal to zero and sample vari@hcghe transformation is

PPN _ D ~
a5S— 6u(03-D 'y, 0)
(/D 13R (- D3R 62
Build the vectou* = (uj, ..., up)’. Its elements are obtained by extracting a simple randonplsam

with replacement of sizB from the set{d$S ..., 0Z5}. Proceed by obtaining* = (I — pW) 1u*
and calculating the bootstrap quantity of intel@st= X+ v* = (6;],...,85)

d=1,...,D.
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(step 3) Follow by computing the vector of residudls=y — Xﬁ — VU= (f1,...,fp)" and proceed with its
standardizatiofiS = V; ¥/%F = (¢$,...,7S), whereV, = WP(&)W is the estimated covariance ma-
trix and \7(1/ %is a root square of the generalized inverse derived fromphetsal decomposition
of V. Once more, re-standardize these values in the following wa

S p-1¢D ¢S
pSS_ fg—D "3l
_ D /S — D ¢S
\/D Yoka(fe =Dy )

Finally, buildr* = (rj,...,r5)’" by extracting a simple random sample with replacement &fBiz

from the set{f$=...,f3%} and lete” = (€},...,€5)’, wheree; = Lpﬁ/zr:;, d=1,...,D.

. d=1,...,D.

This procedure leads to naive and bias-corrected nonpétiarbeotstrap estimators analogous to (4.18)
and (6.13), which are denoted ms@2NPE 8y (%)) andms&NPHB, ()], respectively.

When the normality assumption is suspected to be violatisrefor the random effects or for the
errors but not for both, it is possible to combine step (2YmB), or step (2) with (3’) of the two bootstrap
procedures. This comes out in a semiparametric bootstemtoids the normality assumption on the
desired component of the model.

4.7 Simulation study

In this section we describe some simulation experimentsechout with the following purposes: (a) to
check whether taking into account the spatial correlatiemvben small areas in the model improves the
precision of small area estimators; (b) to study the snaatide behavior of the different MSE estimators
introduced in this chapter, for different values of the gdatorrelation parametgp and for different
patterns of sampling variancég; (¢) to analyze the robustness of the proposed bootstrajgguoes to
non-normality of the random effects and errors.

The experiments are based on a real population, the map Bf£h287 municipalities (small areas)
of Tuscany. We considered a model wjth= 2, that is, one explanatory variable and a constant, with
anD x 2 design matrixX = [1p x|, wherelp is a column vector of ones of sifzandx = (xg,...,Xp)’
contains the values of the explanatory variable. Thesessajuwere generated from a uniform distri-
bution in the interval0,1). The true model coefficients wefe= (1,2)’, the random effects variance
02 = 1 and the spatial correlation paramegtee {0.250.5,0.75}. The matrix of sampling variances
Y = diag(Y1,...,Pp) was taken agyy = 0.7 for 1< d < 60; Yg = 0.6 for 61< d < 120; Yg = 0.5 for
121 <d <180; Yy = 0.4 for 181< d < 240 and finallyyyy = 0.3 for 241< d < 287 (see Datta et al.
(2005)). TheD x D row-standardized proximity matri/ was obtained from the neighborhood structure
of the municipalities in Tuscany. This matrix was kept canstor all simulations. We considered three
possible probability distributions for the random areaet# and errors, namely Normal, Gumbel and
Studentt distribution with 6 degrees of freedom, all standardizetidee zero mean and unit variance.
The last two distributions represent two different soummiegiscrepancy to normality, since the Gumbel
distribution is skewed and the Student t has heavy tails.

Taking into account the simulation results of Molina et a0E8) on the comparison of fitting meth-
ods for the Spatial Fay-Herriot model, we have decided tamabeREML method in these simulations.
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Concerning target (al, = 1000 Monte Carlo data sets were generated as described ptthing
Normal distribution for the random effects and errors. Ttvem models were fitted to each data set: the
spatial model (4.4)-(4.5), and the non-spatial model oleiby assuming that in model (4.4), the vector
of random effectss = (v1,...,vp)" has independent and identically distributed elemegtswvith zero
mean and variance?. Figures 4.1 and 4.2 plot the empirical values of the meaarsguerrors of the
Spatial EBLUP obtained from the former model, and the Noti&pBBLUP resulting from the latter
model, for theD = 287 small areas, fqp = 0.75 andp = 0.25, respectively. The piecewise decreasing
shape that we observe in the level of these two figures is dtieetaecreasing patterns of sampling
variancedq)y. Figure 4.1 shows that ignoring the spatial correlationdtire of small areas leads to an
increase in the MSE. However, this increase is smaller feasmith smaller sampling variances and
in the case of weak spatial correlation, see Figure 4.2fer0.25. This last figure also suggests that
modelling the spatial correlation seems to be convenies @hen this correlation is weak, since there
is no loss in efficiency.

Target (b) deals with comparing the analytical estimatdrthe MSE given in (4.15) and (4.17)
with the bootstrap estimators. For this= 250 Monte Carlo data sets were generated, and for each
data set, we calculated the different MSE estimators inized in this paper, namely, the two analyt-
ical estimatorams&R[64(&)] andms&S64(®)], the two estimators obtained by parametric bootstrap
ms@2PBB,(®)] and ms@PBBy(®)] (drawing from the Normal distribution), and the two estiorat
based on nonparametric bootstrap@2NPE, (&)] andms&°NPEB,(®)]. The bootstrap procedures were
applied withB = 250 replicates. The empirical values of the MSE, which aeerdierence values for
comparison, were computed previously with 10000 Monte cCeplicates to ensure better accuracy.
As output of simulations, we obtained for each small atethe mearms¢ and the mean squared er-
ror EJ over Monte Carlo samples of each estimatwé[04(®)], for a € A with A= {PR SSKnaPB
bcPBnaNPBbcNPB. Then, to summarize the results over small areas, we couhpheeaverage over
the D = 274 small areas of the relative bias and of the relative raeamsquared error of each MSE
estimator, as

. 12 (msd . 12 /B
ARB? = Bd;<MSE, —1> , ARE?= BdglMSEj’ acA,

whereM SE; stands for the empirical value of the tMSE[8(®)]. Tables 4.1 and 4.2 report the resulting
percent values of AREand ARB respectively. In terms of relative root mean squared etinerbcNPB
estimator does not behave bad in comparison with the ottienasrs in any case. As expected, under
Normal distribution, the analytical PR estimator is lesaskid forp = 0.25 andp = 0.75, although not
for p = 0.5. In this last case, the parametric bootstrap gets a beR@&. &or Gumbel distribution, the
bcNPB is less biased than the rest of estimatorgfer0.75 and in all cases in has a moderate ARE. In
the case of the Studetat the bcNPB shows less ARB fpr= 0.25, and similar to the best estimator for
the other two values gf, and has the smaller values of ARE foe= 0.25 andp = 0.5. Finally, results
indicate that the bias correction is necessary.

4.8 Conclusions

This chapter considers a Fay-Herriot model with correlatediom area effects according to a simulta-
neously autoregressive process. It revises the differagiiyical estimators of the MSE of the Spatial
EBLUP and proposes two new estimators based on both a pai@ametl a nonparametric bootstrap.
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Figure 4.1: Empirical MSE of the Spatial EBLUP and the Norp&BLUP for theD = 287 small
areas, fop = 0.75.
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Figure 4.2: Empirical MSE of the Spatial EBLUP and the Nornt&p&BLUP for theD = 287 small
areas, fop = 0.25.
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Table 4.1: ARE & 100) of the different MSE estimators, when data are simdlfxtam standard Normal,
Gumbel and Studert§ distributions.

Normal
p PR SSK naPB bcPB naNPB bcNPB
0.25|4.15 4.17 9.79 4.02 9.91 4.08
05 | 423 423 0990 4.22 9.80 4.12
0.75| 420 4.20 9.80 4.20 9.98 4.57
Gumbel

p PR SSK naPB bcPB naNPB bcNPB
0.25|5.15 5.18 10.44 541 11.50 5.28
05 | 527 528 1053 556 11.93 6.05
0.75| 5.17 5.16 10.68 5.78 11.74 5.75
Studentg

p PR SSK naPB hcPB naNPB bcNRB
0.25| 6.15 6.23 10.64 5.68 11.97 5.55
05 | 6.18 6.21 10.68 5.85 11.87 5.85
0.75| 6.07 6.08 10.58 5.70 12.37 7.23

Our simulation experiments supported the results of Madinal. (2008), in the sense that the estimator
derived from the nonparametric bootstrap performed wettims of average relative error and bias, as
compared with the other estimators, under Gumbel and Stigldistributions, and it performed accept-
ably well also under Normal distribution. Thus, this methedxpected to be more reliable when the
distribution is not exactly normal.

In the simulations of Section 4.7 there were not municiaditvithout sample data. For and acka
without sample data but for which the values of the covasiatethe area-level are available from any
other data source, a possible estimatdi;ig) = x4B(6). Estimation of the MSE for these areas either
by analytical estimators based on Taylor expansion or usiregstrap should not be a problem.

In the SAR process, the proximity matrix must be specifieddvaace. The structure of this matrix
can be determined by specifying a neighborhood rule or amist function between areas. These dis-
tances can be either related to physical distances, or ¢o stitioeconomic variables. However, the best
specification of this matrix for a particular problem is ntgar and this issue deserves deep investigation.
Several specifications for the proximity matrix betweenr#gta provinces are studied and compared in
the next chapter.
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Table 4.2: ARB & 100) of the different MSE andsq estimators when data are simulated from standard
Normal, Gumbel and Studety distributions.

Normal
p PR SSK naPB bcPB naNPB bcNPB
0.25| 0.27 -0.04 -0.88 -0.29 -0.15 0.44
05 | 0.26 0.07 -0.28 0.20 -0.63 -0.19
0.75| -0.16 -0.24 -1.08 -0.79 -1.26 -0.94
Gumbel
p PR SSK naPB bcPB naNPB bcNPB
0.25| 0.07 -0.24 -141 -082 -1.23 -0.4¢
05 | 0.20 -0.01 -049 -0.02 -1.65 -1.06
0.75| 0.26 0.17 -0.57 -0.31 -0.40 0.03
Studentg

p PR SSK naPB bcPB naNPB bcNPB
0.25| -0.63 -0.95 -1.37 -0.80 -0.61 0.20
05 |-0.65 -085 -1.39 -0.89 -0.27 0.30
0.75| -1.10 -1.18 -1.93 -1.67 -1.58 -1.13




Chapter 5

Proximities based on semi-metrics for
soclioeconomic functional data

5.1 Introduction

The specification of the weight matri%/ of (4.5) introduced in Section 4.2 is one of the challenges in
analyzing spatial data. The literature on spatial econnosednd statistics specifies mainly two ways of
modeling this matrix. The first consists of distances amanits it is flexible since the spatial effects are
different from different distances and it is determineddrnance by Kakamu (2005). This matrix is often
call typicality matrix, and is defined in the following wayf.twvo small areas are neighbours the corre-
sponding entry il is 1, and 0 otherwise. Therefore, matii contains the geographic dependence
between small areas, an information that can be relevaheiptediction of physical or environmental
variables, such as temperature or pollution, but not inrileag latent variables, such as poverty. An
alternative approach is to estimate the weights togethtr the model's parameters. In this field the
paper by LeSage and Pace (2007) became a reference. Th@sgdofhe matrix exponential spatial
specification (MESS) procedure that replaces the geonpgetiern of decay in the spatial autoregressive
model (SAR) by an exponential decay. Among the MESS advastag can emphasize the simplifi-
cation of the log-likelihood and the consequent simplifaabf the Bayesian estimation of the model.
The procedure produces estimates and inferences similaose from the conventional spatial autore-
gressive models. Nevertheless, it can be applied only t&#HiR model. Kakamu (2005) proposed a
distance functional weight matrix model that is suitablé&oapplied to the SAR model as well to the
spatial error model (SEM), however, it is more time conswgnin

Our approach belongs to the first branch of the literature ueses the information on socioeconomic
variables to estimate the weight matrix, that we denotedfteproximity matrix. It is not restrictive
to the use of socioeconomic variables, one can use any sefasimiation that considers relevant for
the estimation of the variable of interest. In our particwase, we use the unemployment rate and the
illiteracy rate because our main interest is to estimatgtherty incidences in Spanish provinces. Our
purpose is to construct a proximity matrix that consideragighbors those provinces whose socioeco-
nomic information is similar. The variables chosen areteelao poverty and are not included in the
regressor set. We used only two variables since data byrmesiare not very abundant and are difficult
to obtain.

71
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In particular, we develop two alternative methods for carging matrixW instead of considering
the classical typicality matrix. In both proposals the pnaities between small areas are computed at-
tending to some socioeconomic information. The first ons¢idieed in Section 5.2, consists in construct-
ing the proximity matrix using classical multivariate ays$, whereas the second approach, described
in Section 5.3, uses functional data techniques. In botesi&sis obtained from a matri®(? = (6i(j2)),
containing the squared distances between small areasctioi$b.4 we draw a smooth-parametric Boot-
strap scheme in order to study the gain obtained in the grediof the poverty level, in the sense of
mean squared prediction error, when considering the clssnultivariate and functional approaches
in the computation of matri¥V. The empirical results show that the functional methodqrerg better
than the multivariate and classical ones, since it giveseraocurate predictions of the poverty level.

5.2 The multivariate approach

Let X be aD x p matrix containing the information gf socioeconomic (continuous) variables observed
on D small areas, at a fixed instant of time. Given two small areasl j, the entries in matriD® are
obtained from Mahalanobis distance as:
2 _
87 = (xi —x)'SH(xi — X)),

wherex; = (Xi1,Xi2,...,Xp) denotes thé-th row of X (analogous fox;) andSis the covariance matrix

of X,
1 1
S=_X'[1-Z17|X
5 (1) x
wherel is the identity matrix of siz® andl is the vector of ones. Sind& is a proximity (or similarity)

matrix it can be obtained as
W=17— %DQ).

Finally, one can consida¥ in row standardized form, if necessary.

5.3 The functional approach

Let X1 andX, be D x J matrices containing two socioeconomic time series obseoveD small areas
through a fixed period of tim& = {ty,t,...,t;}. The historical socioeconomic information of tbe
small areas contained in the rows of each mafrix/ = 1, 2, can be seen as a sef®turves X1, ..., X,
that is called a functional dataset. Ferraty and Vieu (2@@6posed several methodologies for obtaining
semi-metrics from a functional dataset. In this chapter w@age Functional Principal Components
Analysis (FPCA)a technique that is well adapted for rough curves, and foh ¥a, ¢ = 1,2 we obtain
the corresponding functional semi-metric. Then, follogviduadras and Fortiana (1998), we construct
matrix D(? combining the two functional semi-metrics without inclagiredundant information.

5.3.1 Functional PCA

In the context of multivariate analysis, the classical €igal Components Analysis is considered as a
useful tool for displaying data in a reduced dimensionaktepaviore recently, the PCA methods were
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extended to functional data and used for many differenistital purposes. In particular, Ferraty and
Vieu (2006) propose FPCA as atool for computing proximibesveen curves in a reduced dimensional
space. In the following we describe this technique for a garfanctional dataset.
Let x be a random element of a functional space (typically a reatfan fromT = [a,b] C R to
IR) and Ietxl, .,Xp be D independent and identically distributed observationsnfro. As long as
E(frx 2(t)dt) < oo, the FPCA ofx allows us to obtain the following expansion of Dauxois e{082)

X = kil (/Tx(t)vk(t)dt> Vi, (5.1)

where{vi }k>1 is the sequence of orthonormal eigenfunctions of the caned operator
Mx(st) =E(x(9)x (1)),
associated with the eigenvaluks> A, > .... Now, let

=3 (fromoa)w

be the truncated version of (5.1). The main interest of sudcamposition is that this truncated version
is minimizing E( f7 (x (t) — Pyx (t))2dt) over all projectionsP, of x into g-dimensional spaces. Thus,
we can define a parametrized class of semi-norms from theicdk?-norm in the following way:

X [|§°A = 1/ ))2dt = \/z dt)z,

which leads to the following parametrized family of semitris:

q 2
dECA(XhX) = \/kzl (/T(Xi (t) —x(t))vk(t)dt> .

Here,q is not really a smoothing parameter but rather a tuning pet@nindicating the resolution level
at which the problem is considered. Note that in practicg,is unknown, and also the’s, but the
covariance operator can be well approximated by its engbiviersion

(s t) le. )X (t

and the eigenfunctions dT)'? are consistent estimators of thoselof (see Cardot et al. (1999)).
Indeed we never observe direct{y; = {xi(t),t € T}}i—1__p but only a discretized versiofix; =
(Xi(t),...,Xi(ty)) }i=1... p (notice that this is implicitly assumlng that the data arabeed, which means
that all units are measured at the same points). So, fromcigabpoint of view, according to Castro et
al. (1986) we can approximate the integral in the followirayw

J
a0 -x )t~ 3 Wi (6(6) ~ X () wlty),
=
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wherews, ..., w; are quadrature weights which define the approximate iniegtalo fix ideas, note that
the standard choice could vg =t; —t;_1. If we have two discretized curves andx;, the quantity
dg“A(x;, xi) will be approximated by its empirical version:

qa /3
dy A0 xi) = 4| S (Zle (xi(tj) _Xi’(tj))vjk> : (5.2)
=

k=1

wherevyg = (vi,...,Vik)’, k=1,...,q, are theA,-orthonormal eigenvectors of the covariance matrix
(AW = diag(wla s 7WJ))

Mma, = ! Dx’xA
W — ~ i Ai Bw,
b 2"

associated with the eigenvalukgp > A2p > ... > Aqp. Note thatdf“*(xi, x;) is close tod§“A(x;, xir)
as soon as the grids, ..., ty) is sufficiently fine.

5.3.2 Related metric scaling applied to functional semi-ntecs

Let X1 and X5, be D x J matrices containing two socioeconomic time series obseoveD small areas
through a fixed period of tim& = {t;,t5,...,t3}. Using expression (5.2) and for a givgr> 1 we can

obtain matrlce@( ) and D(zc)1 which contain the distances between fhemall areas, according to these
two somoeconomm indicators. Since both souoeconomimators are referred to the same seDof
small areas, the two functional semi- metr[agc)] andD 2] may contain redundant information. Cuadras
and Fortiana (1998) proposed a technique, called relatédcnsealing, that is an extension of metric
scaling whose aim is to join several distance matrices nedeto the same group of individuals, taking
into consideration the possibility of redundant inforroati See Cuadras and Fortiana (1998) and also
Cuadras and Fortiana (1995) for the detalils.

In the following we apply their methodology in the case ofdtional semi-metrics. We start by

imposing that the two marginal dlstanda%2 andD ) have the same geometric variability, that is

2 3,80 02,3, s
Note that this condition can always be assumed to hold, sindéplying one of the marginal distances

by an appropriate constant amounts to a change of measurenienThen, for each marginal distance
2

Diy» 1 = 1,2, we consider the associated inner product matrix
1 2)
Gi =~ ZHD{GH,
whereH =1 —(1/D) 17 is the centering matrix, and we define the inner product massociated to

the joint distanc®? as

G=Gi+Gy—= (Gl/zGl/erGl/ZGl/Z)
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whereGil/2 =U; Ail/2 Ui, U; is theD x k matrix containing the orthonormal eigenvectors of the sytmim

matrix G; corresponding to the first eigenvalues, ordered@as ... > A > 0, k< D —1, andA\; =
diag(A1,..., k). Finally, the joint distanc®(® is obtained form the inner product matrix as

D@ =g1+1d - 2G,
whereg = diag(G). Proceeding as in Section 5.2, the proximity matixs obtained as

W= 11’—%D(2).

5.4 Simulation study

In this Section we study the gain obtained in the predictibmlicect estimators of the FGT poverty
measures (fon = 0), in the sense of mean squared error of small area preslietben considering three
different approaches in the computation of matftkin (4.5). The first one is the classical approach,
whereW is a typicality matrix, whereas the second and third apgresaonsist in implementing the
techniques described in Sections 5.2 and 5.3, respectively

We start by describing the data to be used in the model destiibSection 4.2. They consist of
official data from the Spanish Survey of Income and Living @itians corresponding to year 2006 for
D = 51 Spanish provinces (the small areas). The response laitathe direct estimator of the FGT
poverty measure (fom = 0), that is the proportion of poor in the area. The auxilianyariates are the
intercept and the following proportions (in the area) of i@pl people, people of ages from 16 to 24,
from 25 to 49, from 50 to 64, equal or greater than 65, peopth md studies up to primary studies,
Graduate people, employees, unemployed people, inacivel e

We have selected from thestituto Nacional de Estasticawebsite fit t p: / / ww. i ne. es), the
more relevant socioeconomic variables related with pgyveding the unemployment rate and share of
illiterate population over 16 years old. These variablegtmeen measured in tile= 51 provinces from
1991 to 2005 = 15 years). Therefore, in practice we have two matriggsand X, of size 51x 15.

In order to compute matri¥V with the multivariate approach of Section 5.2, we only cdesithe
information contained id-th columns ofX1 andX,, which leads to a matrix of size 542. We callWy,
the proximity matrix computed with the methodology desedlin Section 5.2.

To compute matridWV using the functional approach of Section 5.3, we have obthtwo semi-

metricsD(fé and D(Zzg one for each data set (see Ferraty and Vieu (2006))y fo# functional principal
components, sinog= 4 is enough to collect the most part of the observed vartgbHinally, in order to
obtain a square matrix of joint distances from the previous wwe have used the related metric scaling
technique, introduced by Cuadras and Fortiana (1998), hwhpiovides a joint metric from different
metrics on the same individuals, taking into account thesibtes redundant information that can be
added simply by adding distance matrices. We 84l the proximity matrix computed in this way.

We call W+t the typicality matrix between the Spanish provinces, wherggies are 1 if the corre-
sponding two provinces are neighbours or 0 otherwise.

We undertake a simulation study to compare the performahteeahree matrice®V, Wy and
WE. Therefore, we apply a resampling approach and obtain 58@lsa from the original database, by
using a parametric Bootstrap technique. Under this apprdtiés added a small amount of normally
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distributed random noise to each resampled observatioris iFtequivalent to sample from a kernel
density estimate of the data.

We compute the estimators of the model in the original sampdkin each of the resampled data con-
sidering each of the matric&¥+, Wy andWg. As a measure of errors we compute the corresponding
sum of squares among these estimators. Table 5.1 contaigottal mean, median and third quartile of
MSE obtained using matricé&t, Wy andWFe.

Table 5.1: Global mean, median and third quartile of the M®Eioed using three methodologies
(classical, multivariate and functional) in computing maw.

mean MSE median MSE 3rd quartile MSE

Wt 0.096991 0.082082 0.127506
Wy 0.090955 0.076425 0.119072
Wg  0.088751 0.073952 0.117385

Figure 5.1 contains the plots of the mean, median and thiedtidgl of the MSE for each Spanish
province. Both from Table 5.1 and Figure 5.1 we can see tlegbéist performance is obtained withg,
that is using functional data analysis approach.
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Figure 5.1: Comparisons of mean MSE, median MSE and thirditpiSE, for each Spanish province,
computed on 500 samples from the original database by sapawtimetric Bootstrap, using matridas
(black solid line)Wr (red dashed line) arMi, (blue dotted line).
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Chapter 6

Semiparametric Fay-Herriot model using
penalized splines

Traditional Fay-Herriot small area estimation models asel on linear mixed models, characterized
by random area effects which allow for between area hetemigeapart from that explained by the
auxiliary variables (see Rao (2003)). These models howarebased on the hypothesis of a linear
relationship between the variable of interest and the catesr, hypothesis that can represent a serious
restriction in many real data applications. Furthermaraglitional linear mixed models do not handle
spatial proximity effects between the areas, an importatiufe in environmental studies where detailed
geo-referenced information for the units of analysis isallguavailable. Indeed, in recent years exten-
sions to random effects models have been proposed to allospédially correlated random area effects
taking into account the information provided by neighbgrareas (see Petrucci and Salvati (2006) and
Pratesi and Salvati (2009)), but these models still relyheninearity assumption.

Here we present a semiparametric version of the basic Fayetimodel that is based on P-splines
and can also handle situations where the functional formhefrelationship between the variable of
interest and the covariates cannot be specified a prioris{Gat al., in preparation). This is often the
case when the data are supposed to be affected by spatiainfiyorffects. In these cases P-spline
bivariate smoothing can easily introduce spatial effecthe area level model. Opsomer et al. (2008)
proposed a similar small area model based on P-splines gt the assumption that all the data are
available at the unit level, and this can be a restrictioroime situations.

6.1 Estimation of small area means

Let 6 be thed x 1 vector of the parameter of inferential interest (smalbaiaalyy, small area mean
yq with d = 1,...,D) and assume that thiex 1 vector of the direct estimatd is available and design
unbiased. Denote the correspondihg p matrix of the area level auxiliary variables My= (x1,...,Xp).
Fay and Herriot (1979) introduced a model that can be expdess:

0=Xo+Zu+e. (6.1)

Hereu ismx 1 vector of independent and identically distributed randamiables with meafh andmx m
variance matrix, = oﬁlm, Z is amx m matrix of known positive constants,is them x 1 vector of

79
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independent sampling errors with me&aand known diagonal variance matfix= diag(o{,o%, ...,0%)
anda is theq x 1 vector of regression parameters. The Fay-Herriot modaldgsneral linear mixed
model with diagonal covariance structtéo?) = Z3,Z" +R.

The Fay-Herriot model produces reliable small area eséisby combining the design model and
the regression model and then borrowing strength from atberains. It assumes that the direct survey
estimators are linear function of the covariates. Whenabsimption fails down, the Fay-Herriot model
can lead to biased estimators of the small area parametesem#parametric specification of the Fay-
Herriot model, which allows non linearities in the relattip betweerd and the auxiliary variableX,
can be obtained by penalized-splines. This approach may significant advantages compared to the
linear Fay-Herriot model.

A semiparametric model with one covariatecan be written asn(x;), where the functionm(*) is
unknown, but assumed to be sufficiently well approximatethieyfunction

K
M(x3;N,Y) = No+NaXa + .. +NpXp + Y (X2 — ki)Y (62)
k=1

wheren = (no,N1,...,Np)" is the (p+ 1) vector of the coefficients of the polynomial functiop=
(Y1,Y2,-..,Yk)" is the coefficient vector of the truncated polynomial spliasis (P-spline) ang is the
degree of the splin@)? =tPif t > 0 and 0 otherwise. The latter portion of the model allows famdiing
departures from @-polynomialt in the structure of the relationship. In this portiepfork=1,...,K

is a set of fixed knots and K is sufficiently large, the class of functions in (6.2) is véayge and can
approximate most smooth functions. Details on bases and khoice can be found in Chapters 3 and 5
of Ruppert et al. (2003). Since a P-spline model can be vieasemlrandom-effects model (see Ruppert
et al. (2003) and Opsomer et al. (2008)), it can be combingd tive Fay-Herriot model for obtaining a
semiparametric small area estimation framework basedneadimixed model regression. Given tipe
andy vectors, define

1 xg - X
Xp=1| 1 &+ 0 i,
1 Xyy - Xfm
and
(a1 —k)? o (X — ki)
S= : . :
(Xtm — Kl)Er o (Xam— KK)-E
Using only one covariateg, the semiparametric Fay-Herriot can be written as
B=XB+Sy+2Zu+e, (6.3)

whereX = Xy, Bis a(p+ 1) vector of regression coefficients, tiieomponent can be treated ak & 1
vector of independent and identically distributed randamiables with mear® and K x K variance
matrix £, = oZlk. The variance-covariance matrix of the model (6.3£(g) = S%,S" +Z5,Z" +R
wherey = (0,03)".

Model-based estimation of the small area parameters cabth@ed by using the best linear unbi-
ased prediction (see Henderson (1975):

~B ~ -~ ~

07 (W) = XB(W) +AW)[8 - XB(W)] (6.4)
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with A(Y) = (S5,ST +25,27)z () andB(w) = (XTZHY)X) XTZ-(W)8.

Extension to bivariate smoothing can be handled by assuming
M(X1,X2) = M(X1,X2;1N,Y). See details in Opsomer et al. (2008). This is of centraléstein a number
of application areas as environment, public health andnypweapping. It has particular relevance when
referenced responses need to be converted to maps.

6.2 Estimation of the MSE

The Mean Squared Error estimator (MSEfagth), depending on the variance componapts (03, a2)T,
can be expressed as in Rao (2003):

MSES®(W)] = 91(W) +g2(W) (65)
where the first term
a(Y) =AWR=R-RI (YR (6.6)
is due to the estimation of random effects and it is of of@gk), while the second term
G2(¥) = R HW)X(XTZH(W)X) I XT=H(W)R (6.7)

is due to the estimation @and it is of ordelO(m~1) for largem.
The estimatoéB(qJ) depends on the unknown variance compone@tand 02. Replacing the pa-

rameters with estimatoﬁﬁ, &2, a two stage estimat(érE(llJ) is

85(®) = XB(®) + A(D)[6 — XB(P)] 6.8)

whereB(() = (X7 (@)X)IXTE (8. Assuming normality of the random effects; anda? can be
estimated both by Maximum Likelihood (ML) and Restrictedxitaum Likelihood (REML) procedures
(see Prasad and Rao (1990)).

The ML and REML estimators possess the following propeifses Datta et al. (2005)): (i) they
aremY/2-consistent; (ii) they are even functions @&f so thatLTJ(—é) = LTJ(@); (iii) they are translation
invariant functions, so tha(6 + Gc) = i(8), for anymx (g+ 1) matrix, c € R9+* and for all6.

For any(] satisfying (ii) and (iii), the MSE oéE(lIJ) can be decomposed as

MSER" ()] = 0 (W) + g2 (W) + E{[éE@) - éB(uJ)F} —nW)+ LW +xmW). (6.9

Under the model (6.1) with diagonal covariance makjw3), Prasad and Rao (1990) obtained an ap-
proximation up too(m~1) terms ofgs() through Taylor linearization. In case of the semipararaetri
Fay & Herriot model the structure of the covariance matriras diagonal due to the introduction of the
spline random component, then the results of Prasad and1R86)(can not be applied directly. The
results of Opsomer et al. (2008) can be used for deriving anseorder approximation to thgs(y)
term. It can be given by

L (W) + 0(8m/m) (6.10)

gs(W) =L () [fl(w) ® Z(W)
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where

L(W) = Loz (W), Loz (W), Li(W) = "Q—jﬁ” =12
Here ® represents Kronecker produat; () is the inverse of the information matrix wittpj‘l(lp) =
0.5tr[P(Y)BiP(W)B)], i,j =1,2,P(Y) == () - = HWX(XTZH(W)X) X" (y), By =SS and
B, =ZZT anddy, = o(,/m).

In practical applications, the EBLU@E(LD) should be accompanied with an estimate of the MSE.
Again, under Fay & Herriot models with diagonal covariancatni, Prasad and Rao (1990) obtained an
approximately unbiased estimator of the MSE (6.9). Folfmpthe results of Prasad and Rao (1990) and
Das et al. (2004), Opsomer et al. (2008) extended the PfrRaadVSE estimator to models with more
general covariance structure. An approximately unbiaséchator of the MSE is

msdb" (1)) = g1(1) + Go(B) + 205(D). (6.11)

which is the same estimator derived by Prasad and Rao (189@rmula (6.11), the terrmy3(]) appears
twice due to a bias correction gf ().

This section describes an alternative procedure for estiméhe MSE of the EBLUF@E(QJ) based
on bootstrapping according to the bootstrap procedureosesp by Gonzalez-Manteiga et al. (2007),
Opsomer et al. (2008) and Molina et al. (2009). In this procedthe bootstrap random effects
Vi, Vi) T, (uf,...,ui)T and the random erroxg;, ... ,€5)" are obtained by resampling respectively
from the empirical distribution of the predicted randomnedmtsy = (y1,...,¥)", 0 = (01,...,0m)",
and the residual=6— XB—Sy—Z0 = (fy,...,fm)", previously standardized. This method avoids the
need of distributional assumptions; therefore, it is exg@to be more robust to non-normality of any of
the random components of the model. The procedure workdlew$o

1. Fit model (6.3) to the initial direct estimat8sobtaining estimate@?, 67) andp.

2. With estimates obtained in step 1, calculate predictbis=o(Y1,...,%)" andt = (Gy,...,0m) .
Then take)® = 2;1/2\7 andaS= 5% Wherei\;l/2 and$, ' are the root square of the general-
ized inverse of., Y2 _ S5 STR(()STS,Sands, " = 25,27 P(()ZT $,Z respectively, obtained
by the spectral decomposition. It is convenient re—scaéeeibments?ﬁ and @ so that they have
sample means exactly equal to zero and sample varia“r@céé,. This is achieved by the transfor-

mation
6v{\7§— K_lszl\A/'S}
o= = _ k=1,....K
Kot (K e)
6, {08 - m sy, 5
0PS= | . i=1...m

5 yoey

2
- S me ~
\/m 123‘:1{% —m 12?‘:1”]}
Construct the vectorg® = (v;,...,yx)" andu* = (uj,...,us)", whose elements are obtained
by extracting a simple random sample with replacement @ Kizand m from the sets}>S=

¥, ¥ andG5S= (055 ...,039T, respectively. Then calculate the bootstrap quantity of
interestd* = XB+ Sy* + Zu* = (85,....6;)".
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3. Compute the vector of residudls= 6 — XB— Sy—Z0 = (fy,...,fm)". Standardize the residuals
by 7S = (RP({)R)~/?f. Re-standardized these values

£S_ p-l¢m ¢S
{ri —m ey }
FSS— : _i=1..m
- Y- £S
\/m 123‘:1{% —m iy f }
Construct the vectar* = (r;,...,r;)T, whose elements are obtained by extracting a simple random

sample with replacement of sizefrom the sefSS= (f$5...,739T. Then takee* = (€3,...,&5)"
wheree = gir;’.

4. Construct bootstrap data from the model,
0" =0 +e  =XB+ Sy +2Zu*+¢ = (8;,....6:)7.

5. Regarding, 67 andd? as the true values @ o7 anda?, fit the model (6.3) to the bootstrap data
6". The obtained estimatd, 0\2,* ando?* will be called bootstrap estimators.

6. Calculate the bootstrap small area estimator uBTr,lgr\zl* anda? in place of the ‘true’B, 63 and

a2,

B85 (1) = XB" (4" + A" (1) [0 — XB"(¢)]

7. Repeat steps 2-6 B times. In theh bootstrap replication, Iéﬁ‘(b) be the quantity of interest in
areai, 8" ({*®)) be the bootstrap estimator for aiea

A naive bootstrap estimator for the MSE for aréa
B 2
~E _ ~Ex(b) , ~ 4 (b
ms§NPREC(¢)] =B Y {87 (@) -6}, (6.12)
b=1

Another MSE estimate can be obtained by adding the bootssstimategh™8({) and the analytical
estimate®;; ({) andgyi ({), and then including a bootstrap bias correctioy®f{) + gy () (see Pfef-
fermann & Tiller(2006)), as

B

s () =200u(@) - @) 875 )o@ +elF@). 613
=1

~Ex

~ 2 . s
wheregiP8(Q) =B-15p ; {ei ®) (@) — gBY "*(b)(qJ)} with 85V ®) = xB" + sy + Zu.

6.3 Simulations for semiparametric Fay-Herriot model

In this section we develop a simulation study to compare #gréopmance of théE(LTJ) estimator of the
small area mean under the proposed semiparametric spteifi¢denoted by NPEBLUP hereatfter) to
that under the traditional Fay-Herriot specification (deddoy EBLUP).

We consider five synthetic populations generated usingafenfing models for creating the true un-
derlying relationship between the covariatand the expected value of the response varigliéy|x) =
m(x):
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Linear. m(x) = 10+ 2(x);
Jump. m(x) =1+ 2(x—1.5)I(x < 1.5) + 2l (x > 1.5).
Exponential. m(x) = 2+ exp(3x)/400.
Bump. m(x) = 10+ 2(x— 1.5) 4 5expg—200(x — 1.5)?).
Cycle. m(x) = 10+ 10sin(2rnx);
Population values of in small ared = 1,...,200 are generated under the random intercepts model
Yi =m(X) + Ui + &

with x drawn from a Uniform distributiori0, 3], the area effects; drawn fromN(0,1) and the error
effectsg; independently generated froR(0,1).

The linear case represents a situation in which the EBLURagdb on a good representation of
the true model, while the NPEBLUP may be too complex and ararpetrized. The jump model is
a discontinuous function for which EBLUP and NPEBLUP areeoasn a misspecified model; the
Exponential, Bump and Cycle models define increasingly rooneplicated structures of the relationship
betweery andx.

For each of the five generated populations a totdl ef 250 simulations were carried out. For each
sample the EBLUP and the NPEBLUP estimators have been usstitoate the small area means
i=1,...,200.

Then, for each estimator and for each small area we compluelionte Carlo estimate of the Bias

14 . _
Bvc = = it —Yi 6.14
MC Tt;()ﬁt Yi) ( )
and with it the percentage relative bias
B
RB% = TM_C1oo; (6.15)
|

the Root Mean Squared Error

11X .
RMSEyc = 4 | T Zi(Yit -2, (6.16)
t=

and the corresponding percentage Relative Root Mean St &arer
RMS
&10

Vi

RRMSE %= 0 (6.17)

To evaluate the RB% and the RRMSE% across the 200 small area®nsider these summary
statistics: the minimum value, the first quartile, the meaahthe median value, the third quartile and the
maximum value.

Tables 6.1 and 6.2 report respectively the summary statiftr the RB% and the RRMSE% values
obtained for the estimation of the small area means undeLittear, Jump, Exponential, Bump and
Cycle signals.
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Table 6.1: Percentage Relative Bias (RB%) of the estimatiottse small area means.

RB% Point Estimation

Estimator Min 1stquartile Mean Median 3rd quartile Max
Linear Signal

EBLUP -0.74 -0.12 -0.01 0.00 0.13 0.57

NPEBLUP -0.44 -0.13  0.00 -0.01 0.11 0.47
Jump Signal

EBLUP -204.21 -12.84 0.64 -4.70 10.25 399.83

NPEBLUP -108.79 -0.63  4.36 0.52 3.45 79.01

Exponential Signal

EBLUP -15.92 -454 1.29 1.78 8.24 13.42

NPEBLUP -2.74 -0.82 -0.06 -0.14 0.67 2.80
Bump Signal

EBLUP -12.08 0.59 0.19 0.82 1.01 1.79

NPEBLUP  -10.46 -0.11  0.12 0.13 0.60 3.49
Cycle Signal

EBLUP -9.23 -2.24 33.14 -0.49 6.13 769.18

NPEBLUP  -46.69 -0.16 -0.62 -0.01 0.22 11.68

The results are promising. First note that the performamdeeatwo estimators is essentially equiv-
alent under the Linear signal, both in terms of bias and bkditi,a Then, from Table 6.1 we see that the
mean and median bias of the NPEBLUP estimator are always lwtle respect to the EBLUP estima-
tor, with the only exception of the mean value under the Jugnmes Moreover, in many cases there is a
high gain also in terms of minimum and maximum values of th&®RBhat is, the bias of the NPEBLUP
estimator in the estimating the 200 small area means variagange of smaller size than the EBLUP.
In terms of variability (Table 6.2) the results show a simid@havior: the NPEBLUP is always a good
competitor the the EBLUP.

6.4 Estimation of the Mean Squared Error

In this Section we present a simulation experiment carrigdacontrast the three alternative estimators
of the Mean Squared Error of the NPEBLUP estimaﬁ%@) described in Section 6.2. Namely, the
estimators we consider are the analytical estimator (6th&)naive nonparametric bootstrap estimator
ms@aNPB(6.12) and the combined analytical and bootstrap estimmas#iNPB (6.13).

The simulation study is carried out using real data comiognfthe Italian Agricultural Census of
year 2000 for the Tuscany region, as in Molina et al. (2008¢lem two different settings. The small areas
of interest are the 287 municipalities of the region, wWikhi = 1,...,m, given by the census and the
randomly generated from a Binomial distribution with paegensN; and p = 0.05. These sampling data
were used to compute, for each municipalifythe direct estimator of the mean agrarian surface area
used for production of grape in hectar@g @nd its sampling variancay(). Information on the agrarian
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Table 6.2: Percentage Relative Root Mean Squared Error (BE¥) of the estimators of the small area
means.

RRMSE% Point Estimation

Estimator Min 1stquartile Mean Median 3rd quartile Max
Linear Signal

EBLUP 4.37 5.03 5.66 5.54 6.28 7.25

NPEBLUP  4.45 5.00 5.67 5.60 6.24 7.36
Jump Signal

EBLUP 23.29 26.81 108.66 42.74 106.62 2114.17

NPEBLUP 22.61 24.34 113.22 42.40 109.19 2487.47

Exponential Signal

EBLUP 8.41 2716 34.90 41.02 43.89 47.84

NPEBLUP  4.58 21.05 27.99 33.32 35.70 38.55
Bump Signal

EBLUP 5.51 6.61 7.87 7.71 8.91 13.10

NPEBLUP  5.63 6.51 7.80 7.89 8.74 11.62
Cycle Signal

EBLUP 4.85 5.74 86.00 8.13 23.03 1884.93

NPEBLUP  3.45 410 55.80 6.22 18.35 1317.73

surface area used for production in hectargg @nd on the average number of working days in the
reference yearxg;) for each municipality is also available from the census data.

Thus, in the simulation study the goal is the estimation efrtiean agrarian surface area used for
production of grape in hectareg)(for all the municipalities of the region, using as explieatvariables
X1i andxyi, which have a linear relation witfyy, and an intercept term. The centroids of the small areas
are also available as spatial reference points (latitude@mitude) and are used in tisematrix when
fitting the semiparametric model under both settings. Sihedrue sampling varianag; resulted equal
to O for nine areas, in the simulation experiment we consider 278. Note that the true sampling
varianceg); have a highly right-skewed distribution with a range of 1427this skewness is caused by
few municipalities with atypically large sampling variasc

More in detall, in the first simulation setting the Monte @asbmples are generated at each step as
follows: first, the random errorg are generated from a normal distribution with mean 0 ancanasg
y;; second, the random effeatsare generated from a normal distribution with mean 0 andmaﬂoﬁ
taken equal to the estimated value obtained fitting a lineadehwith random area effects to the census
data, that isoﬁ = 56.23 for all the iterations; then, using the values of the cawasx; = (1, x1i, %)
obtained from the census together with the true vector offic@nts 3 = (—3.72,—0.00950.51), the
vectory of responses is generated under model (6.1). In a secomdadite setting the steps of Monte
Carlo experiment are the same as in the first setting but tbwne of responses is generated under
the model (6.3), withy random errors generated under a normal distribution wittm@and variance
o7 = 15.

Under both settings we considered= 500 Monte Carlo samples and we computed the three MSE
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RMSE Analytical/Empirical —#— RMSE Bootstrap/Empirical RMSE Analytical+Bootstrap/Empirical

Figure 6.1: Ratios of analytical Root Mean Squared Error §8)] naive nonparametric bootstrap
RMSE and combined analytical and bootstrap RMSE over eogpivalues for then = 278 small areas,
model withaZ = 0.

estimators of interest, setting the replicates of the twatdtcap procedures ®= 250; the final estimates
were computed taking the mean over the replicates. The mmlpiralues of the MSEs, that is the
reference values, were computed previously under botmgettvith 1000 Monte Carlo replicates to
ensure better accuracy. Figures 6.1 and 6.2 representdbrofdhem = 278 small areas the ratios of
the three estimated Root Mean Squared Error (analyticalemeonparametric bootstrap and combined
analytical and bootstrap) over the empirical values (regmied by the straight lines), under the first and
the second setting respectively. Note that to allow a beterparison of the results, the scale used in
the two Figures has been zoomed out to the interval 0.9-1.25.

The main result standing from the simulation results is thattwo proposed bootstrap estimators
of the MSE outperform the analytical one, under both sedtins regards the comparison between the
estimatomsé@2\PBand the estimatams&°NPB the first seems to better follow the empirical values (see
Figure 6.1). This behavior is the same even considering ¢cersl setting, were the model used to
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Figure 6.2: Ratios of analytical Root Mean Squared Error Y] naive nonparametric bootstrap
RMSE and combined analytical and bootstrap RMSE over eagpivalues for then =278 small areas,
model witha? = 15.
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generate thg; values has a spline component: in this case we can obserightlyshigher variability
of the estimates, while the estimators are more correctnggpect to the empirical values, as expected.
Thus, the estimation of thagg term of the MSE seems to play an important role in this estonatontext.
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Chapter 7

Area-level time models

7.1 Area-level model with correlated time effects

7.1.1 Introduction

In the field of small area estimation, data are often availdbt many small areas simultaneously, al-
though possibly for only a few time points. In such casess itlésired to borrow information both
cross-sectionally and over time. Rao and Yu (1994) gave plsimay of borrowing information cross-
sectionally and over time by introducing a model contairoth contemporary random effects and time
varying effects. They proposed the extension of the basidHeariot model

Yot = XdtB+Vag+Ugt +€, d=1,...,.D, t=1...T, (7.1)

whereyy; is a direct estimator of the indicator of interest aggis a vector containing the aggregated
(population) values op auxiliary variables. The inded is used for domains and the indefor time
instants. They assume that ...,vp are i.i.d. normal,(ugs,...,uqt)’s follow i.i.d. AR(1) processes
(i.e. they follow autoregressive processes of ordereiy),...,ept are i.i.d. normal, and they's, the
(Ug1,-..,UqT)’s and theey;’s are independent.

In this section we introduce a model that it is related to tloeleh (7.1) in the sense that only; is
considered to take into account the area-by-time vartgtiirough specific random effects. The model
is

Vot = XdtB+Ugt+€;, d=1,....,D, t=1,...,my, (7.2)

whereyy; is a direct estimator of the indicator of interest for adeand time instant, andxg; is a vector
containing the aggregated (population) valuep afuxiliary variables. The inded is used for domains
and the index for time instants. We further assume that the random ve¢tgis. . . ,Ugm, ), d=1,...,D,
follow i.i.d. AR(1) processes with variance and auto-claien parameters? andp respectively, the
errorsegj's are independent (0, Gﬁt) with knownaog;’s, and theug’s are independent of they’s.
In matrix notation the model is
y=XB+Zu+e, (7.3)
wherey = col ,Ya= col ,u= col (ug),ug= col (ug),e= col ,&= col ,
y=,Col (ya).Ya 1§t§rm(ydt) 1§d§D( d), Ud 1§t§md( dt) lgolgD(ed) &d 1§t§md(edt)
X = col (Xq),Xga= col (Xgt), X4t = col' (Xqti), B= col (Bi),Z=1 andM = yP . Inthis
1§d§D( d), Xd 1gtgmd( dt)» Xdt 1§i§p(xdn),B 1gigp(B')’ MxM S a-1Md

91
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notation,u ~ N(0,V) ande ~ N(0,V,) are independent with covariance matrices

VuzoﬁQ(p), Q(p) = diag (Qd(p)), Ve= diag (Ved), Veda= diag (Ogt)v

1<d<D 1<d<D 1<t<my
where theo?, are known and
1 p ... pM2 pmu-l
p 1 pmd*Z
Q4 = Qd(p) 1—1p2 :
pmd—2 1 0
pma—l pmi—2 p 1 ey

If the variance components are known, then the BLUB ahd the BLUP ofu are
B=(XV X)) X'V'ly and G=V.ZViy-Xp),
where
var(y) =V = o diag (Qa(p)) + Ve = diag (05Qq(p) + Ved) = diag (Vq).
1<d<D 1<d<D 1<d<D

To calculateﬁ andu we apply the formulas

D -1 D
~ I\y—1 Ing—1 ~ 2 1 A
B= (dzlxdvd Xd) (dzlxdvd Yd> , U= Oulg%lD (Qd(p)Vd (Yd XdB)) ]

7.1.2 REML estimators of model parameters
The REML log-likelihood is

M

— 1 1 1 1
Plog2n+ > log IX'X| — 5log|V| - Slog IX'VIX| - Ey/Py,

lrem(05,p) = — 5

where
P=Vv1-vIXxXVvIX)"IxX'vl PvP=P, PX=0.

Let us defined = (81,62) = (03,p), V1= 2% = diag (Qu(p)) andVz = §£ = 07 diag (Qq(p))- Then
u 1<d<D 1<d<D

P \Y
Pa:a—:—Pa—P:_PVaP7 a:172-

By taking partial derivatives dkegm. With respect td,, we get

_ OlremL

S =

1 1
=——tr(PV —y'PV4P a=12
aea 2 ( a)+2y a y7 )
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If we take again partial derivatives with respect&pand 6y, we take expectations and we change the
sign, we obtain the elements of the REML Fisher informatiatrir. These elements are

1
Fap = Etr(PVaPVb), ab=12
We use the Fisher-scoring algorithm to calculate the REMinedes ofd. The updating formula is
ek+l — ek_|_ Ffl(ek)s(ek)

As seeds we use = 0 andoi”) = 62,,, whered2,, is the Henderson 3 estimator af under the model
restricted tgp = 0. The REML estimator o is calculated by applying the formula

B=(X'V X)XVl

The asymptotic distributions of the REML estimatoraind are

6~ N2B,F(8)). B~ Np(B,(X'V X)),
Asymptotic confidence intervals at the level- I for 6, andf3; are

BatZo/2Vah =12, Bitzaoqi” i=1,.,p,

wheref = 6%, F1(8%) = (Vab)ab-12, (X'V7L(0)X)"1 = (gjj)i j=1..p K is the final iteration of the
Fisher-scoring algorithm arg is thea-quantile of the standard normal distributitii0, 1)). Observed
Bi = Bo, the p-value for testing the hypothedif : B =0 is

p= 2P, (B > [Bol) = 2P(N(0,1) > Bo/+/Gii ).

In what follows we present some matrix calculation that aeful to implement the Fisher-scoring
algorithm. The target here is to avoid calculationdvok M matrices.

-1
D

Q = (x/v—lxrl:(; x;,v;lxd> ,
=1

P = diag(V 1Y) — col (V;1Xq)Q col (X4jVv 1
1§d§%( a) 1§d§D( d d)ngdSD( aVa);
_ i -1 B 1 ot
PVa = @LaSgD (Vg Vaa) =, col (Vg™X4)Q col (XgVg Vaa),

D D
tr(PV,) = ;tr(Vglvad)—;tr(X{nglvadVglde),
—1 =1

D D
tr(PVaPVyp) = d2tr(v(;lvadv(;lvbd)—zdz tr(X3VgVagVgVeaVgXaQ)
=1 =1

D D
+ tr{ (dz x;,vdlvadvdlxd> Q (dz x;,vdlvbdvdlxd> Q}.
=1 =1
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D D D /
YPVaPy = 3 YiVa VadVylya - (dz YaVq'VadVq le) Q <dZ YaVa le)
=1 =1 =1

D D
<dz yQVd1Xd> Q <dz X&leVadleyd>
=1 =1
D D D !
dz yeVgaiXa | Q dz XyVgVaaVaXa | Q dz AR IR
=1 =1 =1

Finally, the derivative of matrifq4(p) with respect t@ is

+

0 1 ... ... (mg—1)pm—2
1 o . (mg —2)pme—3
o 1 : S : 2pQq4(p)
a(p) = 1-p? : T T : +(1—7pz)2'
(mg —2)p™ 3 0 1
(mg—1)p™=2 ... ... 1 0

7.1.3 The mean squared error of the EBLUP

We are interested in predicting the valugugf= X4t + ugt by using the EBLURiy; = xdtﬁ+ Ugt. fwe do

not take into account the erra;, this is equivalent to predigt; = &y, wherea=_col ( col (8q&))
1<¢<D 1<k<ny

is a vector having one 1 in the positibA- zg;ll my and O’s in the remaining cells. To estimatg we

=eblup ~eblup
useYy = Hai- The mean squared error6f;,  is
~eblup

MSE(Yq ) =01(6) +02(8) +93(6),
whered = (a2, p),
0(0) = dZTZ'a
02(0) = [@X-dZTZ'V_X|Q[X'a-X'V,1ZTZ ),
%) ~ tr {(Db’)V(Db’)’E (é—e)(é—e)’}}

Q

~eblup

The estimator oMSE(Yy, ) is
~eblup

mseYq ) = 01(8) +2(8) +203(8).
Calculation of g;(6)
In the formula ofg, (0) = @ZTZ’a, we have thaZ = Iy, and

T=V,-VZ'V12ZV, =} diag (Qq(p)) — o} diag (Qu(p)) diag (V4*) diag (Qq(p))-
1<d<D 1<d<D 1<d<D 1<d<D

Let us writeQq = Qq(p) andayg = 1<(|:<3| (). Then,g1(8) can be expressed in the form
<k<my

01(8) = 028 Qqaq — 01 QqV 4 ' Qqag.
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Calculation of g»(0)
We have thag,(8) = [@X —&ZTZ'V 1X]|Q[X'a— X'V 1ZTZ a], where

ZTZ'Vg'X = |02 diag (Qq) — o], diag (Qq) diag (V41) diag (Qq4)| diag (V4) col (Xq)
1<d<D 1<d<D 1<d<D 1<d<D 1<d<D 1<d<D

— A2 -1 4 -1 -1
= O-Ulgct%lD(QdVedXd) Oulgcc?gID(QdVd deedxd)-
Therefore
02(0) = [AiXa—05aQaV X+ 04810V AV g Xa] Q

X480 — OEXGV o Quaa + OiX GV o QaV g ' Qadl

Calculation of g3(0)

We have that
gs(0) ~tr { (Ob')V(Ob')E [(@ —9)(6- e)’] } ,

where
b’ =azVv,Z'V = o%d diag (Q/) diag (V, ) = 0% col (8garQiV,1).
1<(<D 1<(<D 1<¢<D ’
It holds that
ob’ / / -1 2 / / -1 -1 vy
a2 lg?SID(édéaZQZVg )—Gulg?§|D(5deangVg VoV, o), Veu—a—oa— 0
o _ 02 col (dga,QuV; 1) —0? col (8ga,QiV; ViV, h), Vi = Ne _ 5269
ap ulgng AoV g ulgégD decyrel vy Ve ) p ap u<l -
We define
ob’ . ab"\’ / 1 2. -1 -1
Q11=W1(ilﬁ%(ve) 2] = 83QdV g Qdad — 20{,84QaV g "QaV g " Qaad
uUlses u
+ oﬁadeVngdvngdvngdad,
ob’" ab’ / 2./ —1c 4.7 e -1
Q12=ﬁldl()a%(ve) op) = CudallaVqQudd — 0uagQaVy QaVy Qads
ul<i<
— olayQaVy1QaVy1Quag + 05y QaV51QaVy Q4 1 Qqad,
o . b\’ s 1 1
G2 = 5 d|pag (Vo) <%> = 00aQqV 4 Quag — 20585Q4V 3 1QqV 5 1 Quag
1</<D
+ oﬁadeV(ledvngdvngdad.
Finally

ga(6) = tr ( O11 Q12 ) ( Fiu Fo2 )l
3 O21 Oz Fo1 Fa2 ’

whereF, is the element of the REML Fisher information matrix.
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7.1.4 Simulations
Simulation 1

Ford=1,...,D,t=1...,my, the explanatory and target variables are

1
= (bgt — U Ugt 1, bg=1+—= d—1)+t
Xt (bgt — agt)Ugt + adt, md P agt = dt +D(md( )+1),

Yot = B+ BoXdt + Ugt +€dt, Br =0, B2 =1,
whereeg; ~ N(0,0%,) and

(ag—0p) (Mg(d—1)+t—1)
M-1

O'gt = +0agp, 0p=080,=12

Ford=1,...,D, the random effectay; are calculated as follows:

Ugs = (1—p?)Y2e41,  Udt = PUgt_1+Eat, t = 2,..., My,

wheregg ~ N(0,0%) if d < D, €4t ~ N(0,03) if d > Da, andp = 0.5. The first simulation experiment
has the following steps:

1. RepeaK = 10* times k=1,...,K)
1.1. Generate a sample of sixe= zc'?_lmd and calculatq;\(j? = B(lk) + B(zk)xdt + ufj'?.

1.2. Calculatg™ e {Bl ,[32 ,ou ,p }andudt by using the REML estimation method.

2. Foreach € {B1,B2,02,p} and forjig;,d =1,...,D,t = 1,...,my, calculate

XIH
T™M =

K
Y (% —1), BIAS) =

=1

BIAST) =

XIH
i

(@ — ), BIAS= %(ﬁ 2BIASJ“,

1

My

K
Z 2 MSE= + MSEx.
k=1 D =1t=

7<||—\

1 K
MSE(T) = K Z MSL:dt

The simulations are carried out for the 6 combinations offdarsizes appearing in Table 7.1.4.1.

D 50 100 200 300 400 500

my 5 5 5 5 5 5

m | 250 500 1000 1500 2000 25Q0
Table 7.1.4.1: Sample sizes.

Table 7.1.4.2 presents the results of the simulation ez
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D 50 100 200 300 400 500

BIASB;) | 0.0020 0.0018 -0.0012 -0.0011 -0.0004 -0.0010
MSE(fSl) 0.0784 0.0410 0.0208 0.0134 0.0100 0.0080
BIAS(fiz) 0.0130 0.0067 0.0034 0.0022 0.0017 0.0013
MSE(ng) 0.0009 -0.0003 0.0004 0.0005 0.0003 0.0004

) | -0,0164 -0,0052 -0,0020 -0.0040 -0.0030 -0.0029
MSE(G2) | 0.0414 0.0213 0.0107 0.0070 0.0053 0.0044
BIAS/p) | -0.0018 -0.0009 -0.0002 0.0005 0.0009 0.0013
MSE(p) 0.0115 0.0056 0.0027 0.0018 0.0014 0.0011
BIAS 0.0005 -0.0003 0.0001 0.0002 0.0000 0.0004
MSE 0.5196 0.5149 0.5121 0.5117 0.5114 0.5113

Table 7.1.4.2 Results of simulation experiment 1.

Table 7.1.4.2 shows that bias is always close to zero andviB& decreases when the number of
domains increases, so that the REML estimates are cortsisten
Simulation 2

In the second simulation experiment we investigate the\nehaf the estimatomseg; of the MSE of
the EBLUP ofpg;. For this task we compare thasg; with the empirical MSE ofug; obtained from
experiment 1.

1. ForD = 50,100,200, 300,400,500,take the values dfISE; obtained in experiment 1 and repeat
| =10*times k=1,...,K)

1.1. Generate the samp(l%'?,xdt), d=1,....D,t=1,....my.
1.2. Calculat(, Y, 63 and msé}? = msey (65).

2. Calculate the performance measure of estinrateg;

1K K) 1K K
Ba = 3 (ms€) —MSEy), Eg= =X (ms¢) —MSEy)2, d=1,...,D,
k=1 K=1
100 2 100 2
B—— B - Eqt.
D 2.2 dts 5 dz Zi dt

Table 7.1.4.3 presents the obtained results.

D 50 100 200 300 400 500

B | -1.4366 -0.5348 -0.0949 -1.1423 -1.0755 -1.2366

E | 3.0978 21816 1.6443 1.4613 1.3800 1.3508
Table 7.1.4.3 Results of simulation experiment 2.

Tables 7.1.4.3 shows that BIAS and MSE tend to zerD axreases.
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7.2 Area-level model with independent time effects

7.2.1 Introduction

This section presents a simplification of model (7.9) thatssful for those cases where survey data is
only available for a reduced number of time instants. The nadel is defined in the same way as
model (7.9), but assuming that= 0. Parameter estimates of model (7.4) can also be used asfeeed
an iterative fitting method in model (7.9). We assume that

ydt:thB+udt+edta dzla"'aD7 tzla"‘arnda (74)

whereyy; is a direct estimator of the indicator of interest for adeand time instant, andxg; is a vector
containing the aggregated (population) valuep afuxiliary variables. The inded is used for domains
and the index for time instants. We assume that the vectayss are N(O, oﬁ), the errorseqi's are
independeniN(0, oﬁt), and theug;'s are independent of they;’s.

Model (7.4) can be alternatively written in the form

y=XB+Zu-+e, (7.5)
herey = col = col = col = col e= col = col
wherey 1§d§D(yd),yd lgtgmj(ydt), u 1§d§D(Ud), Ug lgtgmd(udt), 1§dSD(ed), €d lgtgmj(edt),
_ _ _ / . _ ) _ _ <D
X = lgdong(Xd), Xg = lgct:gjm(xdt), Xdt = lg%lp(xdt.), B= 1§fi'p(B')’ Z=Im, M =34 ,my. We assume

thatu ~ N(0,V,) ande ~ N(0, V) are independent with covariance matrices

Vy=02%ly, Im= diag(lm,), Ve= diag (Veq), Ves= col (0%),
1<d<D 1<d<D 1<t<my

and known variances?;.
The BLUE of 3 and the BLUP ofi are

B=(XVIX)X'Vly and G=V.Z'V iy-Xp),
where
var(y) =V =02 diag (Im,) + Ve = diag (02l m, +Ved) = diag (Vq).

1<d<D 1<d<D 1<d<D

To calculateﬁ andu we apply the formulas

D -1 D
n_ Iy —1 I\ —1 o2 e TRV
s-(dzlxdvd xd> (dzlxdvd yd>, =, ool (Vi (va—XaB))

7.2.2 The Henderson 3 method

For the linear mixed model
y=XB+Zu+e,
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with u ~ Np (0,021 p) ande ~ Np(0,062W 1) independent, the Henderson 3 method gives unbiased esti-
mators ofo? anda? by considering the expectations

E[SSEB,u)] = o&n—rg(X,2)],
E[SSEulB)] = tr{Z'WW - X(X'WX)*X|WZ} 62+ 6Z[rg(X,Z) — rg(X)],

whereSSHEu|B) = SSEP) — SSEB,u) y SSER), SSEf3,u) are the sum of squares of residuals of the
fixed effect modely = X+ eandy = X3+ Zu + erespectively. It hold that

E[SSEB)] = E[SSHu|B)]+E[SSEP,u)]
= tr{Z’W[W - X(X'WX) X'|Wz } 5+ 05[n—rg(X)].

The Henderson 3 estimatorsaf is

52 SSHP) — gz[n—rg(X)]
Ut {Z7wWw -1 — X (X'WX)-IXwz V.

whereSSHEf) = y'P,y and
Py = [I = X(X'WX) " IX'W]'W[I — X (X'WX)"IX'W] = W — WX (X'WX) " IX'W.

For the model (7.3) witfp = 0 we haveo? = 1, W =V 1, Z = Iy, n=M = 55 ; my and rgX) = p.
Therefore,

G2, — y'Poy — (M—p)
ut tr {P2}
where

—1
D

Q2 = (X'Velx)1=<dz(X8Vedlxd> ;
=1

P, = Vo'—V XQX'V !t = diag (Vog)

— col (VIix col (X,v1
Jlag 1§ng( ed d)Qzlgng( aVed);

D my D
tr{P,} = ;Zogf—dztr{xgv;fxd(gz},
=1t= =1

! / . -1
= — col
y P2y éé’g'o(yd) LgﬁgD (Ved) Lol

SR 2y2 2 1 2 1 /

(o9 — yyVoiXg | Q2 yaVoiXa | -
dzltzl dt Ydt (dzl dVed ) (gl dVed )
7.2.3 The REML method

The REML log-likelihood is
M

1 1
(Ved Xd)QZé(?S'/D(XEVed)

1§C(?§|D(yd)

- 1 1 1 1
Plogan+ ~log|X'X| - Slog|V| - > log X'V X | - S y'Py.

|REM|_(05) = — >
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whereP = V=1 - V-IX(X'V-IX)"IX'V~1, PVP = P andPX = 0. Let us define/, = 2, = Iy, P, =

P _ _pov

&, = —P25P = —PV,P = —P2. The derivative ofrem With respect t = o is

al 1 1 1 1
S=96) = F(;ZML = —5tr(PVu) + 5y PViPy = —5tr(P) + Ey’F>2y.

The minus expectation of the second order derivativig . with respect t® = Gﬁ is
1 1

F=F(8) = Str(PVyPVy) = Etr(P?). (7.6)

The updating formula of the Fisher-scoring algorithm is
ek+l — ek_|_ Ffl(ek)s(ek).
The Henderson 3 estimatag,, can be used as seed of the Fisher-scoring algorithm. The Rftiina-
tor of Bis
Brem = (X'VIX) X'V Yy.
The asymptotic distributions of the REML estimatorssgfandp are
62~ No(8,F 1(0), B~ Np(B,(X'V X)),

Asymptotic confidence intervals at the level- I for o2 andp; are

6ﬁizq/2v1/2, Bi iZq/zqﬁ/z, i=1,...,p,

whered?2 = o2y = F*l(oﬁ’(K)), (X’V*l(oﬁ’(K))X)*1 = (0j)i.j=1...p K is the final iteration of the
Fisher-scoring algorithm arg is thea-quantile of the standard normal distributidt{0,1). Observed
Bi = Bo, the p-value for testing the hypothedif : Bi =0 s

P = 2P (Bi > |Bol) = 2P(N(0,1) > Bo/+/Gi )-

In what follows we present some matrix calculation that aeful to implement the Fisher-scoring
algorithm. The target here is to avoid calculationd/bk M matrices.

-1
D

Q = (x/v-lxyl:(dz xgvdlxd> ,
=1

P = diag (V1) — col (ViiX col (X, V71
1§d§gD( a’) 1§d§D( d d)ngng( aVa):

tr(P) = d% tr(Vgt) —di tr(X3V42XaQ),
—1 =1

D D
tr(P?) = dztr(vf)—zdz tr(X3V4>XaQ)
—1 =1

D D
+ tr{ (dz x;,vdzxd> Q (dz x;,vdzxd> Q}.
=1 =1
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D D D
YPY = 3 yaVa¥a—2{ Y YaVa Xa | Q[ ¥ X4Vg©ya
2 YaVs PROE 2 XV
0 1 2 2 2 1 /
+ yaVi Xq | Q X4Vi“Xq | Q yyVi Xg | -
2 YaVs PREE PROE

7.2.4 Mean squared error of the EBLUP

We are interested in predicting; = Xqt[3 + Ugt with the EBLUPgt = xdtﬁ+ Ugt. No taking into account
the errorey;, this is equivalent to predigty; = &'y, wherea= col ( col (34:)) is a vector having

1<¢<D 1<k<my

~eblup
Hdat. The mean squared error6f;  is

~eblu

MSE(g ) = 01(6) +52(0) + ga(6).
where8 = 2 and
1(0) = dZTZ'a
02(0) = [@X-dZTZ'V_X|Q[X'a— X'V 1ZTZ 4
0:(8) ~ tr{(Ob")V(Ob)E|(®-0)(6-0)]}

. ~eblup
The estimator oMSE(Yy, ) is

Q

~eblu

msaYq ) =01(8) +2(8) + 205(8).

Calculation of g;(02)

We have thag; (02) = &ZTZ'a, whereZ = lyxu and

T=V,-VuZ'V 12V, =c2ly — o diag (V).

1<d<D
We defineay = col (&). Then, we have
1<k<my
22
2y _ 2. 4r\/;~1, _  OuOgt
01(05) = 0y8qad — 0,3qVy ad = 05_"05{

Calculation of gy(02)

We have thag,(0?) = [aX —aZTZ'V1X]Q[X'a— X'V 1ZTZ'a], where

ZTZVJIX = |dlly—of diag (Vgh)| diag (Vo4) col (Xq)
1<d<D 1<d<D 1<d<D

= 02 col (v;dlxd)—csf}1 col (VgiViXa).
<

1<d<D <D

, , - _— , . Seblup
one “1” in the cellt + z?;ll my and "0™s in the remaining cells. The tot#l; is estimated witlY g,
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Therefore,
0(02) = [8yXd— 033V i Xa+05agVatVeiXa] Q
[X@d — 03XV gq@d + OuXGV o V g Had]

Calculation of g3(0?)

We have that R R
03(0%) ~tr { (OB)V/(Tb')'E | (8- 6)8—0)'| }.,

where
b’ =azVv,z'V ' =o2a diag (V, ') = 6? col (8aayV,?).
1</¢<D 1<¢<D

It holds that

ob’ / /\/—1 2 / /\/—1 -1 oVy

57 lg?SID(éd(gagvé )—Gultg:%ID(édgagvé VaV, "), Vu= 302 I,
We define

oo’ . b\’ _ _ B
9 = 0—031222%(\/[) (0—03> =ayVy ‘ag — ZUSaQVd %ag + Uﬁaélvd Sag
1 202 ol

i +0G (0F+0%)° (0F+03)
Finally, we get
g3(0g) = aF *(ap),
whereF is the REML Fisher amount of information calculated in thelajing equation of the Fisher-
scoring algorithm (cf. (7.6)).
7.2.5 Simulations

Simulation 1

Ford=1,...,D,t=1,...,mg, The explanatory and target variables are

t 1
Xdt (Pdt — adt)Udt + adt, Ut T2 =1 bat = 1+ D (mg(d—1)+t),
Yat = PB1+PBoXdt+Ugt+€at, B1=0,B2=1,

whereug ~ N(0,02), egt ~ N(0,0%,), 02 = 1 ands

2 (@—ag) (my(d—1)+t-1)
dt — M—1

+0p, 0p=0.80,=12.

The first simulation experiment has the following steps:

1. Repeak = 10* times k=1,...,K)
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1.1. Generate a sample of sizeand calculatelé'? = B(lk> + B(zk)xdt + ué'?
1.2. Calculatg™ e {Bl ,Bz ,ou }andud by using the REML method.

2. For each € {B1,B2,02} and forg,d =1,...,D,t =1,...,my, calculate

BIAS?) = i% MSE(f)—Eg(f('Q—T)Z
K& K& .

18« K 18« k
BIAS = ¢ 3 (R — ). M= e 3 (Rl — )"

k

1

12 12
BlAS:MdZZ BIAS, MSE:MdZHZlMSEdt.

The simulation experiment is carried out for the 6 comborati of sample sizes appearing in Table
7.2.5.1.

D | 50 100 200 300 400 500

My 5 5 5 5 5 5

M | 250 500 1000 1500 2000 25Q0
Table 7.2.5.1: Sample sizes.

The Table 7.2.5.2 presents the results of the simulatioeré@xent.

D 50 100 200 300 400 500
) | 0.0010 0.0020 -0.0008 -0.0008 -0.0005 -0.0007
) | 0.0472 0.0245 0.0122 0.0080 0.0059 0.0047

BIAS[2) | 0.0007 -0.0006 0.0003 0.0004 0.0003 0.0004
)

MSE(B; 0.0083 0.0043 0.0022 0.0014 0.0011 0.0008
BIASG2) | -0.0038 0.0010 0.0017 -0.0008 -0.0001 -0.0401
MSE(62) | 0.0319 0.0159 0.0081 0.0052 0.0040 0.0032
BIAS 0.0020 0.0010 -0.0002 -0.0001 0.0002 -0.0Q003

MSE 0.5064 0.5025 0.5000 0.4997 0.4994 0.4992
Table 7.2.5.2 Results of simulation experiment 1.

The Table 7.2.5.2 shows that the bias is always close to zatdlat the MSE decreases as the
number of domains increases, so that the REML estimatesasistent.
Simulation 2

The second simulation experiment investigates the behaf¥ithe estimatomse; of the MSE of the
EBLUP of pg;. We comparanse; with the empirical MSE ofig; obtained from Experiment 1.

1. ForD = 50,100,200 300 400,500, take the values &l SE;; obtained in simulation 1 and repeat
| =10 times k=1,...,K)
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1.1. Generate the samqué'?,xdt), d=1,....D,t=1,...,m4.
1.2. Calculatefrﬁ(k) andmsé,'? = mS%t(ffﬁ(k)).
2. Calculate the performance measures of estinmam;
< k) 2
Z(ms ¢ —MSEq)°, d=1,...,D,
K=1

103 b M 108 2 v
B= ) Bat, E= F; Eat-
=1t= =1t=

The Table 7.2.5.3 presents the obtained results.

1
(ms¢) —MSEy), Eq = <

Xl =
M =

Bat =

k=1

D 50 100 200 300 400 500

B | -0.8957 0.1581 0.7045 -0.1818 -0.0684 -0.1334

E | 2.8852 1.8964 1.3884 1.1960 1.1179 1.0805
Table 7.2.5.3 Results of simulation experiment 2.

The Table 7.2.5.3 shows that the BIAS and the MSE tends toasfdancreases.

7.2.6 The impact of the correlation parameter

Two simulation experiments for analyzing the behavior & BEBLUP and its mean squared error esti-
mator are presented in this section. The scope of the siimintais to investigate when it is worthwhile
and what is gained when using the more complicated modél\{it® correlation parametqy instead of
the simplified model (7.4) restricted jo=0. Ford =1,...,D,t =1,...,my, the explanatory and target
variables are

t 1
= (bgt—aq)V Ugt=—— =1 bg=1+= d—1)+t
Xdt (bat — adt)Uat + adt, Udt md+l’adt » Odt +D(md( )+1),
Yot = Bl + BZth + Ugt + €qt, Bl = 07 BZ = 17
whereeg ~ N(0,0%,), 03, = dg 4 @-2Mu@ DD "o — 0.8 anday = 1.2. Ford = 1,...,D, the
random vectorguqs, . . ., Ugm, ) are generated as follows:
Ugr = (1—p?) %41, Ugt = PUgt—1+Ear, t=2,..., My,

wheregq; ~ N(0,02),d=1,...,D,t =1,...,my, ando? = 1.

The first simulation experiment is dedicated to investigatee gain of efficiency achieved by the
EBLUP based on model (7.9) as a function of the correlatiommpaterp. The experiment has the
following steps:

1. Forp=0,1/4,1/2,3/4, repeaK = 10* times k=1,...,K)

1.1. Generate a sample of size= z(?:lmj. Calculatqlé'? = B1+ BoXdgt + ué'?.

1.2. Calculatefi(lk’o),B(Zk’o),éﬁ(k’o) and EBLUPOpﬁ':’O) by using REML method under (7.4) re-
stricted top = 0.
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1.3. Calculat{*? ¥ 65" 5k and EBLUPLY by using REML method under model
(7.9).

2 Ford=1,...,D,t=1,...,my, calculate

15/ 11X
BIASH = 3 (A" W) MSEY =g 5 - i) a=o1

D my D my
BIASY — = BIASY, msE® — 1 MSEY., a=0,1
o5 as s § S«

Mean squared errofdSEQ andMSE®Y are presented in the Table 7.2.6.1 (left). BiaB&S® and
BIASY are presented in the Table 7.2.6.1 (right). In the Figure6712heM SEym,-values are plotted
for D = 100, my = 5 andp = 0 (top-left), p = 0.25 (top-right),p = 0.5 (bottom-left) andp = 0.75
(bottom-right). In the Figure 7.2.6.2 tli& ASm,-values are plotted fdd = 100, my = 5 with the same
configuration as in the Figure 7.2.6.1.

MsE(”, MSEY, for p=0, my=5 MSED, MSEY, for p=0.25, my=5

—— mse(?
—o— Mse

- mse(?®
o Mse(

1.0 1.2

1.0

0.8
0.8

0.6

0.4

1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Domains Domains
mse(”, MSE{, for p=05, m.=5 MSE, MSE(, for p=0.75, my=5
X s S IOK x?g&“(
el /W»S(
3 e MSE(T; S X )«%WK%X%MK«WXX B X
—©— MSE4 »XXXM%*"Q X%

1.0

<
-

0.6 0.8

0.4

1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Domains Domains

Figure 7.2.6.1MSEjnm,’s of EBLUPO and EBLUP1 foD = 100,my = 5.

When the true model is model (7.4) restrictedote- 0, the best results in MSE are obtained if we
work all the time under the assumption tigat= 0. However if we use the EBLUP derived under the
incorrect model (7.9) the increment of MSE is almost neflayi This can be appreciated in the two first
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rows of the Table 7.2.6.1 (left) and on the Figure 7.2.6.Wdflook at the bias, no increment is observed
for incorrectly using model (7.9).

My My

p a 2 5 10 20 2 5 10 20

0O 0]0.5086 0.5026 0.5003 0.49960.00078 -0.00011 0.00053 -0.00001

0O 105138 0.5046 0.5014 0.50010.00078 -0.00011 0.00053 -0.00001
0.25 0] 0.5263 0.5204 0.5185 0.51760.00079 -0.00011 0.00053 -0.00002
0.25 1) 0.5214 0.5074 0.5026 0.5007 0.00078 -0.00011 0.00052 -0.00001
0.5 0] 0.6263 0.6189 0.6183 0.6193-0.00020 -0.00133 0.00196 0.00103
0.5 1] 0.5457 0.5133 0.5052 0.5015-0.00021 -0.00132 0.00193 0.00104
0.75 0] 1.2021 1.1903 1.1930 1.19%1-0.00030 -0.00130 0.00197 0.00106
0.75 1] 0.5953 0.5230 0.5029 0.4935-0.00032 -0.00129 0.00192 0.00106

Table 7.2.6.1MSEs (left) andBIASs (right) of EBLUPO and EBLUP1 fob = 100

BiasY, BIAsY, for p=0, my=5 BiIasY, BIAsY, for p=0.25, me=5
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Figure 7.2.6.2BIASim,’s of EBLUPO and EBLUP1 foD = 100,my = 5.

When the true model is model (7.9) and the correlation pat@migsmall p = 0.25), there is almost
no difference in MSE or BIAS by using the true model or the mmect model (7.4). If the correlation
parameter is of medium sizp & 0.5) there is a clear increment of MSE and BIAS by using the ireazir
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model. Finally if the correlation parameter is high=€ 0.75) the use of the incorrect model produce
sever increments of MSE and BIAS.

The second simulation experiment takes the MSEs obtaintkifirst experiment and includes the
following additional steps:

1.4 Calculatenséﬁg:’o)) andmsQﬁé‘:’l)).
3 Ford=1,...,D,t=1,...,my, calculate

1 . 1K . 2
Bdt - K Z (mse{“g: MSE(Ut ) Edt ~K Z (mstS:’a) - MSE(d?)) ,a=0,1,

k=1

1 D my (a) 1 D my (a>
=5 > DBy, E¥=5% SEY. a=01
=1t=1 =1t=1

Mean squared error&(© and E(Y) are presented in the Table 7.2.6.2 (left). BiaB&8 andBY are
presented in the Table 7.2.6.2 (right). H®e= 100 andmy =5, in the Figure 7.2.6.3 thBym,-values
are plotted on the top fqv = 0 andp = 0.75 and theEym,-values are plotted in the bottom for the same
values ofp. We observe that in the cage= 0 there is no difference between working under the true
model (7.4) or under the incorrect model (7.9). On the otlaeidhifp = 0.75 then we get higher bias and
mean squared error in the estimation of the MSE of the EBLURdiking under model (7.4). Again
we conclude that if true model is model (7.9), then there @sa bf efficiency by using model (7.4). The
cases = 0.25 andp = 0.5 has been also analyzed, but not presented here as thegampaesmooth
transition between the two extreme considered cases.

My My

p a 2 5 10 20 2 5 10 20

0 0] 0.00347 0.00194 0.00140 0.001120.00118 -0.00015 0.00014 -0.00088

0O 1|0.00350 0.00194 0.00140 0.001120.00086 -0.00018 0.00013 -0.00088
0.25 0| 0.00350 0.00202 0.00150 0.001220.00118 -0.00006 -0.00007 -0.00023
0.25 1| 0.00352 0.00203 0.00146 0.001180.00116 -0.00047 -0.00007 -0.0005%9
0.5 0] 0.00365 0.00242 0.00195 0.001680.00139 -0.00028 -0.00052 -0.00080
0.5 1] 0.00398 0.00222 0.00161 0.0018320.00198 -0.00109 -0.00073 -0.00113
0.75 0| 0.00465 0.00395 0.00361 0.003860.00307 -0.00209 -0.00232 -0.00190
0.75 1| 0.00513 0.00243 0.00173 0.0014%0.00405 -0.00225 -0.00165 -0.00162

Table 7.2.6.2E’s (left) andB’s (right) of EBLUPO and EBLUP1 fob = 100
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Figure 7.2.6.3Bgm,’s (top) andEqgm,’s (bottom) of EBLUPO and EBLUP1 fdD = 100,myq = 5.

7.3 Partitioned Fay-Herriot model 1

7.3.1 The model
Let us consider the modeinpdell)

Vdt = XdtP+Ugt+€4, d=1,...,.D=Da+Dg, t=1...,my, (7.7)

whereyy; is a direct estimator of the indicator of interest for ageand time instant, andxgy; is a vector
containing the aggregated (population) valuep elixiliary variables. The inded is used for domains
and the index for time instants. We assume that the random effagts are i.i.d. N(0,0%) if d < Da
and i.i.d. N(0,03) if d > Da. We further assume that the errag’s are independenii(0,03,) with
knownag,'s. Finally we assume that the:’s and theey;’'s are mutually independent. In matrix notation
the model is

y=XB+Zu+e,

where vectorg, u andecan be decomposed in the fous= (V),,vg)', withva = dc%l (Vg), VB = dc%l (Vg)
<Da >Da

I/
i<p

andvy = 1<ctgl (Vgt), matrix X can be similarly decomposed in the foih= (X/y,Xg)’, with Xa =
<t<my

col (Xq), Xg = col (Xg), Xqg = col =cC - = Z=Iy, M=M M

dSDA( d)! B d>DA( d)! d 1§t§mj(xdt)’ Xdt 1< (thj)1 B Bpxl! M A+ B

Ma = ¥ g<p, Md, MB = 5 4~p, M4 @anly denotes the identitil x M matrix. In this notationy ~ N(0,V )
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ande~ N(0,V,) are independent with covariance matrices

Vy = var(u) = diag(0alm,, 03l ms), Ve=var(e) = diag (Veq), Ves= diag (0%).
1<d<D 1<t<my

The covariance matrix of vectgris V = var(y) = diag(Va, Vg), whereV 4 = diag(V4), Vs = diag(Vy),
dSDA d>DA

Vg = 02l m + Veqif d < DaandVy = 03l m, + Veqif d > Da.
If 0% > 0 ando? > 0 are known, the best linear unbiased estimator (BLUE isf

E — (leflx)flxlvfly

and the best linear unbiased predictor (BLUPYG$

~

U=VyZ'V 7y —XB) = diag(0Alm, Bl ) | col (VgH)(y—XB),

so that
Gd: oival(yd—xdﬁ)a d:la"'7DAa
03Vgt(ya—XaP), d=Da+1,...,D,

or equivalently

2 2
~ O-A O-B oy
(gt = |——A | d)+—2B | d —xgP),d=1,...D.t=1,....mq.
dt 0_% O-St {ngA}( ) 0_% O-St {d>DA}( ) (ydt dtB)> IR My

The loglikelihood of the restricted (residual) maximurrelikood method is

M

—p Liogixix| - & 1
> Iog2r[+2Iog|XX| 2Iog|VA| 2Iog|VB|

1 B B 1
-3 log | X,V A XA+ XEVgiXa| — Ey’Py,

llem = Ireml(o,zmo-%):_

where
P=Vv1-vIX(xXvIX)"IX'v-l PVP=P, PX=0.

Let® = (81,6,) = (0%,03), then

ov . . ov ) )
Vi = — =diag(Im,, diag(Omyxmy)), V2= ~— = diag(diag(Omyxmy), ms)-

aGA d>Da a 60% d<Da
Then
oP ov
Pa= - =—P—P=—PV,P, a=12
a aea aea al )

By taking partial derivatives dfem With respect td,, we get the scores

ol 1 1
S = areem' = —5tr(PVa) + 5YPVaPY, a=12
a
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By taking again partial derivatives with respectpand®y, taking expectations and changing the sign,
we get the Fisher information matrix components

1
Fap = Etr(PVaPVb), ab=12
To calculate the REML estimate we apply the Fisher-scoriggridhm with the updating formula
ekJrl — ek_|_ Ffl(ek)s(ek)’

whereS andF are the column vector of scores and the Fisher informatictnixmaspectively. As seeds

2(0) _ 4200 _ 52 G2 i i 2 52
we usedy ~ = 0g ~ = 02y, WhereG?, is the Henderson 3 estimator under model vafn= 03. The

REML estimator off is R
Brom = (X'V7IX)"IX'V 1y,
The asymptotic distributions of the REML estimatoraind are
0~ No(8,F71(8)), B~ Np(B,(X'VX)™).
Asymptotic confidence intervals at the level-Ir for 6, and3; are
BatzVin, a=12 Btz g’ j=1,...,p,

where8 = 6%, F~1(8%) = (Vab)ab=1.2, (X'V"1(8)X)~1 = (g} )i.j=1...p K is the final iteration of the
Fisher-scoring algorithm arg is thea-quantile of the standard normal distributidi{0,1)). Observed
B; = Bo, the p-value for testing the hypothediy : B; =0 is

p= 2Py, (B; > Bol) = 2P(N(0,1) > Bo/ /) )-

In what follows we present some matrix calculation that aeful to implement the Fisher-scoring
algorithm. The target here is to avoid calculationdvbk M matrices. For ease of exposition we define
the sets of indexe®, = {1,...,Da} andDy = {Da+1,...,D}.

-1
D

Q = (x’v—1X)—1:<dz xg,v;lxd> ,
=1

P = diag(V;Y)— col (VX col (X,vii
1§L§9D( a’) 1gng( d d)ngng( aVa);
- . . -1 . -1 / VAV A
PV, = dlag(il%g(vd ), OMg xMg) 1gcc?g|D(Vd Xq¢)Qcol (ngODIA(XdVd ),0pxMg )+
; : -1 -1 -1
PV, = diag(Owaxmy, iu%?(vd ))—1§C(?§|D(Vd xd)Qcoy(opoA,dgog; (XgVgH),
tr(PVa) = Y tr(Vgh— 5 tr(XgVy®XaQ), a=12,
deDn, deD,
tr(PVaPVa) = 5 tr(V4%) =2 5 tr(XgV4°XeQ)
deDn, deDn,

+ tr{( > xgvdzxd> Q ( > xgvdzxd> Q}, a=12
deD, deDy
tr(PVaPVp) = tr{( > xgv;zxd> Q( > x;,v;zxd) Q}, ab=12, witha#b,

deD, deD,
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D !/
YPVaPYy = 5 yqVaPya— ( > YaVq 2Xd> Q (dz YaVq 1Xd>
=1

deD, deD,

D
- ( 2 yavdlxd> Q ( )3 xavdzyd>
=1 deD,

D D !
- (dz y&V51Xd> Q ( > xgv;zxd> Q (dz ygv(;lxd> , a=1,2
=1 deDy =1
! _ / / . -1\ A -1 / ! : -1
yPy = 1§g§|D(yd) <lgld€;gD(vd ) 1gldaggD(vd )lggD(xd)ngg;D(xd)lgﬁ% (Vq )) 1§C(§)SID(Yd)

D D D
YaVglyd — YaVgiXa | Q XqValya | -
dgl aVq <le aVq dgl aVq

7.3.2 The mean squared error of the EBLUP

We are interested in predicting the valugugf= X4t 3 + ug: by using the EBLURig; = xdtﬁ+ﬁdt. If we do

not take into account the err@y, this is equivalent to predigt;; = @'y, wherea= col ( col (34/0w))
1<¢<D "1<k<ny

is a vector having one 1 in the positibA- zg;ll m, and O’s in the remaining cells. To estimatg we
~eblup ~eblup _
useYy = Hat- The mean squared error 8, is

~eblu

MSE(Yg ) = 01(8) +Go(6) +s(6).
whered = (0%,03),
0) = aZTZ'a
8) = [@X-azZTzZ'V_X]Q[X'a—X'V 1zTZ 4],
tr{(Db/)V(Db/)’E [(6— OICE e)’} }

Q

w

2
%

~eblup

The estimator oMSE(Yy, ) is

mse¥ ) = gu(8) + 6a(8) + 205(8).

Calculation of g;(0)

In the formula ofg;(8) = @ZTZ'a, we have thaZ = Iy, andT =V —V,Z'V~1ZV, = diag(Ta, Ts),
where
Ta=0alw, —oadiag(Vg?), Tg=03lm, —ogdiag(Vyt).
dSDA d>DA

Let us writeag = 1<(|:<2| (&) Then,g1(6) can be expressed in the form
<k<my

2 _ A\ -la, _ OROG
1 = 2 52
2 Ay\-1, _ O30 -
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Calculation of g»(0)
We have that,(8) = [@X —aZTZ'V 1X]|Q[X'a— X'Vg1ZTZ a), whereZTZ 'V X =

(021, — 0% diag(V‘l)] diag(V‘l)dcoI (Xq)

ny—1 _ d<Da
ZTZNeX = [08Img — oBdlag( )] diag(V 4 ) coI (Xd)
d>Da d>Da d>

2 - 1
GAdc<%IA( oa Xd) — GAdcoI (Vg'V 4 Xaq)

03 col (Vo iXq) — o col (vdlv )
d>DA

Therefore

02(0) = [8iXa— RV g Xa+0aa1Vg Vg Xa] Q
[Xjjag — 0aX4Vegad + 0aXyV Vg tag] if d < Da,

= [8yXq— 088GV og Xa + 0gayV g Vi Xa] Q
[Xyag — 05X} veda(jJrcsBxdvedlvd ag| if d>Da.

Calculation of g3(0)

We have that
gs(0) ~tr {(Db’)V(Db’)/E [(@- 0)(6— e)/} } ,

whereb’ = aZV Z'V~1 = adiag(0Z1 w,, 031w, ) diag (V, 1) = (b, bf),
1<(<D
by = o col (84a,V, 1) and bk = o2col (dgaV;1).
A AZSDA( IAS AN ) B€>DA( I AY) )

It holds that22, = (00270) b _ (0, %), where

dos 403 ’ 90g
ab/A / 12 -1 2 / / -2
o2 gci%IA(édéazvg )—UAZE%A(E’dEaeVe )
A < <
obl,
_ I/ /V—l A2 |/ /V—2.
A G R (LA
We define
ab,/A ; abfA / r\/—1 2./ \/—2 4 1\/—3
= S hdiagV) (o3 ) = [agV e — 20380V a0 + 0k s *aa] la<n,) (d)
004 (<Dx leyy
0-4
= 7|{d<D 3(d)
(0&+05)° "
abB abé / r\s—1 2/ \/—2 4 1 \/—3
G2 = >diag\Vy) | 2= ) = [agVy ad — 20584V ad + 0gayVyqad] l{a=pa}(d)
a BZ>DA 50'8
O-4

d
= (@ragp @@
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Finally

qllF]_]_ ) if d < Da
g3(9) { QZ2F22 , if d> Da,

whereF,, is the element of the REML Fisher information matrix.

7.3.3 Testing forHo : 04 = 03

Let 6% and 63 be the unrestricted REML estimators @f and o3 respectively. LefiZ be the REML
estimator of the common valmi\ = 03 underHo. The REML likelihood ratio statistic (LRS) for testing
Ho: 0% = 03 is

V| IXV-1X]
A= =2 I 62,6 log-—= +1o -
—2[lrRemL(83) — IremL(6%,63)] = 9|V| g|X’V*1X|

= log|V|—log|Va| —log|Vi| +log|X'V~1X]

log [XaVa Xa + X&Vg Xs| + Y Py—yPy.

+yPy-yPy

Asymptotic distribution o\ underHg is xf, so null hypothesis is rejected at the lewdf A > xiq.

7.3.4 Simulations
Simulation 1

Ford=1,...,D,t=1,...,my, The explanatory and target variables are

1
= (bgt —agt)U U 1L bg=1+—= d—1)4t
Xt (gt — agt)Ugt + agt, Uge = %+17%t dt +D(md( )+1),
Yat = Bl+BZth+udt+edt7 B].:Ov BZ_ 9

whereugt ~ N(0,0%4) if d < Da, Ugt ~ N(0,03) if d > Da, egt ~ N(0,0%,), Da=D/2,03 =1, 03 =

0.8,1,1.2 and

(a1 —do) (Mg(d — 1)+t~ 1)
M-1

The first simulation experiment has the following steps:

O'gt = +0agp, 0p=080,=12

1. RepeaK = 10® times k=1,...,K)
K

1.1. Generate a sample of sizeand calculatqué'? = B(lk> + B(zk)xdt + Uy -

1.2. Calculaté® e {B, X, 63% 624} andiiY by using the REML method.

2. For eacH € {B1,B2,0%,03} and for{ig, d = 1,...,D,t =1,...,my, calculate

st=1 SEf) -+ 3
BIASE) = = MSE(®) = —
Kk; Kkzl
1S o K 18 0 (K
BIAS = Kkzl(l“ldt — Mg ), MSEy = szl(udt - ;
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12 12
BIAS= — BIAS:, MSE=—
M & & M

=1t=

MSE;:.

The simulation experiments are carried out for the 6 contlmina of sample sizes appearing in Table
7.3.4.1.

D 50 100 200 300 400 500
my 5 5 5 5 5 5
M

250 500 1000 1500 2000 25Q0
Table 7.3.4.1: Sample sizes.

The Table 7.3.4.2 presents the results of the simulatiorréxent for the case3 = 1 andoj = 0.8.

The Table 7.3.4.2 shows that the bias is always close to rerthat the MSE decreases as the num-

D 50 100 200 300 400 500

BIASB;) | 0.0010 0.0020 -0.0007 -0.0008 -0.0004 -0.0006
MSE(B1) | 0.0457 0.02359 0.0118 0.0077 0.0057 0.0046
BIAS3;) | 0.0007 -0.0005 0.0003 0.0004 0.0003 0.0Q03
MSE(B2) | 0.0079 0.0040 0.0020 0.0013 0.0010 0.0Q08
BIAS(62,) | -0.0928 -0.0896 -0.0890 -0.0899 -0.0900 -0.0898
MSE(GZ,) | 0.0608 0.0344 0.0213 0.0166 0.0145 0.0134
BIAS62;) | 0.1052 0.1112 0.1118 0.1079 0.1094 0.1092
MSE(G%;) | 0.0765 0.0455 0.0287 0.0222 0.0201 0.0184
BIAS 0.0021  0.0010 -0.0002 -0.0009 0.0002 -0.0003
MSE 0.5174 0.4974 0.4867 0.4833 0.4820 0.4811

Table 7.3.4.2 Results of simulation 1 undeg = 1,03 = 0.8.

ber of domains increases, so that the REML estimates aréstemts

The Table 7.3.4.3 presents the results of the simulatioeraxgent for the case,% =1ando3 = 1.

The Table 7.3.4.3 shows that the bias is always close to refthat the MSE decreases as the num-

D 50 100 200 300 400 500
BIASpB:) | 0.0014 0.0017 -0.0005 -0.0005 -0.0002 -0.0004
MSE(;) | 0.0305 0.0156 0.0078 0.0051 0.0038 0.0030
BIASB2) | 0.0009 -0.0006 0.0002 0.0003 0.0003 0.0401
MSE(B,) | 0.0051 0.0026 0.0013 0.0008 0.0007 0.0405
BIAS82,) | -0.2478 -0.2468 -0.2462 -0.2465 -0.2464 -0.2466
MSE(52,) | 0.0846 0.0725 0.0665 0.0646 0.0636 0.0631
BIAS62g) | -0.2493 -0.2459 -0.2453 -0.2479 -0.2469 -0.2470
MSE(625) | 0.0896 0.0745 0.0669 0.0659 0.0644 0.0437
BIAS 0.0011 0.0005 -0.0001 -0.0004 0.0009 -0.0001
MSE 0.2536 0.2456 0.2416 0.2410 0.2404 0.2401

Table 7.3.4.3 Results of simulation 1 undei = 1, 03 = 1.

ber of domains increases, so that the REML estimates aréstemts
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The Table 7.3.4.4 presents the results of the simulatioeréxgent for the caserf\ =1 ando3 = 1.2.

D 50 100 200 300 400 500

BIAS(B1) 0.0014 0.0017 -0.0005 -0.0005 -0.0002 -0.0Q04
MSE(fil) 0.0323 0.0166 0.0082 0.0054 0.0040 0.0032
B|A5<[§2) 0.0007 -0.0007 0.0002 0.0003 0.0001 0.0Q03
MSE(IEZ) 0.0056 0.0029 0.0014 0.0009 0.0007 0.0006

BIASG2,) | -0.2478 -0.2468 -0.2462 -0.2465 -0.2464 -0.2466

MSE(62,) | 0.0846 0.0725 0.0665 0.0646 0.0636 0.0631

BIAS62g) | -0.2496 -0.2457 -0.2451 -0.2480 -0.2469 -0.2470

MSE(62s) | 0.0989 0.0791 0.0690 0.0674 0.0656 0.0646

BIAS 0.0011 0.0005 -0.0001 -0.0005 0.0008 -0.0001

MSE 0.2613 0.2454 0.2373 0.2350 0.2340 0.2333
Table 7.3.4.4 Results of simulation1 undeg = 1,03 = 1.2.

The Table 7.3.4.4 shows that the bias is always close to zetatat the MSE decreases as the
number of domains increases, so that the REML estimatesasistent.

Simulation 2

The second simulation experiment investigates the behaf¥ithe estimatomse; of the MSE of the
EBLUP of pg;. We comparanse; with the empirical MSE ofig; obtained from Experiment 1.

1. ForD = 50,100 200,300,400,500, take the values diSE;; obtained in simulation 1 and repeat
K=10times k=1,...,K)

1.1. Generate the samp(l%'?,xdt), d=1,....D,t=1,...,m.
1.2. Calculatensé? = msey(65%).

2. Calculate the performance measures of estinratmg;

1K 18
Bgt = R kZ mSék MSEjt Eqt = R kZ msél? - MSE}I)Za d= 1,...,D,

13 B ™

100 2
B _ 10
D

B E=—
dts D

Eqt.

The Table 7.3.4.5 presents the obtained results for theaZsel andoj = 0.8.

D 50 100 200 300 400 500

B | -0.0336 -0.0173 -0.0090 -0.0070 -0.0060 -0.0054

E | 8.1547 3.4678 1.6412 1.1217 0.9084 0.7436
Table 7.3.4.5 Results of simulation 2 undei = 1,03 = 0.8.
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The Table 7.3.4.5 shows that the BIAS and the MSE tends toasfdancreases.

The Table 7.3.4.6 presents the obtained results for theaasel ando? = 1.

D 50 100 200 300 400 500
B | 0.0588 0.0606 0.0613 0.0607 0.0608 0.0607
E | 46616 4.1992 4.0266 3.8739 3.8572 3.8305
Table 7.3.4.6 Results of simulation 2 undeg = 1,03 = 1.

The Table 7.3.4.6 shows that the BIAS and the MSE tends toasidancreases.

The Table 7.3.4.7 presents the obtained results for theazasel ando3 = 1.2.

D 50 100 200 300 400 500
B | 0.0694 0.0776 0.0818 0.0826 0.0830 0.0833
E | 57342 6.5256 7.1781 7.3190 7.4025 7.4494
Table 7.3.4.7 Results of simulation 2 undeg = 1,03 = 1.2.

The Table 7.3.4.7 shows that the BIAS and the MSE don't temdetto ad increases.

Simulation 3

This simulation experiment is planned to check the behavithe REML log-likelihood test statistics.
Forof\ =1 ando3 = 0.25,0.5,0.75,1,1.251.5,1.75,2. The steps of the simulation experiment are:

1. RepeaK = 10 times k=1,...,K)

1.1. Generate a sample of sigkein the same way as in Simulation 1 and calculate the unresdric
andHo-restricted REML estimatesy ,  , 65, and&f, .

1.2. Calculaté\(k) = A(fri(k),éé(k), 6'5“()) anda(k) = {}\(k) > X%,O‘OS}'

2. Output:o = % Y1 0.

The simulation experiment is carried out for the 6 comboraiof sample sizes appearing in Table
7.3.4.4.

D| 50 100 200 300 400 50(

my 5 5 5 5 5 5

M | 250 500 1000 1500 2000 25Q0
Table 7.3.4.4: Sample sizes.

The Table 7.3.4.5 presents the results of the simulatiorraxent.
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D 50 100 200 300 400 500
03 =0.25 | 0.9987 1 1 1 1 1
03=0.5 | 0.9987 1 1 1 1 1

03=0.75| 0.2352 0.4131 0.6928 0.8652 0.9416 0.9746
03=1 0.0517 0.0557 0.0491 0.0481 0.0508 0.0496
03=1.25]0.1695 0.3096 0.5301 0.6968 0.8166 0.8926

0§=15 | 0.4619 0.7536 0.9671 0.9962 0.9996 1
03=1.75 0.7423 0.9571 0.9997 1 1 1
03 =2 0.9006 0.9954 1 1 1 1

Table 7.3.4.5 Power resultso) of simulation experiment 3.

The Table 7.3.4.5 shows that, und%r: 0,%, the value of converge to 0.05 abd increases.

7.4 Partitioned Fay-Harriot model 2

7.4.1 The model

Let us consider the model (model 2)
ydt:thB+udt+edt7 d:17--~7D:DA+DB7 t:17"'7rnd7 (78)

whereyy; is a direct estimator of the indicator of interest for agesnd time instant, andxgy; is a vector
containing the aggregated (population) valuep aluxiliary variables. The inded is used for domains
and the index for time instants. We assume that the random vegiafs . . . , Udm, ), d < DA, follow i.i.d.
first order auto-regressive processes with variance awodcautelation parameters andp respectively;
in short, (U, - - ., Ugm, ) ~iia ARL(0%,p), d < Da. We further assume thétlys , . . . , Ugm, ) ~iia ARL(03,p),

d > Da, and that the errorey’s are independenit (0, 03,) with knowna?,’s. Finally we assume that the
(Ud1, - .. ,Udm,)’s and theey’s are mutually independent.

In matrix notation the model is

y=XB+Zu+e

where vectorg, u ande can be decomposed in the fous= (v, vg)', withva = dc%l (Vg), Vg = dc%l (Vg)
<Da >Da

andvy = 1<(t:g!m(vdt)’ matrix X can be similarly decomposed in the fodh= (X,, Xg)’, with Xa =

| (Xq), Xg = col (Xgq) andXq= col (x = Z =ly andM = 5P . In this notation
£ (Xa), Xg = col (Xa) andXq = col (Xut),B=Bp.1, m andM = 3 5_; mg. In this notation,

u~N(0,V,) ande~ N(0,V,) are independent with covariance matrices

V, = var(u) = diag(03Qa,05Q8), Ve=var(e) = diag (Veq)
1<d<D
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whereQa = diag(Qq), Qs = diag(Qq), Vea= diag (03,) and

d<Da d>Da 1<t<my
1 p ... pM2 pmu-l
1 P 1 pmi—2
pmd72 1 p
pma—1 pmi-2 p 1

My X My
The covariance matrix of vectgris V = var(y) = diag(Va,Vg), whereVa = diag(Vg), Vg = diag(Vq),
d<Da d>Da
Vg = 02Qq + Veqif d < DpandVy = 03Qq + Veg if d > Da.
If 0,% > 0,03 > 0 andp are known, the best linear unbiased estimator (BLUE isf
/B\: (le—lx)—lxlv—ly
and the best linear unbiased predictor (BLUPYaG$
U=VuZ'V}(y - XB) = diag (oidiag@d),oédiag(czd)) Lcol (Vgh)(y—XP).

dSDA d>DA

so that
Gy— | AQuVq (ya—XaB), d=1...Dp
08QaVgl(ya—XdB), d=Da+1,...,D.

The loglikelihood of the restricted (residual) maximurrelikood method is

M

—p Liogixix| - & 1
> Iong[+2Iog|XX| 2Iog|VA| 2Iog|VB|

1 _ _ 1
— 510g[XaVa'Xa+XgVg'Xs| ~ Sy'PY.

2 2
lkem = lremi(04,08,P) = —

where
P=V -V XXV X)XVl PVP=P, PX=0.

Let® = (61,62,63) = (02,03, p), then

ov . . ;
V, = a_2:d|ag(dk’:tg(Qd(p)),d'"Jl(El((-"rmXfm)>
Oa

dSDA d>DA

)
dSDA d>DA

oV : : :
Vo = 902 :dlag<d|ag(ormxmd) dlag(Qd(p))>,
B

A . .
V3 = — =diag| oadiag(Qq(p)),0zdiag(Qa(p)) |,
op d<Da d>Da
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whereQ(p) = aQ(p)/dp. Then

opP — _pa_vp =—-PV,P, a=123.

P,= —
&7 90, 90,

By taking partial derivatives dfem With respect td,, we get the scores

| 1 1
&= aafgm' - _Etr(PVa) + Ey/PVaPYv a=123
a

By taking again partial derivatives with respecttpand6y, taking expectations and changing the sign,
we get the Fisher information matrix components

1
Fap = Etr(Pvanb), ab=123.
To calculate the REML estimate we apply the Fisher-scorlggrahm with the updating formula
0t = 0+ F1(645(8"),

whereS andF are the column vector of scores and the Fisher informatiotnixmaspectively. As seeds

we usep© =0, andoa? = 02% = 62, whereG2, is the Henderson 3 estimator under model with

p =0 andoZ = 03. The REML estimator oB is

~

Bremi = (X'VIX) XV Ty,
The asymptotic distributions of the REML estimatoraind are
6~ Ng(B,F1(8)), B~ Np(B,(X'V X)),
Asymptotic confidence intervals at the level-Ir for 8, and3; are

éaiZG/ZV;éza a=123, ﬁ]:l:z(l/Zq:JLJ/za J =1...,p

where = 8%, F~1(8%) = (Vab)ab=1.23, (X'V71B)X)~1 = (gjj)ij=1.. p, K is the final iteration of the
Fisher-scoring algorithm arg is thea-quantile of the standard normal distributitii0, 1)). Observed
B; = Bo, the p-value for testing the hypothediy : B; =0is

P = 2Pk (B; > Bol) = 2P(N(0,1) > Bo//T}})-

In what follows we present some matrix calculation that areful to implement the Fisher-scoring
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algorithm. The target here is to avoid calculationdvbk M matrices.

-1
D

Q = <X’v1><>1=<dz Xavdlxd> :
=1

P = diag(V Y — col (V41X col (X.V1
1§d§gD( a )=, S, Va Xa)Q col (XaVa ).
— g -1 _ ) i
PVa = diag (Vg Vag) =, SOl (Vo Xa)Q C0l [ (XaVy Vaa),

D D
tr(PV,a) = dz tr(Vg'Vag) —dz tr(X3Vg'VadV4XaQ),
=1 =1

D D
tr(PVaPVp) = tr{ (dz xg,vdlvadvdlxd> Q (dz xg,vdlvbdvdlxd> Q}
=1 =1

if ab=12 with a#b; otherwise
D D
tr(PVaPVp) = dz tr(Vg'VadVgVod) — 2dz tr(XyVgVagVgVodVg ' XaQ)
=1 =1

D D
+ tr{ (dz x;,vdlvadvdlxd> Q (dz x;,vdlvbdvdlxd> Q},
=1 =1

D D D !
y'PVaPy = dz YaVg ' VaaVglya — ( dz yavdlvadvdlxd> Q ( dz ygvdlxd>
=1 =1 =
D D
_ (dz y&Vd1Xd> Q (dz X{,levadvdlyd>
=1 =1
2 1 2 1 1 2 1 ,
+ y’V* Xdq | Q XLV aViXq | Q y’V* Xq | -
(dzldd ) c'Zlddad c'Zldd

Finally, the derivative of matrifq4(p) with respect t is

0 1 ... ... (mg—21pm—2
1 0o . (mg —2)pme~3
o _ 1 : o : 2pQq4(p)
dp) = 1-p2 : o T : "‘sz'
(mg—2)pm—3 .0 1
(mg—21)p™—2 ... ... 1 0

7.4.2 The mean squared error of the EBLUP

We are interested in predicting the valugugf= X4t + Ugt by using the EBLURly; = xdtﬁ+ Ugt. Ifwe do

not take into account the err@y;, this is equivalent to predigt; = @y, wherea= col ( col (dq¢dk))
1<0<D "1<k<my

is a vector having one 1 in the positibA- z?;ll my and O’s in the remaining cells. To estimatg we
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~eblup Aeblup
useYy = Hat- The mean squared error 6f;

~eblup
MSE(Yq ) =01(6) +02(8) +93(6),
whereb = (0%,03,p),
1(0) = dZTZ'a,
0(0) = [@X-adZTZ'VX|Q[X'a—X'V,1ZTZ al,

0s(6) ~ tr{(0b')V(0b')E[®-8)®-0)]}

~eblup
The estimator oMSE(Yy, ) is

~eblup ~ ~ ~
ms&Yq ) =01(8) +02(8) +293(8).

Calculation of g;(0)

In the formula ofg, (8) = &ZTZ'a, we have thaZ = |y, andT =V, -V Z'V~1ZV, = diag(Ta, Ts),
where

Ta = GAdiag(Qa) — o4 diag(Qq) diag(V; ") diag(Qy)
d<Da d<Da d<Da d<Da

and

Tg = ogdiag(Qq) — ogdiag(Qq) diag(V4 ) diag(Qq)
d>DA d>DA d>DA d>DA

Let us writeag = 1<?<2| (&). Then,g1(0) can be expressed in the form
<k<my

gu(6) = | OAdiQada — 08 QaVy Qudg  if d <D,
' 0ga;Qqag — GéaanVngdad if d > Da.
Calculation of g»(8)
We have that,(8) = [ X —aZTZ'Vz1X]Q[X'a— X'V51ZTZ a], whereZTZ'Vg1X =

dlag Qq) — dlag(Qd)dlag(Vd )dlag(Qd)] dlag( ) coI (Xd)
ZTZ'V X d<D d=

dlag Qq) — dlag(Qd)dlag(Vd )dlag(Qd))] dlag( ) coI (Xd)

d>DA >DA d>Da

— <Da
- 02 col de xd) ogdc%l (de(;lgzdv;(}xd)
>Da

Therefore

X g — 0283 QaV g Xd + 0434 Q4V 5 QaV o3 Xa] Q

%) = }
Xyyag — OaX 4V od Qaad + OAXGV o QaV g ' Qqad]
]
]

if d < D,
Q
if d > Da.

ayXq — 08V og Xd + 084 Q4V g QaV og Xd
Xjjag — 08X 3V o4 Qaad + 0pX 4V g QaV g Qaad

[
[
[
[
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Calculation of g3(0)

We have that
gs(0) ~tr {(Db’)V(Db’)’E [(@- 0)(6— e)’} } ,

whereb’ = a'ZV ,Z'V~1 = adiag(o%diag(Q/), 03diag(Qy)) diag (V, 1) = (bj,bg),
(<Da (>Da  1</<D

b = oz col (8wd,Q/V, 1) and bg=03col (848, Q/V, 1)
/<Da ’ . £>Dp ’ .

It holds thatZ% — (3%,0), 2 = (0,3%), % = (%5, %), where

903"/’ 00f — \"’ 00 PO
ob/ B B - v,
00/,21 = 4%%;(5d€aéQ€Ve ') -k [(;%';(%zaéQéve WiVt Via= 202 Q,
oby B B - v,
602 = é%';(édéaégéve Y—og ;;%';(%za@QéVe WiV, Ve= 207 Qy,
a_b'/A — 0-2 CO|/ (6(1(&/ szfl) _ 0.4 CO|/ (6(1(3/ Qévflvé Vfl) V( _ M _ 0_294
op AZpy T AR, OB TN apV ) Vip = 50 = Oa%l,
o}, , | N
—2 = ogcol (dad,QV, ) —agcol (Bad,QiV, ViV, 1), Vip=——=03Q.
ap B€>DA( decpsel Vg ) B€>DA( decysieV y VipVy ), op 90 8Q2

We definegyr = qi2 = 0, z1 = 13, Oz2 = O,

ob’y .. b\’ _ _ _
qu = pdiag(V) < 2) = 814V " Quaq — 2038;Q4V g 'QaV 5 ' Qaa
+  0A84Q4Vy1QaVy 1 QaV g Qqad] l{g<p,y (d),
ab;B ; abé / / -1 2 A/ -1 -1
Oo2 = 00'2 dlag(Vg) 3 > = [adeVd Qdad—ZGBadeVd QdVd Qdad
B(>Da Og

+  0gayQaVy1QaVy1QaVy Qaad] l{g-p,y (d),
oo’ . ob"y’ 4.0 &\ -1¢ 6./ —1A8 -1
O3 = - diag(Vy) | 5= | = [0aaqQaVy Qaad — 20283QaV g QaVy Qaad
0p 1<¢<D op
+ o84 QdVngdVJleVJlead] l{d<pay(d)
+  [08ayQaV 4 Qqad — 208 QaV 41 QaV g Quay
+ o%a{deVngdVglﬂdVngdad] l{d>Day(d)-

obj AN L L
Gz = HodiagV) <—A> = [02a3QqV 4 Quad — 0A8;Q4V 4 QaV 4 1 Quad
ao-AESDA opa
4 -1 -1¢ 6/ -1 —1A~ y/-1
obp abg’ » L
ws = Sooaiagv,) () = [oehaviiasm - ofeav Vg s
005 1>Da 0ps

- Uéa&QdValeV(}lead + Gga&QdVJleV(}leVglﬂdad] l{a>Da} (d),
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Finall
’ Juz g Fii F -1
r 11 13) ( 11 13) _ifd<D
_ { ( 031 033 Fa1 Fs3 } = A
%(8) = G2 Op3 Fo Foz \
tr , if d > Da,
{ < Os2 033 > < Fs2 Fs3 > b A

whereF,, is the element of the REML Fisher information matrix.

7.4.3 testing forHp:p=0

Let 64, 63 andp be the unrestricted REML estimators @f, 03 and p respectively. Letz and 63
be the REML estimator orb,i ando3 underHo. The REML likelihood ratio statistic (LRS) for testing
Ho:p=0is
~2 ~2 ~2 A2 A ’\7’
A = —2[lremL(G3, 08) — IREML(OA, O, P)] = |09m +log

IXV-IX| A
L yPy—yPy
x| YRRy
Asymptotic distribution o\ underHo is X3, so null hypothesis is rejected at the lewef A > xia.

7.5 Partitioned Fay-Herriot model 3

7.5.1 The model

Let us consider the model (model 3)
ydt:thB+udt+edt> d:l>"'7D:DA+DB> t:l>"'arnda (79)

whereyy; is a direct estimator of the indicator of interest for ackand time instant, andXxq; is a
vector containing the aggregated (population) valuep @fuxiliary variables. The indeH is used
for domains and the indek for time instants. We assume that the random vectogs, ..., Udm,),
d < Da, follow i.i.d. first order auto-regressive processes wigiance and auto-correlation parame-
terso,i andpa respectively; in short(Ugs, . . ., Udm,) ~iid ARl(cri, pa), d < Da. We further assume that
(Uda, - - -, Udm,) ~iid ARL(03,ps), d > Da, and that the errorey’s are independentl(0,a?,) with known
oﬁt’s. Finally we assume that tH@iq1, . . ., Usm,)'s and theeyt’s are mutually independent.

In matrix notation the model is

y=XB+Zu-+e,

where vectorg, u ande can be decomposed in the forus= (v, vg)', withva = dc%l (Vg), Ve = dc%l (Vg)
<Da >Da

andvyq = 1<?g!m(vdt)’ matrix X can be similarly decomposed in the foh= (X,, Xg)’, with Xa =

| (Xq), Xg = col (Xg4) andXq= col (x = Z=1ly andM = 5P . In this notation
£ (Xa), Xg = col (Xa) andXq = col (Xut),B=Bp.1, m andM =3 4, mg. In this notation,

u~N(0,V,) ande~ N(0,V,) are independent with covariance matrices

V, = var(u) = diag(03Qa,05Q8), Ve=var(e) = diag (Veq)
1<d<D



124 Chapter 7. Area-level time models

whereQa = diag(Qq), Qs = diag(Qq), Vea= diag (03,) and

d<Da d>Da 1<t<my
1 p ... pm2 pmu-l
1 P 1 pme—2
Qd:Qd(p):l_—pz : ,  P=pa;Ps.
pru-2 o1 p
pma—l pmi—2 = p 1

My x My
The covariance matrix of vectgris V = var(y) = diag(Va,Vg), whereVa = diag(Vg), Vg = diag(Vq),
dSDA d>DA
Vg= O'%Qd +Veqif d<DpandVy = O'%Qd +Veqif d > Da.
If 0,% > 0, pa, 03 > 0 andpg are known, the best linear unbiased estimator (BLUE) isf

/B\: (le—lx)—lxlv—ly
and the best linear unbiased predictor (BLUPua$
U =VuZ'V-y —XB) = diag| 03diag(Qq),63diag(Qq) | _col (Vgh)(y—XP),
d<Da d>Da 1<d<D

so that

08QqVyt (Ya—XaB), d=Da+1,...,D.

The loglikelihood of the restricted (residual) maximurrelikood method is

—p

ad:{ 2QaVg'(Ya—XdB), d=1,....Da

1 1 1
llem = Ireml(c,zAapAaO%apB) = - log 2+ > IOg|X/X| -5 log|Val — > log|Vg]
1 1
-3 log | XAV A X a4+ XgVXp| — Ey/Py,

where
P=Vv1_vIX(XVvX)"Xv'l PVP=P PX=0.

Let® = (81,02,63,04) = (0%, pa, 03, Ps), then

ov ) . .
Vi = a——dlag<d|ag(Qd(pA)) dlag(O,mX,m)>
03 d<Da d>Da
Vo = 9| o2 diag(Qa(pa)). diag(Omyxm,) | -
apA d<Da d>Da
V3 = = diag(Omy xmy ), diag(Q
3 602 <d<Dil g xmg ) >D/93( d(DB)))

V, = a — diag| diag(Omyxm,) GBdlag(Qd(pB))>
pB d<DA
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whereQ(p) = aQ(p)/dp. Then

P _ pNp_ pyup a-1234

P,= —
&7 90, 90,

By taking partial derivatives dfem With respect td,, we get the scores

| 1 1
S= aargml = —5t(PVa)+ Sy'PVaPyY, a=1234
a

By taking again partial derivatives with respecttpand6y, taking expectations and changing the sign,
we get the Fisher information matrix components

1
Fap= Etr(PVaPVb), ab=1234.
To calculate the REML estimate we apply the Fisher-scorlggrahm with the updating formula
0t = 0+ F1(64)5(8"),

whereS andF are the column vector of scores and the Fisher informatiotnixmaspectively. As seeds

we usepgo) = pg)) =0, andoi(o) = 0@(0) = G2, Wheredg?2,, is the Henderson 3 estimator under model

with pa = pg = 0 ando? = 3. The REML estimator op is

~

Bremi = (X'VIX) XV Ty,
The asymptotic distributions of of the REML estimatorbaindf are
6~ Na(B,F1(8)), B~ Np(B,(X'V X))
Asymptotic confidence intervals at the level-Ir for 8, and3; are

éaiZG/ZV%.{iza a=1,23,4, ﬁ]:l:z(l/Zq:JLJ/za jzla"'ap>

whered = 8, F~1(6¥) = (Vab)ab=1.234, (X'V71(0)X)"1 = (gj)i jo1...p K is the final iteration of the
Fisher-scoring algorithm arg is thea-quantile of the standard normal distributitii0, 1)). Observed
B; = Bo, the p-value for testing the hypothediy : B; =0is

P = 2P (B; > Bol) = 2P(N(0,1) > Bo//T}})-

In what follows we present some matrix calculation that areful to implement the Fisher-scoring
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algorithm. The target here is to avoid calculationdvbk M matrices.

-1
D

Q = (x’v1X)1:<dXx;,vd1xd> ,
=1

P = dla. V_l _ COI V—lx COII X/V_l
1§d§%( a )~ S Ve Xa)Q, col (XaVa):
_ : -1 B 1 o
PVa = diag(VgVad) — 0Ol (Vg Xa)Q, 0 [ (XaVa Vaa),
D . b 1 1
w(PVa) = ; tr(Vyq Vad)_; tr(XgVy VadVg XdQ),
=1 =1

D D
tr(PVaPVp) = tr{ (dz x;,vdlvadvdlxd> Q (dz x;,vdlvbdvdlxd> Q}
=1 =1

with a=1,2 and b=3,4, otherwise

D D
tr(PVaPVp) = dztr(V51VadV51Vbd)_2dz tr(X3VgVadVgVeaVgXaQ)
=1 =1

D D
+ tr{ (dz xgvdlvadvdlxd> Q (dz xgvdlvbdvdlxd> Q},
=1 =1
/
/ _ 2 /\/—1 -1 _ 2 /\/—1 -1 2 /\/—1
yPVaPy = dzydvd VadV 4 Yd ;)Idvd VadVy Xq | Q ;)’dvd Xd
=1 =1 =1
— o 1\ —1 2 1\y—1 -1
dzydvd Xdq | Q dz XaVgVadVy7Yd
=1 =1
/
2 f\y—1 2 r\s—1 -1 2 F\y—1
=1 =1 =1

Finally, the derivative of matriXq4(p) with respect t@ is

0 1 ... ... (mg—21pm—2
1 0o . (mg —2)pme—3
o) _ 1 : S : 2pQq4(p)
d(p) - l—p2 . . . . : +1_7p2-
(mg —2)pmS ho0 1
(mg—21)p™—2 ... ... 1 0

7.5.2 The mean squared error of the EBLUP

We are interested in predicting the valugugf= X4t + Ugt by using the EBLURly; = xdtﬁ+ Ugt. Ifwe do

not take into account the err@y;, this is equivalent to predigt; = @y, wherea= col ( col (dq¢dk))
1<0<D "1<k<my

is a vector having one 1 in the positibA- z?;ll my and O’s in the remaining cells. To estimatg we
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~eblup Aeblup
useYy = Hat- The mean squared error 6f;

~eblup
MSE(Yy ) =01(6) +02(6) +03(8),

whered = (03,Pa, 03, P),

1(0) = dZTZ'a,

02(0) = [@X-adZTZ'VX|Q[X'a—X'V,1ZTZ al,
0@ ~ tr {(Db’)V(Db’)’E (é—e)(é—e)']}
~eblup

The estimator oMSE(Yy;, ) is

~eblup ~ ~ ~
ms&Yq ) =01(8) +02(8) +293(8).

Calculation of g;(0)

In the formula ofg, (8) = &ZTZ'a, we have thaZ = |y, andT =V, -V Z'V~1ZV, = diag(Ta, Ts),
where

Ta = GAdiag(Qa) — o4 diag(Qq) diag(V; ") diag(Qy)
d<Da d<Da d<Da d<Da

and

Tg = ogdiag(Qq) — ogdiag(Qq) diag(V4 ) diag(Qq)
d>DA d>DA d>DA d>DA

Let us writeag = 1<?<2| (&). Then,g1(0) can be expressed in the form
<k<my

gu(6) = | OAdiQada — 08 QaVy Qudg  if d <D,
' 0ga;Qqag — GéaanVngdad if d > Da.
Calculation of g»(8)
We have that,(8) = [ X —aZTZ'Vz1X]Q[X'a— X'V51ZTZ a], whereZTZ'Vg1X =

dlag Qq) — dlag(Qd)dlag(Vd )dlag(Qd)] dlag( ) coI (Xd)
ZTZ'V X d<D d=

dlag Qq) — dlag(Qd)dlag(Vd )dlag(Qd))] dlag( ) coI (Xd)

d>DA >DA d>Da

— <Da
- 02 col de xd) ogdc%l (de(;lgzdv;(}xd)
>Da

Therefore

X g — 0283 QaV g Xd + 0434 Q4V 5 QaV o3 Xa] Q

%) = }
Xyyag — OaX 4V od Qaad + OAXGV o QaV g ' Qqad]
]
]

if d < D,
Q
if d > Da.

ayXq — 08V og Xd + 084 Q4V g QaV og Xd
Xjjag — 08X 3V o4 Qaad + 0pX 4V g QaV g Qaad

[
[
[
[
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Calculation of g3(0)

We have that N R
ga(6) ~tr {(Db’)V(Db’)’E [(e —0)6- e)’} } ,

whereb’ = a'ZV,Z'V~1 = ddiag(o diag(Qg) dlag(Qg)) diag (V, 1) = (b, bp),
<Da £>Da 1<¢<D

bgzo,icol/ (8ara;QV,; 1) and by :cr%gcoDI/ (8ara, Qv b).
: 0. :

b, b ab, / Ay ab’ b
It holds thatggz = ( ac;;,0) = (52,0, % =(0.53), o = (0,52), where
ab oV,
= col (dgea,QV; 1) —ozcol (8g@)QiV; Va1, Via=—-—5=0Q
002 egDA( aedy Q) GAZSDA( aedyQeV VAV, 7), Via ooz
by _ oz col (3qra,QuV; 1) — ohcol (3ga,QV; WV, V1), V _NMe_ 20
apA AESDA diApasy Y AZSDA diApasy Y ZpA Y ) ZpA apA INTI2)
obl, . P oV,
= col (dgea,QV, ) —agcol (8gd)QiV, VeV, 1), Vip=-—5=
302 £>DA( ey QeV, ) GB£>DA( aedyQeV VsV, o), Vs 5og
obg  _ o3 col (3qra,QuV; 1) — o col (3a)QV; WV Vi), V ~ MV 24
dps BbDA decpeeVy B£>DA decyselVy VipgVy ) ’ps 9PB B<(-
We definedz1 = duo,
o), ob, ' s
th1 = aczi'gg(vz) 302 = [81Q0V g Quaa — 2038;Q4V 5 "V Quaa
A=A A
+ OV 1 QaVy T4V Quad] l{g<pyy (d),
b ab), \’ 1 C1A v
Oz = GGAEJ%Q( )<a—pi> = [04a4QuV 4 'Qaad — 0agyQaV 4 ' QaVg ' Quay
A A
— oAadeVd 1dengdad +0,§aQQdVngdvglﬁdvngdad] I{ngA} (d),
by obj\’ Y 1A v
G2 = apiilgg(ve) (0—[)2> = [0AaQaV 4 'Qaad — 038 QqV 4 " QaV g ' Qudy
A

- oAadeVd 1dengdad + GiaédealeV(;levngdad] I{ngA} (d)
Similarly, we defineq43 = O34,

obs\’ - -
(Vz)< > [84QaV g1 Qaad — 20383 QaV 41 QaV ¢ Quad

O3z =
00 %€>DA aO-B
+ GBadeVE]'dengdValead] l{a>Da} (d),
dbg obg\’ 2y _1p 4 1A -1
G = ——odiag(Vy) | 3= ) = [08a3QuVy Quay — 0ayQqV g ' QuVy ' Quay
6055>DA ops
—  0BayQaVy QuV g ' Qqag + 085V g 1QaV ¢ 1 QaV 'Qqad] (9>, (d),
dbg abL\’ S 1
Qua = d g( )(—B> = o‘éa{deVd 1Qdad—ogadeVd leVd 1Qdad
apB£>DA ops

—  0BayQaVy leVJlead + ogadeVngdV(;leVngdad] l{a>Da} (d).



7.5. Partitioned Fay-Herriot model 3 129

Finall
’ Qi1 Ch2 Fiu Fio ) °
r{( 1)( H 1) ifd<D
_ { ( Go1 O22 Fo1 Fz2 g = A
93(6) = G 0 F E -1
r 33 34> < 33 34> ifd>D
{ < Q43 Qus Faz Fas b &

whereF,, is the element of the REML Fisher information matrix.

7.5.3 testing forHg : pa = pB

Let 6%, 63, Pa andPg be the unrestricted REML estimators @t ando3 pa andpg respectively. Let
G4, 62 andp be the REML estimator af%, 03 and of the common valuga = pg underHo. The REML
likelihood ratio statistic (LRS) for testinbg : pa = ps is
52 =2 RPN RPN V|
A = —2[lremL(T4,08,P) — IrRemL(T4, Og, Pa, PB)] = |09m +log

IXV-1X|

221 yBy—yPy.
\xw—lxyﬂ/ y—YPy.

Asymptotic distribution o\ underHo is X2, so null hypothesis is rejected at the lewef A > xia.
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Chapter 8

Area-level time-space models

8.1 Model 1

8.1.1 Introduction

Let yq4: be a direct estimator of the target population parameterletrndy; be a vector containing the
aggregated values qf auxiliary variables. Subindexesandt are used for domains and time instants
respectively. Let us consider the model

ydt:thB+uld+u2dt+edta d:lw‘-aDa t:la"'aTa (81)

where{uig}, {Uzat} ¥ {€s:} are independent with distributiodsiig}5_; ~ SAR1), {uzq} i.i.d N(0,0%)
andeg; ~ N(0,0%,). Model (8.1) can alternatively written as

y=XB+Z1u1+Zouz+e€, (8.2)
where

. yZlSC(?SlD(lSCf’S'T(Ydt)), e:lgcdong(lgch(edt)),

u; = col (ug),ur= col (uyg), usg = col (uxgt),
o Up SD( 1d), U2 1gng( 2d), U2d 1§th< 2dt)

e X=col ( col (Xa)), Xt = col (xatj), B= col (B;),

1<d<D 1<t<T 1<j<p 1<j<p

e /1= dlag (11'), Zo=Ilmxm, M =DT.
1<d<D

We assume that; ~ N(O,Vy,), uz ~ N(0,V,,) ande ~ N(0O,V¢) are independent with covariance ma-
trices

Vi = 02Q1(p1), Qu(p1) = [(Ip—p1W) (Ip— p1W)] 12 CL(py),

VU2 - O%IDTv
Ve = diag (Veq), Ves= diag(c3),
1<d<D 1I<t<T

131
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and knownag,'s. We assume that the rows of the proximity mawikare stochastic vectors, i.e. with
components summing up to one. The veatpiis distributed according to a stochastic process SAR(1)
and the variablesyg; are i.i.d. normal.

The variance of is

var(y) =V = Z1Vy,Zy + ZVy,Zh+ Ve = Z1Vy, Z5 + diag (0317 + Veq).
1<d<D

Its inverse can be calculated with the formula
(A+CBD) '=A1-AcB+DAIC) DAY,

with A= diag (0311 + Veq), B=Vy,,C=Z; andD = Z}. Then
1<d<D

vi=atoatlzy v+ zia iz AT

whereA! = diag (Agl) andAq = ong 4+ Veg. Observe that by applying the above formula we avoid
1<d<D
inverting anM x M matrix, instead we have to invdt matrices of orde x T.

Let us define the paramet@r= (02, p;,03). The formula

oc1! ocC
—_c1%c1
op1 op1
is used for calculating the partial derivatives\ofvith respect to the components @fi.e.
ov aVy
Vi = ——5=2Z1—37)=7Z:101(p1)Z}
1 ao_% lao_% 1 1(p1) 15
Y oV 0Q; *(p1)
Vo = —=7Z1—27)=-05Z10(p1) —=——0Q 1
2 301~ “opy 1Z21Q1(p1) 301 1(P1)Z1
ov
Vg = — =1
3 ao_g DT,
where
0Q; *(p1) oc _ 9 :
—1L 7 = 2= _—{(lp—p:W)(Ip—p1W
op1 op1 apl{( o = P1W)'(lo —p1W)}
= W +pWW -W +pWW = -W — W +20,WW.
8.1.2 BLUP

The BLU estimators and predictors pfandu are
B=(XV X)XVl y  G=VvzZ'Viy-xp),
whereV, = diag(Vy,,Vy,) andZ = (Z1,Z5). To calculatel we apply the formula
U\ — ( VUlz;I_ > V*l(y _ X/B\) — G%Ql(pl)zavil(y:XB) )
Vi,Z5 05Z5V My — XB)

The BLUP predictor ofiy; is
Hat = XqtB + Uzg + Uzgt-
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8.1.3 Residual maximum likelihood estimation
For the residual maximum likelihood (REML) estimation nahthe log-likelihood is
M

- 1 1 1 1
Plogan+ ~log|X'X| — S log|V| - Zlog|X'V "X | - Sy/Py,

IREML(G) = 2

where6 = (81,6,,03) = (0%,p1,0%) and
P=V -V XXV X)XV PVP=P, PX=0.

Then

oP ov
= — =—P—P=-PV,P, a=123.
aea aea a' a ’ 73

By taking derivatives ofggm With respect t@,, we get

Pa

~OlremL 1 1, _
Si= oottt = ~SU(PVa) £ 3YPVaPY. a=123

By taking again derivatives wit respectflg and6y, taking expectations and changing the sign, we have
Fab = :—2Ltr(PVaPVb), ab=123
The updating formula of the Fisher-scoring algorithm is
o+t — ¢+ F1(8%)S(8").

This algorithm requires starting values ®f(seeds). We may obtain seeds by considering the model
withoutu; and withp, = 0. For this last model we might consider the Henderson 3 estirg?, ,; of the
only remaining variancer%. Therefore, we might propose the following seed§(:0) = o§<°> = %GﬁzH,

p(lo) =0.3.
The REML estimator of is
B=(X'V X)XVl
The asymptotic distributions of the REML estimat@randf3 are
0~ N2(8,F1(8)), B~ Np(B,(X'V X)),

Asymptotic confidence intervals at the level-r for 8, and3; are
éaizd/ZV;élzva:17"'737 Bjizd/zq:][]/27 j:17"'7p7

yooey

Fisher-scoring algorithm ang, is thea-quantil of the standard normal distributidf(0,1). Observed
B; = Bo, the p-value for testing the test of hypothesig: B; =0 is

P = 2P (B; > Bol) = 2P(N(0,1) > Bo/ /T )-
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8.1.4 Simulations

Ford=1,...,D,t=1,...,T, the explanatory and target variables are

t 1
= (bgt — U U 1L bg=14+—=(T(d-1)+t
Xdt (bat — agt)Udt + adt, Ugt = T+l’adt it +D( ( )+1),
Yat = B+ B2Xdt + Uid + Upgt +€dt, B1 =0, B2 =1,
whereuyg ~ N(0,03) andeg ~ N(0,03,) are independent witt = 1 and

01 —00)(T(d—1)+t—1
oﬁt:( e 0)(M( T )+ )+0(0, 0p=0.8,0, =12

The vectoru; = 1<C(?<ID(u1d) is generated from the distributioNp (0,02Q4(p1)), using the proximity

matrix
0 1 0 0
/2 0 1/2 ... O
W = S , 02=1p; =05 (8.3)
0 1/2 0 1/2
0 0 1 0

Simulation 1a
The steps of the simulation experiment are

1. DoBy=0,Bz=1,0%2=03=1,p; = 0.5, definirW segun (8.3) and generatd,, Xa, d =1,...,D,
t=1....T.

2. RepeaK =4000 timesk=1,...,K)
2.1. Generatgé'? and calculatqufj'? =B1+ BZth + u(llf,) + u(zlf,)t, d=1,....D,t=1,...T.

2.2. Calculatg® e {B B, 629 5 6201 and il = B + Bl xg +uld) +a%), by using

the REML method.

3. For eacht € {B1,B2,0%,p1,03} and for eachug, d=1,...,.D,t =1,...,T, calculate

18 o_1s 00 _p2

BIAS(T) = RKZ —-1), MSE(T):RkZl(T —1)%.
18« K 18« k

BIAS) = K Z(H&t) —Ll((jt))7 MSEy: = K Z(Hét) _l“l((jt>)27

BIAS= — dz ZBIASjt, MSE= %; MSE;:.

=1t=

The simulation experiment is repeated for each of the 6 coatioins of sample sizes appearing in the
Table 8.1.4.1.
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D| 50 100 200 300 400 500

T 5 5 5 5 5 5

M | 250 500 1000 1500 2000 25Q0
Table 8.1.4.1: Sample sizes.

The results of the simulation experiments are presentdukiffable 8.1.4.2.

D 50 100 200 300 400 500
) | -0.0046 0.0047 0.0014 -0.0012 -0.0002 -0.0009

MSE(Bl) 0.1595 0.0851 0.0435 0.0278 0.0219 0.0169
B2)
B2)

0.0012 -0.0005 -0.0011 0.0003 -0.0003 -0.0Q002
0.0159 0.0083 0.0042 0.0028 0.0020 0.0016
BIASG2) | -0.0350 -0.0138 -0.0064 -0.0065 -0.0036 -0.0053

MSE(G?) | 0.1101 0.0547 0.0285 0.0192 0.0141 0.0116
BIASp1) | -0.0169 -0.0073 -0.0034 -0.0029 -0.0014 -0.0Q09
MSE(p;) | 0.0267 0.0115 0.0059 0.0038 0.0030 0.0023
BIASG2) | 0.0006 -0.0012 0.0010 -0.0005 -0.0009 0.0001
MSE(G3) | 0.0388 0.0191 0.0100 0.0064 0.0049 0.0040
BIAS -0.0003 0.0005 -0.0002 -0.0003 0.0001 0.0001
MSE 0.5784 0.5739 0.5715 0.5716 0.5712 0.5710

Table 8.1.4.2 Results of the simulation experiments.

The Table 8.1.4.2 shows that bias is always close to zerotatdMSE decreases as the number of
domains increases, so that the estimators are empiriaallyistent.

Simulation 1b
The steps of the simulation experiment are

1. DoBy=0,B2=1,0% =05 =1, p; = 0.5, definéW according to (8.3), generate, y x4 and read
MSEy,d=1,....D,t=1,....T.

2. RepeaK =200 timessk=1,...,K)

2.1. GeneratgX and calculatmg? =PB1+ BZth +ul 4, d=1,...,D0,t=1,..T.

2.2. Calculatg™ e {B B(zk),ol( >,p(1 ,0 } by using REML method.
2.3. RepeaB=100timesb=1,...,B)

2.3.1. Generatgfj':b) with the parameter$f5(lk),B(Zk),éi(k),ﬁ(lm,ég(@} from step 2.2. Generar

B+ B+l
2.3.2. Calculata (k) ¢ (BIKD) BB G2(Kb) kD) g2kbly ang uﬂfb = B+ By + 0(1'? +
u(2dt , by using REML method.
2.4. Calculate 5
el = £ 5 P -
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3. Ford=1,...,D,t=1,...,T, calculate

1K K 1 & k
k=1 k=1
l D T l D T
B=— Bat, E=— Eqt.
M &4 M &l

The simulation experiment is repeated for all 6 combinatioh sample sizes appearing in the Table
8.1.4.1. The simulation results are presented in the Tahld.8.

D 50 100 200 400

B | -0.0032 -0.0052 -0.0020 -0.0025

E | 0.0082 0.0075 0.0071 0.0069
Table 8.1.4.3 Results of simulation 1b.

The Table 8.1.4.3 shows that biBss always close to zero and that the MEHlecreases as the number
of domains increases, so that the estimatosgsare empirically consistent.

8.2 Model 2

8.2.1 Introduction

Let y4: be a direct estimator of the characteristic of interest ahggl be a vector containing the aggre-
gated values op of auxiliary variables. The subindekis used for domains and the subindeior time
instants. Let us consider the model

Vdt = XdtB+Ug +Uxgt +€t, d=1,....D, t=1....T, (8.4)

where {uig}, {Uq} and {eq:} are independent with distribution8hg} ; ~ SAR1), {Uzgt}{_; i.i.d
AR(1) andeg ~ N(0,03,).
The model (8.4) can be alternatively written in the form

y=XB+Z1us+2Zouz+€, (8.5)
where

° yzlggD(lg&'T(Ym)), e:lgc(%lD(lgpng(edt)),

e u;= col (U]_d),UZZ

col (upq), Usg = col (Uxgt),
Sl 1§ng( 2d), U2d . (U2dt)

<t<T

X = col ( col (Xg)), Xgt = col N, B= col (B),
* 1§d§D(1§t§T( at)): Xt 1§j§p(xd“) B 1§j§p(B’)

° Z]_ = dlag (11'), Zz = |M><M1 M =DT.
1<d<D
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We assume thai; ~ N(O,Vy,), uz ~ N(0,V,,) ande ~ N(0O,V¢) are independent with covariance ma-
trices

Vi = 02Qi(p1), Qu(p1) = [(Io—p1W) (Ip—p1W)] "2 C X(py),
Vi, = 05Qa(p2), Qa(p2) = diag (Qza(p2)),

1<d<D
Ve = diag (Ved), Ved= diag (o),
1<d<D 1I<t<T
1 p ... py 2 opit
1 P2 1 p;?
1-p3
p'2|'72 .. 1 p2
- )
pg ! pg e P2 1 TxT

where thegj’s are known. We assume that the rows of maiikare stochastic vectors, i.e. their
components sum up to one. The vedlgris distributed as a SAR(1) stochastic process and the ector
Uyg are independent with homogeneous AR(1) distributionsy(diehave the same variance and auto-
correlation parameters).

The variance oY is

varly) =V =Z1V,Zi + ZoVy,Z5 + Ve =21V, Z) + didag (05Q24(P2) + Ved)-
1<d<D

Its inverse can be calculated by applying the formula
(A+CBD) '=A1t-A'cB'+DAC) DA

with A= diag (05Q24(p2) + Ved), B=Vy,,C=2Z; andD = Z|. Then
1<d<D

VIi=AT-ATZy (VP ZIATZy) AT,

whereA~1 = diag (Agl) andAg = 05Q24(p2) + Veq. Observe that by applying this formula we substi-
1<d<D
tute the inversion of one matrix of ordist x M by the inversion oD matrices of ordefl x T.

Let us define the paramet@e= (02, p;,03,p2). We apply the formula

oc? = _Cfla_c

= c1
op1 op1
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to obtain the partial derivatives & with respect t®.

oV oV
V1 = W:Z]_aTl;lZi:Z]_Ql(pl)Zi,
1 1
oV vy, 00 (p1)
Vo = —=7Z 170 = —02Z1Q —1 7’0 Zh,
2 901 1apl 1 121Q1(p1) 31 1(p1)Z7
oV
V3 = — = diag(Q
3 307 K:igD (Qad(P2)),
o . <092d([32)>
N op2 zlgdggD 0p2
where
Q1 aCc 0
73'3(1[31) = 9p1 9 (Ip—p1W)'(Ip — p1W) }
= —W +pWW —W+pWW = —W — W +2p;W'W,
and
0 1 (T—-1)p; 2
1 0 . (T-2)p3°
0Q24(p2) _ 1 : A : _|_2F)292d([32)
P2 1-p3 ' S ' 1-p2
(T—-2)ps 3 0 1
(T-1)p; 2 1 0
8.2.2 BLUP

The BLU estimator and predictor @fandu are
B=(XV X)XVl y  G=VZ'Viy-Xp),
whereV, = diag(Vy,,Vy,) andZ = (Z1,Z5). For calculatingi we apply the formula
G ( ViZi >V‘1(y—xﬁ) _ ( Gfﬂl(Pl)leVil(y—XE) ) _
Vi,Z) 05Q2(p2)Z5V 1y — XB)
The BLUP ofpgt is

Hat = XgtB + Urg + Ungt.

8.2.3 Residual maximum likelihood estimation
The log-likelihood of the residual maximum likelihood esétion method is

M

- 1 1 1 1
Plogar+ ~log|X'X| — Slog|V| - Zlog|X'V "X | - S y/Py.

IREML(e) = 2
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where6 = (81,6,,03,084) = (0%, p1,03,p2) and
P=Vv1_vIXxXVvX)"IxX'vl PvP=P, PX=0.

Then

oP ov
=-—=—P—P=—-PVy,P =1...,4
aea Paeap a a ) )

By taking derivatives otrgm With respect td, we get

Pa

Si= aggML — —u(PVa) +5yPVaPy, a=1...4
a

By taking again derivatives with respect ig and 6y, taking expectations and changing the sign, we
obtain

1
Fab — étr(F)VaPVb)7 a7 b - 17 e 4-

)

The updating formula of the Fisher-scoring algorithm is
B+t — ok - F1(8%)S(6%).

We can take the reduced model withaytand withp, = 0 as a reference for obtaining seeds for the
Fisher-scoring algorithm. For the mentioned reduced madté easy to calculate the Henderson 3

estimatorg? ,, of the only remaining varianoas. Therefore, a possible set of algorithm see 29 =
uH 2

05¥ =152, 0" =py =03.

The REML estimator of is R
B=(XVIX)X'V-ly.
The asymptotic distributions of the REML estimatoraind are
6~ No(6,F(6)), B~ Np(B,(X'VX)™1).
Asymptotic confidence intervals at the level-Ir for 8, and3; are

Batzy)oVak s a=1,....4, PBjxzep0il’ j=1,...,p,

Fisher-scoring algorithm arg is thea-quantil of the standard normal distributidt{0,1). If we observe
Bj = Bo, the p-value for testingHp : B =0is

P = 2Py, (B; > IBol) = 2P(N(0,1) > o/ /) )-

8.2.4 Simulations

Ford=1,...,D,t=1,...,T, the explanatory and target variables are

t 1
Xdt (bat — adt)Udt + adt, Ut 1 agt =1, bgt = 1+ D( (d—1)+t1),
Yot = B+ BoXgt + Uid + Uogt + €4t, B1 =0, B2 =1,
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whereeg; ~ N(0,0%,) and

(ap—0p)(T(d—1)+t—1)

th: M_1

+0p, 0p=0.80,=12.

The vectoru; = . c(?ID(uld) is generated from the distributiddy (0,02Q1(p1)), with 02 = 1, p; = 0.5
<d<
and proximity matrix (8.3). Fod = 1,...,D, the random effects,q; are generated as follows:
Upg1 = (1—p3) Y2%eq, Updt = Polzdt—1+€dt, t =2,...,T,

whereggt ~ N(0,03),d=1,...,D,t=1,...,T, andp, = 0.5.

Simulation 2a

The steps of the simulation experiment 2a are

1. DoB1 =0, B2=1, 02 = 05 = 1, p1 = 0.5, defineW according to (8.3) and generat®&,, X,
d=1,...,D,t=1,...,T.
2. RepeaK = 2000 timesk=1,...,K)
2.1. Generatgé'? and calculatqufj'? = B+ BoXat + u(llg + u(zlgt, d=1,....D,t=1,...T.
2.2. Calculatet® e {B [32 ,01( ),p(l),crz( ,p2 } and Bl +[32 th+u(1d) +ugd)t, by
using the REML method.

3. For eactt € {B1,B2,02,p1,03,p2} and forpiy;, d =1,...,D,t =1,..., T, calculate

BIAS®) = _1g MSE(%)—1 S F0 —1)?
K Z K k; ’
1K K K 11X k k
BlASIt— R Z(“ét)_“ét))’ MSEdt: Rk:l( (t)_“ét))za
1 D T 1 D T
BIAS= — BIAS:, MSE=— MSE;
M cht: M —1t=

The simulation experiment is repeated for the 6 combinatimnsample sizes appearing in the Table
8.2.4.1.

D| 50 100 200 300 400 500

T 5 5 5 5 5 5

M | 250 500 1000 1500 2000 25Q0
Table 8.2.4.1: Sample sizes.

The Tabla 8.2.4.2 presents the simulation results.
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D 50 100 200 300 400 500
) | 0.0021 0.0059 0.0015 0.0023 0.0027 -0.0001

) | 0.1966 0.1050 0.0515 0.0344 0.0257 0.0199
BIAS(sz) 0.0004 -0.0016 -0.0019 -0.0012 -0.0025 -0.0011
R ) | 0.0212 0.0109 0.0053 0.0036 0.0025 0.0020
BIAS@?) | 0.0413 -0.0248 -0.0308 -0.0337 -0.0269 -0.0226
) | 0.2519 0.1603 0.1025 0.0706 0.0550 0.0449
BIASp;) | -0.0245 0.0061 0.0083 0.0108 0.0075 0.0053
MSE(p;) | 0.0455 0.0241 0.0139 0.0086 0.0069 0.0054
BIAS@3) | -0.0174 -0.0082 -0.0039 -0.0050 -0.0013 -0.0017

MSE(G3) | 0.0430 0.0228 0.0109 0.0072 0.0056 0.0044
BIASp,) | -0.0896 -0.0293 -0.0113 -0.0030 -0.0023 -0.0011
MSE(p,) | 0.0412 0.0191 0.0112 0.0074 0.0056 0.0044
BIAS -0.0016 0.0000 -0.0006 -0.0008 -0.0002 -0.0001
MSE 0.5500 0.5446 0.5424 0.5418 0.5413 0.5409

Table 8.2.4.2 Resultados del experimento de simulacion 2a.

The Table 8.2.4.2 shows that the bias is always close to retdhat the MSE decreases as the number
of domains increases, so that the REML estimators are esafhjriconsistent.

Simulation 2b

The steps of the simulation experiment 2b are

1. DoBy=0,B,=1,02=0% =1, p; = 0.5, p, = 0.5, defineW according to (8.3), generat&, and
X4t and readMSEy, d=1,...,D,t=1,...,T.

2. RepeaK =200 timesk=1,...,K)

2.1. Generatgg? and calculatquf;? = B+ BoXat + u(l? + u(zz)t, d=1,....D,t=1,...,T.
2.2. Calculate® e {B¥ X 62% ¥ 65* 5} by using the REML method.
2.3. RepeaB=100timesb=1,...,B)

2.3.1. Generatyg':b) with the parametersﬁ(lk), B(Zk),6f(k),6(1k),6§(k),ﬁ(2k)} obtained in step 2.2.

Generatepg:b) = B + Byt + U(lzb) + u(zﬁ?-

2.3.2. Calculaté®? ¢ {B(lkb>, ﬁ(zkb),éf(kb) ,6(1kb>,6§(kb) ,6(2'“’)} andﬁd':

agf,?, by using the REML method.

2.4. Calculate

b) _ ﬁ(lkb)‘Fﬁ(zkb)th‘i’og_léb)‘F

w 1E8 kb
msét> - B > (“ét ) - uét )2,

b=1
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3. Ford=1,...,D,t=1,...,T, calculate

1K
K

K
K) 1 K
Byt = — Z msé —MSEy), Eai = i (msét>—MSEdt)2.
— k=
1 D T 1 D T
M2 2 dt M 2,2 dt

The simulation experiment is repeated for the 6 combinatimnsample sizes appearing in the Table
8.1.4.1. The Tabla 8.1.4.3 presents the simulation results

D 50 100 200 400
B | 0.0009 -0.0032 0.0010
E | 0.0086 0.0072 0.0067

Table 8.2.4.3 Results of simulation 2b.

The Table 8.2.4.3 shows that the bBgs always close to zero and that the M&Edecreases as the
number of domains increases, so that the estimatgesre empirically consistent.
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Unit-level time models

9.1 Unit-level model with correlated time effects

9.1.1 Introduction

Let us consider a version of mixed model (1.1) with two nestedlom factors, where the first factor
hasD levels and, for each leval (d = 1,...,D) of this factor, the second factor hayg levels. More
concretely, let us consider the model

y = XB+Zqu1 +Zoup+ W2 9.1)

whereu; = Ug px1 ~ N(0,021p), Uz = Uzmx1 ~ N(0,05Q(p)) ande = enx1 ~ N(0,031,) are indepen-

dent,y = Ynx1, X = Xnxp With 1(X) = p, B= B3, Z1 = diag (1n,)nxp, Z2 = diag ( diag (1ny))nxm,
1<d<D 1<d<D 1<t<my

M=5S2 1my, n=7S5 1n4, ng = 5% nat, 12 is thea x a identity matrix, 1, is thea x 1 vector with
all its elements equal to 3 = diag (Wq), Wy = diag (Wqt), Wgr = diag (Wgtj)nxn With known

1<d<D 1<t<my 1<j<ngt
Wgtj >0,d=1,...,D,t=1,....,mg, j=1,...,ng, Q(p) = diag (Qq) and
1<d<D
1 p ... pm2 pm-l
p I pmu2
1
0. -0 _ . : . . :
pmde 1 p
pmu-1 pm-2 g 1
Mg X My

Model (9.1) can alternatively be written in the form

Yt :thjB‘i‘uLd"‘UZ,dt‘f‘Wdtj/ €4tj, d=1....,Dit=1,....myq,j=1,...,Ng;, (9.2)

whereyqy:; is the target variable for the sample upitimet and domaird, andxq:; is the row(d,t, j) of
matrix X. The random vector@uyqs, ..., Uxdm, ), d =1,...,D, are i.i.d. AR(1).

143
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In what follows we use the alternative parameters

2 2 ol 2
0°=05 ¢1= 2" b2= 5, P=P
0o 0

Leto = (02,¢1,2,p) be the vector of variance components, wiftt> 0, ¢1 > 0,¢, >0and-1< p < 1.
If o is known, the BLUE o3 = (B1,...,Bp)" and the BLUP ofu = (uj,u5)" are
B=(X'V X)XVl and G=VZ'V1! (y— xﬁ) . (9.3)

Formulas (9.3) are not computationally efficient becausg tiequire the inversion of thex n matrix
V. By calculating the inversion of new formulas are obtained.
Under model (9.1), we have \an) = 62¢11p, var(uz) = 6°$,Q(p), var(e) = 6?l,, and

V =var(y) = Z1var(us)Zy' 4+ Zovar(up)Z,' + 6?W 1 = 623 = o?diag(Z1, ..., Zp),
where

24 = 0110, 17, + 92 diag (1) Qa(p) diag (1n, ) +Wgt = ¢11n,17 +Lg, d=1,...,D.
1<t<my 1<t<my

To calculatel 5 * we use the formula
(A+CBD) 1=A1-AlcB1+DAC) DA

with A=Wy, C = ¢, diag (1n,), B=Qq andD = diag (1, ). we obtain
1<t<my 1<t<my

-1

Lgt = Wga—02Wq diag (1n,) | Q4% (p) + ¢2 diag (15, )W diag (1n,)
1<t<my 1<t<my 1<t<my

diag (14, )Wa.
I<t<my

To calculate;* we use the formula

A-luvAa-1
A+uv)t=pA1l - "
(A+uv) 1+vA-1u
withA=Lg,u=¢1l,,V = 1§]d. We obtain
zgl _ Lal_ q)l Lalln l/ Lal
— — N )
1+¢11p, Lo M, 47

The final formula forﬁ is

N D 1/p
B= < xgzdlxd> <dz ngdlyd> (9.4)
=1 =1
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whereX = 1<co<ID(Xd) andy = 1§Cc?glo(yd)' The final formula foru is

2 !
~ ny—1 B o~ o GllD O Zl . -1 . -
i = vazVvi(y xs)-( o 0§Q(p)>[Z’2 Lglde;gD(Vd ) col_ |ya—XaB)

. / . -1 f
1 diag (1) diag (2,) col, [ya—Xa|

diag (Q di d diag (=1 | —X4B
| 92 diag (Qu(p)) diag ( diag (1)) diag (2,%), ool |vo—XeB]

[ o1 col [1;“25 (yd—xdsﬂ

1<d<D

1<d<D 1<t<my

$- col [Qd(p) diag (15, ) %" (yd —Xdﬁ)]
9.1.2 REML estimators of model parameters
The restricted log-likelihood is
1 1
lremi(0) = =5 (n—p)log2n—5(n—p) logo? - 5 Iog!K K| - y Py,
where
P=K(K'ZK) XK' =z 1 IX(X'ZIX) IX'z7L, K =W — WX (X'WX) IX'W,
Let us denote the derivatives @f p) by Q'(p) = 6%—’()") andQ”(p) = 0*Q(p) By taking partial derivatives

v
with respect tay?, ¢2, 3 andp we obtain the components of the sgf)re veSar).
S = —%’Jr%y’Py,
S = ——tr{Plel}+ 2yPle Py,
S, = ——tr{PZzQ( )Z }+ yPZzQ(p)Z/ZPy,
S = —@tr{PZZQ 2}+ 4 Y PZo (D) Z5Py,
The second partial derivatives of the restricted Iog-lh@d function are
Hozp2 %’—%y/w Hozg, = — 55 4y 'PZ,Z Py,
Hozg, = —zﬁi‘ly’PZzQ(p)Z’zPy, Hozp = 2¢ %Y PZ:0Q' (0)Z5Py,
Ho9, = %tr{lez’lpzlz’l}—éy’lezlpzlzlpy,
Howp = }tr{lezllF’ZZQ (P)Z ’}—iy’lez’lPZzQ(p)Z’zPy,
Hop = ¢2tr{P212 PZZQ( )Z 2}— y’Ple PZZQ’(p)Z’ZPy7

Hopo = Etr{PZzQ(p)ZzPZzQ(p)Zz}—gy PZQ(p)Z5PZ2Q(p)Z3Py,
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2

1
Hpo = —3tr{PZoQ'(p)Z2} + 2 tr{PZ>Q(p)Z5PZ2Q (p)Z2}

1
- @y’PZzQ’(p)Z Py—%y’PZzQ(p)Z’zPZzQ’(p)Z’zPy,

2
Hop = @tr{PZZQ’(p)z’ZPzzQ() 25y - % 5 r{PZ2Q"(p)Z5}

¢

- ¢2 YPZoQ (P)Z5PZ2Q (P)Z5PY+ 55 2 Y P20 (p)Z3Py.

By taking expectations, changing the sign and taking intmaot thatPX = 0 andPZP = P, we get the
elements of the Fisher information matrix,

Frge = —nz(_jp —tr{PZ}— . oi=r Foz¢l:2%2tr{lez’l},

Fotpy = 2%ztr{Pzzmmzz}, Fotp = o 11{PZo0 ()24},

Fo, = }tr{lez;lez’l}, F¢1¢2:%tr{Ple’lPZZQ(p)Z’Z}

Fop = ¢2tr{P212 PZ,Q (p)Zb), F¢2¢2:%tr{PZZQ(p)Z/ZPZZQ(p)Z/Z},
P = LUPZOOZPZR (025). R = Li(PZ (0)24P20 (0123,

The updating formula of the Fisher-scoring algorithm is
ot = ok F1(g¥)S(a%).
As algorithm seeds we may ugé) = OAand the Henderson 3 estimat«n%o), Gf(o), 03(0), under the
model withp = 0. The REML estimatoB,, is calculated by using the formula (9.4).
Observation 9.1.1. From equatiorf; = 0, we get

1
~2 /
ot = py Py, (9.5)

which can be used to introduce an algorithm updatiAgvith (9.5) andd = (¢1,d2,p)’" with
< = 04 +FH(9)S(0").

Observation 9.1.2. It holds that

0 1 ... ... (mg—1)pm—2
1 X A NPT
Qd(p)zl_pz : : +1_7p23
(my —2)pme—3 0 1
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1 —p 0 0
—-p 1+p> —p O 0
_ 0 —-p 1+p> —p .
le(p): : . . . . 0 = Imy + P°E — pF,
0 Coo—p 1497 —p
0o .. .. 0 —p 1

whereE is a diagonal matrix with diagonal elementdl(..,1 0, andF is a matrix whose elements in
the diagonals immediately above and below the principajahial are equal to -1 and whose remaining
elements are equal to 0.

Matrix calculations

In what follows we presents computationally efficient fofasufor the scores and the Fisher information
components. These formulas avoid the constructiom>of matrices. Let us define

-1

Y = diag (Zq), X = col (Xq),y= col (yq),R=(X'=Z"1X)~ (;x zdlxd>

1<d<D 1<d<D 1<d<D

so that

P=3>1-5IXRX'z™!= diag (Z4 )— <ol (zdlxd)R coI’ (xdzd h
1<d<D

The scores are

S o= o Pio, S VaZalya- o 3 yaZ ' Xq | R S X4Zgyq
- d d d 9
202 ' 20% dz 204 dz dgl
S = ——tr{Z le} ‘|‘ o2 y Ple Py=— > ; ]_/ Z 1 Z*ldeXazEl]lnd
1 /I <—1 ! -1 1 , 1 D B
+ 202 ; ydzd lndlndzd Yd — ? CZ ydzd lnd 1ndZd Xd | R CZ Xdzd Yd
=1 — =
1 (2 1 L . D .
T 202 ; YaZq Xd dz X4Zg 1n,1p,Zg Xa | R dz XaZg Yd |
02 \ & 2
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1 1
S = o U{ZIPZ0P)} + 55 YPZO(P)Z4PY
12 , I
= —Edz { diag ( ndt)[ _zd 1XdRX&Zd l] diag (lndt)Qd(p)}
] 1<t<my 1<t<my

+ 31 diag (1n,)Q diag (1, )=t
20 Zdzyd d 1<t<rgu ndt) d(p)lgtgr%j( ndt) 4 Yd

_ (dz YyZg' diag (1n,)Qa(p) diag (15, )%4 1xd> (; X4y yd>
1<t<my 1<t<my
1
+ = DIED'¢ X431 diag (1,)Q dia so1X
20% (glyd ‘ d) (uz 47 1<t<g\d ) d(p)lstgrgu( )24 X

D
R (dz xgzalyd> :

S = ——tr{Z PZ,Q (p }+ L yPZzQ "(p)Z5Py
= _% { diag (1, )[Zg" — T4 XqRXZ41] diag (1ndt)9é|(p)}
=1 1<t<my 1<t<my

1<t<my 1<t<my

- (dz YaZq® diag (1n,)Qy(p) diag (15, )%y 1Xd> (dz X4Zg Yd>
1<t<my 1<t<my

¢2 /s—1 1 1
+ - E 2. X E XL~ dia 1 Q dia 2. X
202 :1yd d /\d d<d 1<t< g ndt) d(p)l<t<g ( ndl) d /°d

D
R X4z tyg |
(le d

- dzydidl diag (1n,)Q4(p) diag (15, )Z4"Va

The elements of the REML Fisher information matrix are

n—p
Fozaz = —20_2
F _ 1 tr{Z"PzZ,} = 13 v [t — s X gRXLE51 1
21 = 5520121 1}—2?2dzlnd[d — 23 XdRX¢Zy "] 1n,
1
FO'2¢2 - ZT._Ztr{Z&PZZQ(p)}
D

1 .
= 5 ; tr{ diag (1n,) [Zq"— Z4"XaRXZ4 "] diag (1n,)Qa(P)}
1<t<my 1<t<my
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Fo2p

Fo161

Fo10,

F¢1D

Fooo,

2¢ szz tr{ diag (15, ) [Zq"— Z4 ' XaRXyZ4 ] diag (1n,)Qu(P)}
1 1<t<my 1<t<my

1 10
Etr{z’lpzlz’lpzl}:E dZ(l’ i1 1ny)? dzl 11nd T IXgRXGZ M n,
=1

D
dz 1h,Zg " XaR (dz xgzdllndl’ndzdlxd> RX}Z 5 1n,,

—tr{z’zpzlz’lpzzQ tr{ diag (15, )%q 1n10,Zq * diag (1n,)Qa(p)}
2 2 1<t<my 1<t<my
D
tr{ diag (1n, )24 XdRXZ  1n, 10, 24" diag (1n,)Q4(p)}
= 1<t<my 1<t<my

tr{ diag (15,)Z4"XqR x 4Zg g 1, g X
2 -  1<t<my

RX4Z4t diag (1n,)Qa(p)},
1<t<my
b2

tr{Z PZ,ZPZ,Q (p)}

¢22 t{_ diag (15,)%3 1n, 1r, 55" diag (10,)2% ()}
= 1<t<my 1<t<my
D

¢2dz tr{ diag (1, )24 " XdRXGZg " 1n 1,24t diag (1n,)Q4(p)}
= 1<t<ny 1<t<my

¢22 tr{lgtlggh (1n,)Zq XaR (dz XyZq o 10,2 1xd>

RXZy 11<<itlag (Lna)Qu(P)},

5 ”{ZEPZZQ(P)lepzzQ(P)}

S tr{_diag (155" diag (1n,)Qa(p) diag (1h,)%5" diag (Lny)Q(p)}

2 —1 1<t<my 1<t<my 1<t<my 1<t<my

dz tr{ diag (1n, )Zq XaRXyZ,* dlag (1ne)Qua(p) diag (1y,)Z4" diag (1n,)
=]

1<t<my 1<t< 1<t<my 1<t<my
Q4(p)}
12 : -
5 dz tr{ diag (1, )Z4 XaR (; XyZqt diag (1n,)Qq(p) diag (15, )% 1Xd>
—1 1<t<my 1<t<my 1<t<my

RX4Z,* diag (1n,)Qa(P)},
1<t<my
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Fo.p = L 5 t1{ZaPZQ(p)Z5PZ2Q (p) }
= ¢2 tr{ diag (1, )Z4" diag (1n,)Qa(p) diag (1;,)Z4" diag (1n,)Qu(P)}
2 £ 1<t<my 1<t<my 1<t<my 1<t<my
D
- ¢zd2 tr{ diag (15,24 " XaRXZ4" diag (1n,)Qu(p) diag (1, )% diag (1n,)
=1 1<t<ny 1<t<my 1<t<my 1<t<my
Qé(p)}
¢2 -1 2 rs—1 q; 1
+ tr{ diag (15, )Z; XaR XgZy™ diag (1n,,)Qd(p) diag (17,)Z4 X4
2 1<t<my = 1<t<my 1<t<my

iz, ! diag (1n,)2% ()}
Stsmy

2
Foo = %tr{PZZQ’(p)Z’ZPZzQ’(p)Z’z}
2 D

= 3 2 diag (1n,)2" diag (1n,)Qu(p) diag (1,)2" diag (1n,)04(p)}
1<t<my 1<t<my 1<t<my 1<t<my

—~ ¢%dz tr{ diag (15,,)Z4 XaRX 424" diag (1n,)Q4(p) diag (15, )Z4* diag (1n,)
=1

1<t<my 1<t<my 1<t<my 1<t<my
Qu(p)}
2 D
+ tr{ diag (1, )Z4'XaR Xdzdl diag (1n,)Qq(p) diag (15, )%4 " Xq
2 1<t<my 1<t<my 1<t<my

RXdZd thigg (1ng)Qu(p)}-
<<y

9.1.3 The EBLUP of the domain mean
The EBLUP of the linear parametgr= ay = aLys+ a y is

A= alys+ |XiB+ VisVed (ys— X<B)|
ASVers =0, Vis = ZVuZh+ Vers = Z;VuZl andti = Z,ZLV 2 (ys — X<B), we get
n = ays+a [Xrﬁ‘i‘ Z50ZV s (Ys — Xsﬁ)} =ays+a [XrB‘F Zra}
= a [XB+ Z1U + Zzﬁz} + &g [ys ~XP—Zqly — Zszﬁz} :
Under model (9.2)Y 4t = Nidt z,j\lillydtj can be written as a linear parametet a'y, where

1
;o /
a. —_— th (UNl’. .. ,OIN UN 0lNd<|7l), Nd[’de(|+1),‘. .y

1 / / !/ 1
= N—dt (le, e ’ONd—l’ 1§Ck0§|md [aklNdk] ’de+l’ UND) N_dtlgzo<|D{6d COI [aklN/k]}

O Ok 1o+ Ok
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with 8, = 1 sia= b andd,, = 0 sia# b. It holds thata’ X = Xgt,

1 p—
az, = — col/ 3d coI’ 14, 1} diag (1n,) = col {dq}=Z
1
dZ, = —— col {8y col [dyl}, ]} diag( diag (1y,))= col { col {5 Z
2 th1§e<D{ d£1< [ K ]}1<f<%(1<k<g1[( Ni)) = 1<£<D{1<k<m{ aedtk} } = Z2t-

If ngt > 0, the EBLUP ofY 4 is

=~eblup _ ~ _ = _ o~ = =
Yo = XatB+Z1atUs+Zoatlz+ fat [ys,dt —XsatB—Z1,atUs — ZZ,dtUZ] ;

whereyg g = n—ﬁl 0% Yatj, Xsdt = nlm 5% %atj and far = §&. If nge = 0, the EBLUP ofYq is the
synthetic part
~eblup _ ~

Yo = XatB+Z1atl1+ Z2gtUo.
9.1.4 Mean squared error of the EBLUP

Letf= (0(2),4)1,4)2, p) be the vector of variance components. A second order appatixin to the mean
squared error of the EBLUP is

~eblu

MSE(Yy ) = 01(6) + 02(8) + ga(8) + 0a(6),

where

) = &z TZa,

) = [AXr — A Zi TZV s X Qs[Xia — XLV od ZsTsZ1ar],
0 ~ tr { (Ob')Vs(Ob'YE [(@ —0)(6- e)’} } ,

) = a;Verar-

Calculation of g;(0)

The elements of formulg, (0) = &/ Z, TsZ;a, are

1
/ : /
a = N—dt <0/N1n17 e ,O,Nd—lfndfp lgckoglrru [aklNdk*ndk] ’O,Nd+1*nd+1’ . ’O,NDnD> ,
T T
Zy = [ZuZx], Ts=Vy— VLJZ’SVE?leVu _ 11s  l12s ,
Tows Toos

O'2|D 0
Vy = L . Zs=Z1sZ2d, = diag {V 2
u ( 0 G%Q(p) s [ 1s Zs] 1d <gD{ ds}
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It holds that
-1 O-%Z/ls 1y [ 2 2
VZN:Z\N, = diag {V .} |07Z1s, 05Z22Q
ulsVs LsVuy %Q(p)Z’ZS 1§d§%{ ds}[ 1£1s, 02425 (p)]
03z! diag {V3l}Z1s 02032 diag {V421Z2sQ(p)
_ 1<d<D 1<d<D
0705Q(p)Zhs diag {V3}Z1s 03Q(p)Z)s diag {Vyd1Z25Q(p)
1<d<D 1<d<D
where
1s diag {V1Z1s = diag {1y, }dlag {Vas }dlag {1n} = dlag {lndvd 1},
1<d<D 1<d<D
1s diag {V4i1Z2Q(p) = diag {1} dlag {Vgdy dlag{ diag (1ndk)}Q( )
1<d<D 1<d<D 1<d<D 1<k<my
= dlag {1 dVds dlag (1ndk)Qd(p)}
1<d<D <
Q(p)Zss diag {V4g}Z2Q(p) =  diag {Qa(p) dlag( 1, )Vae diag (1ny,)Qa(p)}-
1<d<D 1<d<D 1<k< 1<k<my

The blocks of matrixT s are

Tis = 0f diag {1- 071}, Vgaln,},
1<d<D

Tix = —0%0% dlag {10,Vae diag (1n,)Qa(p)}, Ta1s= (T1zs),
® 1<k<my

1<d

Tis = 03 diag {Qu(p) — 030u(p) diag ( ndk)Vdsl dlag (1ng)Qa(p) }-
1<d<D 1<k<my

The producZ,T¢Z; is calculated as follows.

ZiTZ) = (21 22| Ts (2% 2| = ZurT1asZyy + Z1: T 1252 + Zar T 21525 + Z o T 225Z
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It holds that

T = ZyT1sZi, = 03 diag {1n, nd}dlag{l 021/ noVaslng} diag {1y, _n,}
1<d<D 1<d<D 1<d<D

= 07 diag { 1y, ny[1— 0%, Ve Lng I, —ny }-

1<d<D

MY, = ZyuTiaZh = 0102 d|ag {Ing— nd} d|ag {l/ndvd d|ag (Lng)Qa(p) }

diag { diag ( Ndk-ndk)}
1<d<D l<k<rn:|

— —o%05 diag {1y, nd1ndVdSl dlag (Lng)Qa(p) diag (Ip,, ) }-
1<d<D < 1<k<my
M3 = (MDY,
Mr2r2 = erTzstIZr :0'% dlag{ dlag (1Ndk_ndk)}
1<d<D 1<k<my

dlag {Qd(p) _O-%Qd(p) dlag (1/ndk)vasl dlag (1ndk)Qd( )} dlag{ dlag ( Ndk ndk)}
1<d<D 1< <k<my 1<d<D 1<k<my

= 0% dlag{ dlag (1Ndk—ndk)Q (p) dlag ( Nak— ndk)}
1<d<D 1<k<my

- Gg diag{ diag (lNdk*ndk)Qd(p) dlag ( ndk)vdsl dlag (1ndk)
1<d<D 1<k<my 1<k<my 1<k<

Qd(p) dlag ( f\ldk—ndk)}'
1<k<my

As
1 Ndt
r_ = / _ at
% = N so [ % SO Pudnd | Y fan Nat’
We obtain
a‘f"vlrﬂl.rlar = O-%a;' dlag {lNd*nd [l—o-ilf']dvgsllnd] ;\ldfnd }af
1<d<D
= 05(1— fq)*[1- o071, Vd Hng] = 0201(1— far)?[1— 0115, Tgdln,],
agMia = —ofo5a; diag {1, nl Vdsl d'ag (1ng)Qa(p) diag (1y,, ny) e,
1<d<D < 1<k<my

= —0%0102(1— fur)1p,Zqe diag (1ndk)Qd(p) col [dw(1— fax)]
1<k<my 1<k<my

= —0%9102(1— far)*1n, Zye diag (1n,)Qa(p )80l (3w
1<k<my
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gM%a = o33 diag{ diag (Iny ng)Qa(p) diag (1, n,) }ar

1<d<D 1<k<my 1<k<my
- Gga; diag{ diag (1Ndk_ndk)Qd(p) dlag ( ndk)VdSl dlag (1ndk)
1<d<D 1<k<my 1<k<my <

(p)lglagh (INgenai) o
= O'Z(I)z CO| [( —fdk)étk]Qd(p) col [(l—fdk)&k]—ozq)% CO|/ [(1— fdk)étk]Qd(p)
<My 1<k<my 1<k<my
dlag ( Th) Esl diag (Lng)Qd(p), ol [(1— fai)Ou
1<k< 1<k<my
= 2<1>2( —fdt)2100| (5tk)Qd( ), col ( k)—02¢§(1—fdt)2100| (Bk)Qa(P)

diag (1,,)Z: dlag (1, )Qa(p ) COI (5tk)
1<k<my

Finally,

01(8) = & Z;TsZra = aMiar + 2a:MZa + M558,

Calculation of g»(0)

The formula forg,(0) is
02(6) = [8rXr — & Z; TsZV og X Qs[Xar — XLV oa ZsTsZ; 8] = [ahy — @] Qs[azs — az2),
whereQs = (XLVs1Xs) 1 = 0? (zgzlxg,sz(;slxds)‘l and> ! = 0-?Ws. On the one hand

1
/ / /
a1 = a Xy = — 1\, _ng Xdtr = N z Xdtj = (1— fat) an Whereth

Nt t 5 th — Nt 2

Jer
On the other hand

ahy = A Z TZTeaXs =0 28, (M +MS+M5 + M5)WeXs = G114+ G124+ Go1+ Gz,
where

MT = Z1 T11sZ4s, M = Z 1, T125Z 6
M%) = ZxTo1sZ1s= (M3D)', M3 = Zo ToxZ .
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let us deflne/vndk (Wdkds - - - , Wakny,)- It holds that
—2 / 0% / /
Gll = ar WSXS = 0'2th 1§Ck%|md [6tk1Ndk ndk]lNd Ny [l 0 1 Vd 1nd]lnd stxds

G

Go1

G2

01(1— fa)[1— $11n,Zgq 1n,] Z Whe Xdks:
&

o 2aMSWeXs
0'10' ; /
0.2th l<k<mj[6tklNdk—ndk]lNd ndlndvd dlag (1ndk)Qd(p)lglﬁgh(lndk)wdsxds
_¢1¢2( - fdt)lndzasllgiggh(lndk)gd(p)lgclig!’ru(wndjxdks)7
arM WSXS
0203

Gszth%[étklNdk_ndk] diag (o) Qu(p) diag ( ThaVas Lng Lo, WasXas

My
—102(1— fu) col [8udQu(p) diag (T Zas Ing kZlWﬁdedKSv
o 2aMSWeXs
2
[aklNdkfndk]{ dlag (1Ndk_ndk)Qd(p) dlag (1:']dk)

GZth 1<k<rm 1<k<my 1<k<my

O-2 diag (1Ndk*ndk)Qd(p) diag ( ndk)vdsl dlag (lndk)Qd(p) diag (lgdk)}stde
1<k<my 1<k<my 1<k<my

921~ fu), cof' [Bu]Qa(p) |Im, ¢21dla9( ndk)zdsl dlag (Lng)Qa(P)
<ksmy <

col (w}, X .
1§k§”H( N4k dKS)

Calculation of g3(0)

The formula forgs(0) is

where

b/

4s(6) ~ tr{(Db’)Vs(Db’)’E [(6— 0)(6— e)’} } ,

a;ZrVuZ/sVs_lza;[ZanZr diag{oile ZQ(p)}[ 157 2’ Vs !

a;[oizlr /].s+0§ZZFQ(p)ZZS]V 1—0 aerrzlsv +02ar22r ( ) /stgl
! / /

1+b _1g?§I [Sqe b ]+ coI [édgb%]
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02¢1 / / 1 \v—1 I s—1
0 = Nat 1§Ck%|md[aklNdk*ndk]lNd*”d1ndvds =¢2(1- fdt)lndzds’
= T2 o st ] diag (In, n)Qu(p) diag (1 V2
2d — Ngt 1<k<my K-LNgk—nNgk kggwd Nak—Ngk/><d 1kemy Ngk/ ¥ ds

— _ / i 1
= 0ol Ta) ot [B0(0) dag (1,752

Let us defineAgs = Q41 (p) + 02 diag (1), )Wgs diag (1n, ). Then

Ndk

1<k<my 1<k<my
zgl — Lgl ¢1 I—Elln 1/ Lgl
d =N, 9
s s 14—¢1LMLd 1, & d - ads
Loy = — $2Wys diag (1n,)Ags diag ( 1) Was.
1<k<my 1<k<my

By applying the formul#\;l = —A‘l‘z—eA‘l, we calculate the partial derivativeslof?.

oL 2 oL ;!
aTdZS = Ondxnd7 W;jls:ondxnd’
oL gt
= —Wjys diag (lndk)Ad dlag ( ndk)st+ $o,Wys diag (1ndk)Ads

a¢2 1<k<my 1<k<my

diag ( ndk)WdS dlag (1ndk)Adsl dlag (1,0 Was,

1<k<ny <
OL(;Sl . —1A-1 / -1 1
—% = —0aWgs diag (1n,)Ag5Qq (P)Q'(P)Qy " (P)Ags diag (1y,)Was.
op 1<k<my 1<k<my

The partial derivatives of;; are

)
60_2 - Ondxnd
) 1
= - Lod1n, 15 Lo,
aq)l [1+¢11/ _llnd] ds ~Nd—ng —ds
_ -~ 2 OLS
- N
02 002 [14 011y, Lgq 1nd] as Iy Mo ds
¢1 aLds I / oL 71
— 1,1, L g, e M O |
14 ¢11p,L goln, | O ~TTeTAS T AT %2
oL
ond _ egl . O,
3 = 3 + Ldslndlndl‘ds
p p [1+¢11ndL 1nd]

¢1 al‘ds:L 1 / aL(;s}
— 1,1, L +L 11,1
1-|-(|)11nde 1, op Ny ds ds 1ng tng ap



9.1. Unit-level model with correlated time effects 157

Let us defined = (81,6,,03,04) = (0%,¢1,2,p). The partial derivatives df}, y bl are

%tz;lzd = Opxny,

% = (1-fa)lp, za§+¢1aai;’fl],

P8 = gt "jgsl (=34,

c';l;’zg = Opxny,

Tl = oal1 o) 50 i) ing 1)

%3)’2; = (1 fa), col [&udQu(p )1313%( 1) stl+¢zaa?;1]7

% = 62(1—far), Ol [ | Qa(p )lgliggh( 1) Zae +Qd(p)lg£gu( ndk)asgsll .

Let Q = (Qab)ab-1.....4 be the matrix with elements

abld abZd 2 abld ab/2d /
= —_— — z —_— — =
Qab ( aea + aea 0" 24s aeb + 69b , 4 b l’ 2’ 3’ 4’

andFg, g,'s be the elements of the REML Fisher information matrix. The

0(6) ~ tw{QE[®-8)®-0)]}

=
Ou1 Oz G13 Cua Foez Fo29, Fo2, Fozp
~ | Gt G2 Gz s Foioz Foror Foroo Foup
Os1 Os2 O3z Os4 Fo,02 Footr Foopo  Foop
Qa1 Guz G4z Oag Fooz  Foor  Fooo  Fop
Calculation of g4(0)
We recall thags(0) = &, Verar, where
1
ro_ /
& = thé?glo[dﬁfg [&klN[k_”fk]]’
Vol = 02W, =0 ?diag {Wq}.
1<d<D
Therefore
@) = 1 col col' [Bw1} ]| 62 dia {wy 1} 1 col (&g, col [dkl ]
% Nyt 1</<D d£1<|<< KN ac d<% Nyt 1<6<D | O 1ciem, |tk Na— i
o? o? 1

_ 1 _
- th ndtdlag{wdtj}lth Nt — N2

INA —_
NGt Ng; &, Wt
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9.2 Unit-level model with independent time effects

9.2.1 Introduction

Let us consider a version of linear mixed model (1.1) havimg bested random factors. Assume that
the first factor ha® levels and, for each of these levelgd = 1,...,D), the second one hamy levels.
The model is

y:XB+Zlu1+Zgu2+W*1/2e, (9.6)

whereu; = Uy px1 ~ N(0,0%Ip), Uz = Uz mx1 ~ N(0,031m) ande = enyx1 ~ N(0,03l ) are independent,
) 1

y == ynxl, X == XnXp Wlth r( ) == p, B Ble’ Zl == dla.g (1nd)n><D, ZZ == dla.g( dlag (lndt))nXM,
1<d<D 1<t<my

M=5S2 my,n=3 1ng ng =357 Nat, lais theax a |dent|ty matrix, 1, is thea x 1 vector with

all its elements equal to W = diag (Wgq), Wg = diag (Wqt), Wat = diag (Wgtj)nxn With known
1<d<D 1<t<my 1<j<ngt
Wgtj >0,d=1,...,D,t=1,...,my, j = 1,...,ngt. Model (9.6) can alternatively be written in the form

_1/2 .
ydtj:thjB+ul,d+u2,dt+Wdt]j/ edtj7 d:17"'7D7t:17"'7rnd71:17"'7ndt7 (97)
whereyqgt; is the target variable for the sample upitimet and domaird, andxgt; is the row(d,t, j) of
matrix X. In what follows we use the alternative parameters
a2
0?2
0°=05, 1= é, b = 22
0o 00
Let 0 = (02,01,02) be the vector of variance components, with> 0, ¢; > 0 andd, > 0. If g is
known, the BLUE of3 = (B4,...,Bp)’ and the BLUP ofu = (uf,u5)’ are

B=(XVIX)IXVly y G=VvzVv! <y—xﬁ). (9.8)

Formulas (9.8) are not computationally efficient becausg tiequire the inversion of thex n matrix
V. By calculating the inversion of new formulas are obtained. Under model (9.6), we havéuyar—
0%¢1lp, var(uz) = 622l v, vane) = a?l,, and

V =var(y) = Zyvar(uy)Z1' + Zovar(up)Zy' +6*W 1 = 6%5 = o?diag(Z3, ..., 3p),
where

24 = 11015, + 02 diag (1ng)Im diag (1) +Wgt = 0110, +Lg, d=1,...,D.
1<t<my 1<t<my

To calculate ;! we use the formula
(A+CcBD) '=A1-AlcB1+DAC) DA
with A=Wy, C= ¢, diag (1n,), B=Im, yD = diag (1,,). We obtain
1<t<my 1<t<my
-1

Lqt = Wg—6,Wq diag (1ny,) |Im, + 92 diag (15, )Wq diag (1n,)
1<t<my 1<t<my 1<t<my

diag (1, )W4q
1<t<my
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To calculatez; * we use the formula

A luvA-1
At+u/)y =1 """
(A+uv) 1+vA-lu
with A= Lg, U= ¢11n,, V' = 17,. We obtain
zgl _ Lal_ ¢1 Lalln 1/ Lal
— — - )
1+¢11p, L4 M, o

The formula forﬁ is

D 1/b
B= XL T 71X X z-1 9.9
B (gl d24d d) (czl d2q Yd> (9.9)

hereX = | (Xq), andy = col . The formula forU is
where chogD( d) y 1§ng(yd)

o)
I

2 /
VuzV (y—XB) B < 0 d3lm ) [ z) ] 1g|da§gD (Va )1§CdO§|D [yd—de]
o1 diag (1) diag (2,%) col_ [Va—XaB]
-1 "y
K& dlag( dlag (1 ”d‘))lg'diga (24)  col_ [va—XaB|

1<d<D 1<t<

[, col [1;]dz(; (yd—xdﬁ)]

1<d<D

B ¢2_col [dlag (1) Zg* <Yd—Xdﬁ)]

1<d<D | 1<«t<

9.2.2 REML estimators of model parameters
The REML log-likelihood function is

1 1 , 1 1,
lremi(0) = —é(n— p)log 2rm— E(n— p)logo“ — > log|K'EK | — 552 Py,
where
P=K(K'ZK) K =51 - IX(X'Z7IX) X'z, K =W — WX (X'WX)~IX'W.

By taking partial derivatives with respectds, ¢§ andc])% we get the components of the vectors of scores

o).

n-p 1
S = —F t 554 ylpy,
S, = —3 tr{Plel} —l— y 'PZ,Z' Py,

S, = ——tr{PZZZZ}—i— 2yPZZZ Py,
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Second partial derivatives of the REML log-likelihood ftino are

n-p 1 1
Hozge = W—EY/P% H02¢1:—ﬁy/lezﬁPy,
1
Ho2p, = —Tﬂy’PZZZ/ZPy,
1 / / 1 / !/ /
Ho 9, = Etr{lele’lel} — ?y PZ1Z21PZ,Z Py,
1 1
Hop, = Etr{lez&PZZZ/z}—?y/lez&PZZZIZPy,
1 1
Hop, = Qtf{Pzzz’zPZzzg}—?y’Pzzz’ZPzzz’ZPy.

By taking expectations, changing the sign and taking intmant thatPX = 0 andPZP = P, we obtain
the elements of the Fisher information matrix

n-p 1 n—p 1
F0-20—2 - - 20_4 + atr{PZ} - T"“" FO'2¢1 - Ftr{PZlZ&}?
1 1
Fo20, = 2?‘Z'LI’{Pzzz/z}, Fo9. = étr{lez;lez’l},
1 1
Fop, = étr{lez;Pzzz’z}, Foop = Etr{PZZZ’ZPZZZ’Z}.

The updating formula of the Fisher-scoring algorithm is
oftt = ¥+ F1(0%)S(a%).

As algorithm seeds we can use the Henderson 3 estimagf)q)s of(o) and og(o). Estimatorﬁreml iS
calculated by applying the formula (9.9).
Observation 9.2.1. From equatiory;. = 0, we get

g2 1 y'Py (9.10)

n—p ’

and we can introduce an algorithm updatistgwith (9.10) andp = (¢1,$2)’ with

o= 0" +F(9)'S(9').

Matrix calculations

In what follows we presents computationally efficient fotasufor the scores and the Fisher information
components. These formulas avoid the constructiom>oh matrices. Let us define

-1
D
s = diag (Z4), X = col (X = col R=(X'sIx)1= XLs X
1§d§gD( d)s 1§d§D( d)»y 1§d§D(yd), ( ) dZ1 4Zg X4

so that

P=3'-3IXRX'Z'= diag (Z4') -

col (Z71X¢)R col (X,=;t
1<d<D lSdSD( a Xa) 1§ng( d%q )
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The components of the score vector are

Sy

S

S

_5) + i o yazflyd _ i 2 y&Z*lxd R > X:jzilyd
d d d ’
202 204dz 204 dz (gl
_—tr{Z le}+ 2 'PZ,Z\Py=— dz 1, (2t — g X aRXGZ 4 Y 1,
1 2 ! 1 ! 1 1 1 o / 1
202 ; ydza 1nd lnd Z(; Yd — CZ ydzd lnd zd Xd R dz Xdz(; Yd
=1 =1
1 2 1 1 1 2 1
o ;ygz(; X4 |R dz XgZg 110, Zg Xa | R dz XaZqVd |
=1

——tr{Z PZZ}+ 2y 'PZ,Z%Py

10 _ P
_Edz { diag ( ndt)[ —EdldeXaidl] diag (lndt)}
=1

1<t<my 1<t<my

1
2 = ; YaZg 132% 1nt)l‘<j'ag (1h,)Zg Y

(; VgZqt diag (1ny) dlag( he)Za 1xd> (dz X4Zy yd>
1<t<my 1<t<
1 Vi Xq | R X4z 1 diag (1n,) dlag( )Zo Xy
207 dzl d dz d lctemy Victemy d
R X4 tya |,
2,

The elements of the Fisher iformation matrix are

FO-Z o2
Fo20,

Fo2,

Fo161

n—p
202

1 1 2 -1 -1 -1
ﬁtr{zapzl} = T‘ZUZ l;w [Zd -2y XdRX{jZd ] 1n,

1 1 1o T
Etr{Z’ZPZZ} =_— ; tr{lglag na) [Zat— ZgXaRX4Z4t] diag (1ng)}
=] t< 1<t<nmy

1 1D
Etr{zllpzlzllpzl}zédz(ll i 11n,)? dzl 11nd1’ G XaRX G2 n,
=1

1 D D
> dz 1h,Zg XaR (dz X4z i, 1;]dzd1xd> RX}Z 4 1n,,
=1 =1
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1 12 .
F¢1¢2 = Etr{Z/ZPZlZ&PZZ} = é dz tr{lgtlg-g ( ndl)zd 1lnd l/ zd 113:39 (lndt)}
=1 <t<my my

D
- dZtr{ diag (15,,)Zg "XaRX 2 10 10, gt diag (1n,,)}
1 1<t<my 1<t<my

+ 2 dz tr{ dlag ndt Zd leR (dz XdZd llndll Zd le) RXdZdl dlag (lndt)}’

1<t<my 1<t<my

1
Fospy = Etr{z/ZPzzz/ZPzz}
1 o I -1 1 1 H;
= 3 dz tr{ diag (15,)Z4 dlag (1ng,) d|ag (1,)Zy " diag (1n,)}
1 1<t<my <my 1<t< 1<t<my
D
— ; tr{ diag (17, )Z4 " XaRXyZ4 " diag (1n,,) dlag (1h,)%q " diag (1n)}
- 1<t<ny 1<t<my 1<t< 1<t<my
12 . _ . : _
+ 5 dz tr{ diag (15, )Z4"X4R (dz XyZqt diag (1n,) diag (1, )Zq 1xd>
1 1<t<my =1 1<t<my 1<t<my

RX4Z4" diag (1n,)},
1<t<my
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9.2.3 Henderson 3 estimators of model parameters

In this section we present tliiting constants metha estimate the variance components. This method
is also known addenderson JH3) since it was introduced by Henderson (1953). To appdy K3
method, we treat the factorg andu, as fixed and we fit the model

y = XB+Z1u1 + Zoup + W 2% (9.11)

by using the weighted least squared method. To avoid callityebetween the fixed effects of model
(9.11) we equate to zero the parameters of the last timentisstaithin domains, i.euygm, =0, d =

1,...,D. Thisis equivalent to delete columg§:l m;,d=1,...,D, from matrixZ, = diag ( diag (1n,))-
1<d<D 1<t<my
Therefore, we use the following incidence matrices

Z1 = diag (1n,)nxp and Z, = diag (col{ diag (1nm)70ndnux(rm—1)}>-
1<d<D 1<d<D 1<t<mg-1

The H3 estimators are
~» _ _YMgy  y'Mgy

n—r(X®) n-p-M’
) y'May —y'May — G5 [r(X®) —r(XP)]  y'Mpy —yMgy — (M —D)d3

tr{Lz} tr{Lz} ’
52 _ YMy—yMay—G§[r(X®) —r(X®)] —Ghr{L o}
- tr{Lq}
yYM1y —y' Mgy — MG3 — Gatr{L}
B tr{Ly} ’

where

XU = x,  x@P=(x,z1), XO®=(X,Z1,Z))

M1 = W—WXDXOWXD)=IxOw Ly =7/MZ4,
My, = W—WX@XAWX@HY=Ix@WwW L, =7MyZ,
Mz = W—WX®XOWwxE)=Ix@hy

The above formulas are not computationally efficient beedlisy require the inversion @i+ M matri-
ces andM is in general quite large. In what follows more efficient fafas are given.
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Calculations for M,

Let us defineC = (XWX @)~ = (32, 5™ X/ WaXg) . Then

yMy = yWy—yWXCX'Wy

D D D !
YaWayd — yaWaXq | C YaWaXg
2 <§1 &
D my D my D my !
= dz YarWatYat — dz YatWatXat | C dz Yot WatXat
== == =l

— ! — di / _ l / /
L1 = ZlMlzl_lgljaSgD(lndelnd) 801 (10, WaXq)C, cof (XgWaln,)

D
tr(Ly) = w_— ; tr {17, WaXqCXqWaln, },
=1

D my , my , , D my ngt
= Wm—;tr (Ziwndtxdt)c(zlwnmxdt) . W, = Wit
=1 t= t= =1t=1j=1
wherewy,, = 17, Wq¢ andwy, = 1, Waqt.
Calculations for M,
Let us defingG; = (Z{WZ1)~t = diag (w3?1), Py =W —WZ;G;Z;W and
1<d<D
_ / / -1 11 Rl2
B:<x(2>th<2)> P XWX XWzy ) (BB
Z\WX Z1WZ, B2l B
wherewg = 3™ 3 Watj. Then
BY = (X'PX),
B2 = —BYMX'WZ31G;=-B" col (w;X,;Wgly,), B**=B%?,
1<d<D -
B2 = Gi+G1Z)WXBX'WZ,G;
. . 1 —1,,/ 11 / —1vg/
= diag (wy) + ool (Wq W, Xa)B™, COT (Wq_ XaWn,)
: —1 [ _1WH / 11 | —lmd ! /
= 12;8;9{) (wg?) +, ool (wg. t;wnmxdt)B [, Lol (g t;anth)] :

where

D D
X'PX = XWX —XWZ1G1Z,WX = ; XWX g — dz X Wl Wy 11, WgXg
=1 =1

3

D D

!/
My my

= dz Xaththt - dz ch <ZX8thtlnm> <z Xathtlndt> :
1= =1 t= t=1



9.2. Unit-level model with independent time effects 165

The quadratic form is

yMay = y'Wy-yWI[X,Z1]B[X’,Z]'Wy
= YWy — [yWXBMX'Wy +y'WZ 1B??Z} Wy + 2y'WXB 2} Wy |

!/
di Eyatwthdt - <dz > yaththt> B <dz z ydththt>
=1t=1 1t=1
/ < / 22 / < !
(B[ (B
D my b my '
(g8t om) |
Ly = ZhMoZy=ZHWZy—Z0W [X,Z4]B[X',Z}'WZ,
= ZYWZ,—ZHW [XBMX' —Z,B%?Z) — XB?Z} — 2,B?X'|WZ,

= (ZWZ3) — (Z;WX)BY(ZHWX ) — (ZWZ1)B?A(Z,WZ 1)
—  (ZLWX)BY(ZLWZ 1) — (Z4WZ1)B?HZHWX Y,

To calculate the trace &f, we need some previous calculations.

I . _ / diag (Wa) O [ diag (Lny) |
ZoWZ,; = diag ¢ [ diag (1p,),0] [ 1stsm-1 1<t<my—1
1<d<D | 1<t<my—1 0 W, I 0 |
= diag ( diag (17, Watly,)) = diag ( diag (wq.)),
1<d<D 1<t<my—1 1<d<D 1<t<my—1
- diag (Wa) O [ col (1) |
ZyWz, = diag { [ diag (1,,),0] | 1stsm-1 lstmg-1
1<d<D | 1<t<my—1 0 W, I ;I_ndrTH ]
= dia col (1, Wgl, = dia col  (w
Jag (0 (I Waln,)) = 1<d<9D(1<t col  (Wat)),
-, / diag (Wqg) O col  (Xgt)
ZoWX = col ¢ [ diag (1,).0 1<t<rm 1 1<t<my-1
1<d<D 1<t<my—1 Wdrm I dej
= col ( col 1 WatXat)).

1<d<D ‘1<t<mg—1'

Finally, the trace ot ,is

tr(Ly) = tr(ZbWZy) —tr((ZHWX)BYHZLWX)') —tr((Z4WZ1)B?2(Z,WZ1)")
D

— 2t((Z;WX)B(ZoWZ,)) = (Wm—dz Wdrm.) —t11—trp— 212,

=1
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166 Chapter 9. Unit-level time models
where
o 11
/ / /
t11 d;”{lgé%',l(lnwwdtx‘“)B 1§t%?TL1(thWdtlndt)}
D mg—1 D my—1
dz Zi tr {1, WarXatB"X Wt lng, } = dz Wi XdtBX Wiy,
= ==
t dia col (w dia coI witw!, Xq)B coll (wiiXw
22 {1<d<gD(l<t<"H( dt.)) L<d<gD( ”)+ ( 4. Wn, Xd) 1§d§D( 4., XdWny)
dia col  (w wiltr{ col (w, col  (w
1<d<%(1<t<md 1 a.) } dz d.. {1§t§mdl( dt')létgmdfl( dt')}
tre col (wy' col  (war)wp,Xa)BM col (wy'Xgwn, col  (w,
{1<d<D( d1<t<my— , (W)W, Xa) 1<d<D( d.d ndlgtgmd—l( a.))
Mt SR 11
_ / / /
dzwd Z dt‘+dz wd“tr{th%_l(wdt.)wndde dendl<tc<(r)'r|u—l(Wdt')}
— myg—1
ded Z t. dz ?(WpXdB X W, ) > Wi,
t=1
mg—1
=1 t=1
t1o —tr{ col ( col (1, WqXar))B™ col (wy'XyWqly,) diag (. col (wdt.))}

—tr{ col col (2, WgXg))B col (WX Wq4l,, col (w
{1§d§D(1<t<md—1( g WarXat)) 1§d§D( d. ~d¥d ndlgtgmd—l( a.))

D
_ —1 / 11y /
Zle.. tr { col (1ndththt)B XgWaln, 13&0' 1(Wdt4)}

1<t<my

D mg—1
_CZ Wal Zl 1;1dlwdtxdtBllXédelndet_
- =

o g (mt 1o
— !/ !/
_dz Wd.. Zl Wdtlndtwdtxdt B Zlethdt.

Calculations for M3

The target of this section is to obtain a computationallyceffit formula foryMgy, whereMz =W —
WX ) (X @twx () -Ix(tw, X&) = (X,Z4,Z,) andZ = (Z1,Z,). We start by calculating the inverse
of XWX @), We have

-1
/ / 11 12
A= (XWX ) 1= X'WX  X'WZ _ (D% D
Z’'WX Z'WZ D2l p22 |’
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D! = (X'PX)~1, D¥? = —DMX'WZG, D?' = (D*?), D?? = G + GZ'WXDX'WZG, G = (Z'Wz) !
andP =W —WZGZ'W.

The elements of matrie—1 = Z'WZ are

G" = Ziwz,= diag(1;,) diag (Wq) diag (1n,) = diag (1, Wqly,) = diag (wq.),
1<d<D 1<d<D 1<d<D 1<d<D 1<d<D

G12 — Z/WZ _ d.a COI/ GZl Glz
! 2 ]_SldggD {1<t<ﬂh—1(wdt')} 5 ( )

G — ZWZ,- diag{ diag <wdt.>}-
1<d<D | 1<t<mg-1

The elements of matri& are

Gu = [GY-GY(G?»)1c2y!
-1
= diag (wq ) — dia col' (w, dia diag (w, dia col (w,
1gd§%( d') 1<d<%(1<t<md 1( dt'))lgdg%(lgtgngfl( OI'))1<d<g|]3(1<t<mj 1( dt‘))
my—1 1 .
= diag (wg — W, dia
1§d§gD( d.. t; dt.) 1<d<gD( mj)
Gz = —-GnG¥G#)1=_ diag(w, ) diag (_col (wqt)) diag ( diag (wgh)
1<d<D " 1<d<D 1st<my-1 1<d<D 1<t<my—1 '
= — dia col  (w, diag (w dla Wy 1
1<d<gD( dmy. S ( dt')lgtgrmgfl( dt‘)) 9( dmy. g — 1)

GZZ — (GZZ)_1+(GZZ)_]'GZlGl]_GlZ(GZZ)_l: dla.g( dlag (Wdtl))
1<d<D 1<t<my-1

+ dia diag WD) col (wg)wiit col  (wg) diag (wi!
1§d§gD(l§t§rT8—l( dt‘)lﬁtémrl( ) dmj‘lﬁtéfmfl( t)lgtgm?—l( )

= diag ( diag (wg'))+ diag (Wym Im—11m,_1)-
lgdggD(lStS mgfl( ) 1§d§gD( o Ay 12 1)

To obtain a computationally efficient formula fBr= W —WZGZ’W, we need some previous calcula-
tions.

- Z!
WZGZ'W = diag (Wg)[Z1,Z2] Cu G2 ) | 21 diag (W)
’ /
1<d<D G2 G2 5 | 1<d<D
= dlag (Wd) [ZlGnZ/lJrZlGlzf’2+22621Z/1+226222’2] dlag (Wd)
1<d<D 1<d<D

= Zu+tZipp+Za+2Zon.
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We have
Z;; = diag (Wdlndwdmj 1,,Wq) = diag (wdmj WingWn, ),
1<d<D 1<d<D
Z1, = - diag (Wgl,wit 1 [ diag (1, ),0|W
12 1<d<9D( ddngWam,. tmg 1[1§t§n3_1( he): O Wa)
= — diag (W, Wn,1,. ,| diag (W} ),0
1<d<gD( dm’ T 1[1<t§rmgfl( ) 0)
= — diag Wy, Wny | coI’ (Wp,,),0])
1<d<D 1<t<mg-1
_ 1 / !
- ]g:igD(W dlag[ C%L—l(wndt)lgt%%—l(wnd‘)’O])’
Zy = diag (Wq[ diag (1ndt),o]’ diag (wgt.l)[ dlag (14,,.),0]Wq)
1<d<D 1<t<mg—1 1<t<mg—1
+ diag (Wq[ diag (1n,),0]'Wgh 1,Th 11| dlag (1§1m),0]Wd)
1<d<D 1<t<mg—1 1<t<mg
= diag ([ diag (Wn,),0]' diag (wg})[ dlag (w’ndt),o])
1<d<D 1<t<my-1 1<t<my—-1 1<t<
+ diag (w ] d|ag (wnm),o] Timg—11m, 1] dlag (Wny,)-0])
1<d<D 1<t<mg 1<t<mg—1
= diag (diag[ diag wdtlwndtwﬁ1 .):0])
1<d<D 1<t<mg—1 ’
+  diag (Wym, [ _col  (wn,),0]'[ col  (wp,).0]).

1<d<D 1<t<mg-1 1<t<my—1° ot
To calculate the quadratic ford’PX we make a decomposition, i.e.

X'PX = XWX —X'Z 11X — 2X'Z 15X — X'Z 20X,

where
D my
X'WX = col diag (W coI Xq) = XL W gt X
1§dSD( )1<d<%( d), ol 5(Xa) y 2, XarWarXar
X'Z11 X = col diag (w;+ wpW, ) col (X
H 1§d§D( )1<d<%( dmj d nd)1<d<D( )
o —1 / o / /
= dz dej‘( Z X{tWng,) ( Z X{tWng,)
=]
X'Z12X = — col (X}) diag (wd1 dlag[ col  (Wny) col  (wp,),0]) col (Xq)

1<d<D" V124D 1<t<mg—1 1<t<my—1° ot 1<d<D

= dz ZL X/thdt Zl X/thdt )
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X'ZooX = col (X4) diag (diag] diag (witwp, W. ),0]) col (X
22 S0 (Xa) diag ( @1[1StS 29 (Wi Wag W), 0] ), €01, (Xa)
/ ! / !
* 1gc?lD(Xd)lg:ja<gD( drm [1<t2%|dfl(wn‘“)’o] [1<tg?rlufl(wndt)’0])1<Cc?<ID(Xd)
D my—1 md 1 md 1

= dz Wi, thanWnthdt"‘dZ Wdrm Zl XtWng,) ( Zl than) :
==

To obtain a computationally efficient formula f&Z’WX, we do some previous calculations.

G G Z! R R
GZ'WX — 11 12 ~/1 WX — 11+ R12 7
G21 G22 22 R21+ R22

Ry1 = GuZ"WX = diag (w3t ) diag (1..) col (WgXq) = coI (wy, w., X
11 1141 1<d<%( d"“')1<dg%( ”d)lgng( dXd) 1502 drm Z Nat dt)

where

Ri; = G1ZbWX = — diag (Wgon, Imy—1) diag ([ diag (1§]dt),0])lcol (WgXgq)

1<d<D 1<d<D 1<t<my—1 <d<D
-1
= — col (w;r 1 col Xdt)) = —_ col_(w, w, X
1<d<D( dm* M1y Sy 1( Mot dt)) 1<d<D dmi Nat dt)
Ry = G21Z)WX = — diag (Wdrm Tng-1) dlag( ,). col (WdXd)
1<d<D 1<d<D
1 ! 1 o /
= — col (w;= 1n_1W, Xq) = — col col (wj w, X
1§d§D( dny.—My 1 Ny d) 1§d§D(1§t§md*l( dnu‘t: Nyt dt))a

Ryy = GopZbWX =

diag ( diag (wy'))+ diag (Wyr, Im,—11f
l<d<gD(1§t§n'Hg,l( dt)) 1<d<gD( dmj my—1 my— 1)]

diag ([ diag (I )0])1<C(?§ID(WdXd)

Ndt
1<d<D 1<t<my—1

my—1
= col col  (w;w. X col col (w3l W, Xat)).
1 S0 80y (W WhuXar)) -, SO (00 (Warm, t; a))

The calculation of matrix

Dll A12 A13

Dll D12
A= (X(g)th (3))71 — < o1 - ) — A21 A22 A23
D D A31 A32 A33

is given below.

DI = (X'PX) 1= (X'WX —X'Z11X —2X'Z 12X — X'Z2oX) 71,

D21 — _Gz/WXDll [AZl A3l] , D12 (DZl) [(AZI) (A13)/] — [A12,A13]’
—[G11Z} + G12Z5WXD ™ = —[Ry1+ Ry D™,
A3l = _[G1Z) + GpZ)WXD M = —[Ry; + Ryp DY,

>
N
I
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The matrixD?2 admits the decomposition

A22 A23
2 _ G+ GZ'WXDIX'WZG =
A31 A33

A% = G+ [Ruu+R1DMRi1+R1, A =Gia+ [Ri1+ RiaDMRa1 + Roof,
A% = Gu+[Rau+RDMRi1+R1g, AP =Gy+ [Rar+ R/DMRo1+ Ry’
Finally, we calculate the quadratic foryfivi gy.

YMsy = YWy —yWI[X,Z3,ZoJAX', Z}, Z5]' Wy = y'Wy
- y’W[XD11X’+ZlA2221+ZzA33ZZ+2XA1221+2XA13Z’2+221A23Z’2]Wy
D ny D my D my

= ; YHthtYdt—{(; yaththt)Dll(; YarWatXat)’
=1t= 1t= =1t=

my
+ col "W col/ w
1§d§D(t: YarWng ) A” 1<d<D ydt )

col ( col (yywn ))A3B3[ col ( col (y,wh )]
+ 1§d§D(1§t§md_l(ydt ngt)) [1§d§D(1§t§md—1(ydt ndt))]

AL ! 12 / S / !
+ Z(GZH: YaWatXar) A [é%D(t;Ydthm)]

D my

13 ,
! 2((glt YarWaiXa) A [g(?!D(lqg(?YI\/j 1(yatW”d‘))]

1<d<D 1<d<D 1<t<mg—1

2 col ( ZYdthdt [ col ( col (ygtwndt))]'}.

9.2.4 The EBLUP of the domain mean
The EBLUP of the linear parametgr= ay = aLys+ a y is

N =ays+a [X B+ VisVas(ys SB)}
AS VerS: 0, Vrs — ZrVuZ/ +Vers — ZrVuZ/ anda — Vuzlvs_sl(ys— XS/B\), we have
A= aysta [XB+ZVaZVed(ys—XPB)| = alys+4f [ XB+2Z:0]

a [XB—FZlGl—FZsz} +a’s {ys—xsﬁ— Zslﬁl — 25202} .

Under model (9.7)Y 4t = Nim Z’j\litlydtj can be written as a linear parameter= a'y, where

1
a = —(0
Ng; N

_ 1 / / / / / 1 / /
- N_dt (0N17 DR ONd717 lSCkOSIIT'U [aklNdk] ) ONd+17 OND) mlgfolD{adzlgckoglm[ [aklN[k] }7

/
TR 70/Nd,1?0/Nd1"' . ’OlNd(ifl)’ th?OINd<i+1)a' . ’OlNdnH’de+l"’ . aUND)
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with 8, = 1 if a= b andd,, = 0 if a# b. It hold thata’ X = Xg,

1 _
azZ; = — col {&yg col 13 diag (1n,) = col {dg}=Z
1 thlgego{ de 1§kgw[6tk N“‘]}lgg% (In,) lSESD{ e} = Z1dt,
1 _
aZ, = — col {&yg col 13 diag ( diag (1, = col { col {§ =754t
2 thlgSD{ dflgkgw[a“‘ N”]}lgzg%(lgkg%( Nao)) 1§KD{KKSW{ Ok} } = Z2.dt

If ngt > 0, the EBLUP ofY 4 is

=~eblup _ ~ _ = _ o~ = =
Yo = XatB+Z1atUs+Zoatlz+ fat [ys,dt —XsatB—Z1,gtUs — ZZ,dtUZ] ;

whereys g = o 3% Vatj, Xsdt = ne: ¥ joq Xatj and fge =
If ngt = 0, the EBLUP ofY 4 is

~eblup  _ ~ _ -
Yao = XatB+Z1atUs + Zo gelo.

9.2.5 Mean squared error of the EBLUP

Letf= (03,(])1,(])2) be the vector of variance components. The mean squaredoéthe EBLUP ofY g

IS

MSE(?Z?IUP) = 01(6) +92(8) + 93(8) + 94(6),

where
au®) = az,TZa,
®(8) = [AXr—aZ TsZVeaXs|Qs[Xiar — XV edZsTsZ ],
0(6) ~ tw{(O0)Vy(Ob)E[®-8)®-8)]}.
wu®) = a;Verar-

Calculation of g;(0)

The elements of formulg, (0) = &/ Z, T<Z;a, are

1
/ ' /
a = N—dt <0/N1n17 e ,O,Nd—lfndfp lgckoglrru [aklNdk*ndk] ’O,Nd+1*nd+1’ . ’O,NDnD> ,
T T
Zy = [ZuZx], Ts=Vy— VUZ/sV;lzszu _ 11s 125 ,
Tais Tozs

2
o5lp 0 _ . _
Vy = 1 ) . Zs=[Z1sZas, Vg'= diag{Vgl}.
0 05lm 1<d<D
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It holds that

VuZVlzvy

0521 - 1y 12 2
i diag {V g4} [07Z1s, 052
02 25 1<d<D
042’15 dlag (Vad1Z1s 02032 diag {V 42} Z s
1<d<D

)

01022’25 dlag {(Vad1Z1s 032} diag {V4d1Z2s
1<d<D

where

1s diag {V1Z1s = diag {1y, }dlag {Vdsl} dlag {1} = dlag{l aV e lna},
1<d<D 1<d<D

1s diag {Vga}Z2s = diag {1} dlag {Vdsl} dlag{ diag (lndk)}
1<d<D 1<d<D 1<d<D 1<k<my

1<d<

hs diag {V4i}Zos = diag { diag ( ndk) ge diag (1ng)}-
1<d<D 1<d<D 1<k<my 1<k<my

= dlag {1/0,VO|S dlag (Ing) },

The blocks of matrixT s are

Tis = 0f diag {1- 071}, Vydiln,},

1<d<D
Tixs = —0%03 dlag {1’ diag (Lng) }s T21s= (T1as),
1<d
Tos = 05 dlag{hm o3 dlag ( ndk)Vdsl dlag (Lnge) }-
1<d<D 1< <

The producZ,T¢Z; is

ZiTZ) = (21 22| Ts (2% 2| = ZurT1asZyy + Z1: T125Z + Zar T 21525 + Z o T 225Z
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It holds that

T = ZyT1sZi, = 03 diag {1n, nd}dlag{l 031}, Vgaln,} diag {1y, _n,}
1<d<D 1<d<D 1<d<D

= 0% diag { Ing-ny[1— 0910, Ve Lng Iy g

1<d<D

MY, = ZyTiaZb = —0305 dlag {In,— nd} dlag {l’ndvd dlag (1ng) }

diag { diag ( Ndkfndk)}
1<d<D 1<k<my

= _0-%0-% dla‘g {1Nd*ndll Vdsl dlag (lndk) dlag ( Nyk— ndk)}
1<d<D < 1<k<

Mz = M1y

M%, = ZaToxZh =03 diag{ diag (Ingng)}
1<d<D 1<k<my

dlag {Irﬂ:l 02 dlag ( ndk)VdSl dlag 1ndk)} dlag{ dlag ( Ngk— ndk)}
1<d<D 1<d<D 1<k<my

= 02 dlag{ dlag 1Ndk ndk) dlag ( Ndkfndk)}
1<d<D 1<k<my

— 0% diag{ diag (1, _ ndk) dlag ( ndk)Vdsl dlag (1ng,)
1<d<D 1<k<my

dlag( Nyk— ndk)}

1<k<my
As
Ndt
| = —— col |8y col 13 fgr = —
&= Ngt1=6=D | 1<ke [6“( Ninal | Y Ngt’
we obtain
agMia = ofa diag { I, ng[1— 0710,V adln |1y, 1, o
1<d<D
= 03(1—fdt)z[l—cilﬁdVEsllnd]: 0?01(1— far)?[1— b1y, Tgadny),
a;'MFI.rZaf = _O-%O-%a:' dlag {lNd,nd dlag (1ndk) dlag ( Ngk— ndk) }afa

1<d<D
= —0%h102(1— fdt)lﬁdzdsl dlag (1ndk)1§$(glrm[6tk( — faw)]

a;MrZrZar = Ozar dlag{ dlag (1Ndk ndk) dlag ( ;\Idk—ndk) }ar
1<d<D 1<k<my

— o03d, diag{ diag (1n,, ndk) dlag (1h,)Vqe diag (1n,)
1<d<D 1<k<my < 1<k<my

dla‘g( Ngk— ndk) }af
1<k<my

= 02¢2(1—fdt)2—02¢§ coI’ [(1—fdk)6(k]

diag ( ndk)zdsl dlag (1ndk) coI [( — fak) Ok

1<k<my
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Finally,
01(6) =& Z TsZiar = aM iy + 2 M ey + Mo,

Calculation of g»(0)
The formula forg,(0) is
02(8) = [arX; — 8/ Z, TsZV os Xs Qs[Xar — XV oa ZsTsZ 8| = [ahy — @yl Qs[azs — aza),
whereQs = (XoV~1Xs) 1 =0? (35 1XdSZ de)_l andV ¢ = 0-?Ws. On the one hand
1 < < 1
I A _ .
a21 - arXr N 1th ndt Z th] - fdt)th, Whel‘eth - th — ndt Z th]‘

tjer jer
On the other hand
Ay = A Z, TZVodXs= 0728 (M5 +MS+MS +M5)WeXs = G114+ G124 Go1 + Gy,
where
M =Z1T11sZ%e, M = Z 1, T125Z 5
M5 = ZaT21sZ1s = (M35), M5 = Zo ToasZ b
Let us deflnewndk (WK, - - - , Wakny,)- It holds that
2

Gu = 0 2aMBEWXs= ol (Bt g Ing—ng [1— 711,V g 1 ] 1, WasX s

GZth 1<k<md

- ¢1( fdt)[l q>1:l-ndZ 1nd Z WndedKS7

G = 0 2aMSWeXs
_ 050% 1
B 0'2th1<k<md[6tk1'\‘dk ndk]lNd ndl dV 1218‘%(1”%)13'39 ( ndk)stde
= —0102(1— far) 1y, dlag (1ndk)l col (WndedKS)’
GZ]_ — aTM W5XS
020% . .
- O-Zlet1<Ck<l:'nd|:6tk1;\|dk_ndk]lgli§g (1Ndk_ndk) dlag ( ndk)vdsllndlndwdsxds

= —01¢2(1- fdt) COI [6tk] diag ( ndk)zdsllnd zwndkxdks’

1<k<my
Gy = arM WSXS
02
- 02|\2|dt1<cko<l:m[6tklNdk ndk]{ dlag (lNdk ndk) dlag ( ndk)
_ ozlgllag (Ing ndk) dlag ( ndk)Vdsl dlag (1ndk) dlag (1,0 WasXds
<my <

_ _ / _ i 1 /
= ¢o(1 fdt)lgck(%lnu[atk] Iy ¢2lg|2-gh( ndk)zdS dlag (ng) lg(lz(glrm(wndkxdks).
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Calculation of g3(0)
The formula forgs(0) is

63(8) ~tr{ (Tb/)Vs(Ob') E | (8- 0)(8- 6| }.
where

b = &ZVuZVs' =a(Zy, Zadiag{oilp, 03lm} | is,Zés]’V’l

= g [OEZHZ&S—F O%ZZrzlzs] V_l = Oga;ZIr /sVs_l‘i‘ 0zarZZr 1
= bj+b,= col/ [6dgb’ ]+ coI’ [6dgb/ 1,
2
0“1 _
W = Ng: 1 Sck(%l:m[étklg\ldk—ndk]lNd*nd Vae = 01(1— far)1n, 22,
/ 02¢2 I : ; 1
2d — th 1§Ck0§md[6tklNdk ndk] dliag (1Ndk_ndk)lgligg]d( ndk)vdsv

— _ / 1
= 2(L fa) o0 [ diag (1,7

Let us defineAgs = Im, + 2 diag ( ndk)st dlag (Ing)- Then
1<k<my

zfl — Lfl ¢1 Lo 1 1/ L 17
ds ds 1+¢11ndL 1nd ds —d ds

Lags = Was—¢2Wys diag (Lng)Age dlag(
1<k<my <

)st

Ndk

By applying the formul%&1 = —A‘l%—eA‘l, we obtain the partial derivatives bf;l.

oL g2 oL g2
602 = Ondxnda T‘)l = Ondxnda
Olgs _ —Wys diag (1 -1d' W Wys diag (1, )AL
9 = ds |ag ( ndk) ds 'ag ( ndk) dS+¢2 ds diag ( ndk) ds
¢2 1<k< < 1<k<my
1diiag ( ndk)st dlag (1ndk)Ads dlag ( ndk)st
< =
The partial derivatives of ;> are
)i
W = Ondxnda
) 1
= L o Lng1n,L g
aq)l [l_{_q)ll;] lnd]z ds ~d ds
_ _ 21/ oL, s
azdsl _ aLdSl_’_ ¢ 1ndT§21 Lfll 1/ Lfl
- N,
0> 002 [1+¢11) Lgl1,,)2 @S
01 oL g olgs |

= L2 Lot + Lot
14011 L gty | 0gp WA T ST gg,
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Let® = (61,02,63) = (0°,01,¢2). The partial derivatives df’, y b’ are

%t(’;zg = Operny:
?}lef = 62(1—far) ¢ cof [&k]lgliggh( ”dk)c‘,azcl;131
‘;%2: — (l—fdt) coI [&k]lgllgg( Thai) zdsl+¢zaaz<l;jzsl]'

Let us define the matri® = (gab)ap-1... 3, With elements

“““

iy b\ oo (Obyy  dbhy)
= (2 ) g2y, (d 2 =12
qab < aea + aea > o dS( aeb + 09b > ) a7 b ) 737

and the elementS, = Fg, g,'s of the REML Fisher information matrix. Then

0:(8) ~ t{QE|@-0)6-0)]}
“1
Ou1 Q12 O3 Fo2oz  Fo2p,  Foro,
~tr Co1 OG22 O3 Foro2 Foror  Foads
Os1 032 Os3 Fo.oz Foor  Fooo,

Calculation of g4(0)

We have thags(8) = & Zerar, Wwhere

1
ro_ /
= thlg?SID [E‘MKC of [&klN[k_nék]]’
Vol = o02W, =0 2 diag {Wq}.
1<d<D
Therefore
aud) = L oot |a coI [6t 1, ]| 02 dlag {wy 1}— col |5 coI [6t 1 ]
) Ngt1<6<p | 1< el | T (1=r=p | 1 ko=
2 2
0" . 1 o 1
= — 1 _n.diagw N, ng = .
Ngt Nat—Ngt jerg{ dtJ} it —Nat Ngt %, Wdtj
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9.2.6 Simulation experiment 1

The scope of simulation experiment 1 is to analyze the beha¥ithe REML and H3 estimates of model
parameters. Samples are generated in the following way.

e Simulation of explanatory variable: Ford=1,...,D,t=1,...,mq, j = 1,...,ng;, generate

Xdtj = (Bat — aqt)Uatj +agt With Ugtj = %v J=1.. Nyt

dt + 1
Takeagt = 1,bgr = 1+ ;- (Ma(d—1)+t), d=1....D,t=1...,my.

e weights: Ford=1,...,D,t=1,....mg, j = 1,...,Nat, doWarj = 1/, £ = 0,1/2, (2 possibili-
ties).

e Simulation of random effects and errors: Ford=1,...,D,t=1,...,my, j=1,...,ng, generate
urg ~N(0,0%), Upg~N(0,03), esj~N(0,08), conot=1 05=1, cf=1
e Simulation of target variable: Ford=1,...,D,t=1,...,mq, j = 1,...,ng;, generate
Yatj = BXdtj + U,d + U2dt + w;tl,-/ %earj, Wwith B=1.
The steps of the simulation experiments are
1. Generate explanatory variables and weights.
2. RepeaK = 1000 timesk=1,...,K)

2.1. Generate a sample of size= 3§, 3, ng;, with the corresponding values of the target
vartiable, the random and fixed effects and the errors.

2.2. Calculatey), 62 (k» 07 4 @nd@3 4 by using the methods H3 and REML.

3. Output 1 is the empirical mean squared erro[AB(ij, 6(2)’(@, 6?,(@ andﬁg’(ky ie.
a_lca 2 o 18 2\2
EMSEp) = K (B —B)*, EMSHEGap) = K (0%, —90)°
k=1 k=1
o1& 212 o1& 212
EMSEo1) = sz (01,0 —01)°, EMSEGo3) = sz (65,09 —02)°-
=] =]

BB =15 BB, B =LY @y
=1 k) — ’ o) — 1/ 0/
K A (k) K 2 0,(k)
B8O =15 @y -0,  BE =LY (@R
1) — K z 1,(k) 1/» 2) — K z 2,(k) 2
k=1 k=1
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In the simulation experiment we take= 30,mq =5,d =1,...,D. We carry out 10 realizations of the
simulation experiments with the sample sizes presentedie™.2.6.1.

9] 1 2 3 4 5 6 7 8 9 1d
n?| 3 4 5 6 7 8 9 10 15 2

nd] 15 20 25 30 35 40 45 50 75 100
n@ | 450 600 750 900 1050 1200 1350 1500 2250 3000
Table 9.2.6.1. Sample sizes in Experiment 1.

The obtained results are presented in Table 9.2.6.2.

n 450 600 750 900 1050 1200 1350 15p0
Ny 15 20 25 30 35 40 45 50
Nt 3 4 5 6 7 8 9 10

EMSE | B 0.126 0.087 0.068 0.054 0.046 0.040 0.034 0.030
o5 | 6.583 4.386 3.403 2.605 2.187 1.879 1.661 1.479
02 | 110.26 106.36 106.56 105.14 102.23 101.38 98.96 99.23
05 | 3090 26.26 23.87 2286 2175 21.49 20.40 20.26
BIAS | B 0.069 -0.069 -0.036 -0.003 0.082 -0.083 0.065 0.009
05 | -0.311 1.011 0.328 -0.179 -0.184 -0.239 -0.087 -0.385
o2 | -8.586 -0.432 0562 5.623 -1.291 2.186 -4.623 1.709
05 | -0.542 -2.486 1926 0.680 -0.288 0.336 -1.626 0.947

Table 9.2.6.2. EMSE and BIAS (multiplied by %0of B, 63, 62 andd3 for £ = 0.

9.2.7 Simulation experiment 2

The scope of simulation experiment 1 is to analyze the beha¥ithe EBLUPs. Samples are generated
in the following way.

1. Generation of deterministic elements

e Simulation of explanatory variables: ford=1,...,D,t=1,...,my, j = 1,...,Ng;, gener-
ate .
_
Ngt + 1’

Takeag = 1,bgt = 1+ - (Mg(d = 1) +t), d=1,....D,t=1,...,my.
e Weights: Ford=1,...,D,t=1,...,mg, j = 1,...,Na, hacer wgj = 1/xg,;, £=0,1/2.

2. RepeakK = 100000 timeskK=1,...,K)

thj = (bdt _adt)Udtj + agt with Udtj = J = 17-' -7th'

(@) Generation of random elements

e Simulation random effects and errors: Ford=1,...,.D,t=1,....my, j=1,...
generate

U ~N(©0,03), U ~N(0,03), e} ~N(0,03), witho}=0f=05=1
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e Simulation of the target variable: Ford=1,...,.D,t=1,....,my, j = 1,...,Ngt,

generate
1/2 .
Vi = Bty + UL+ UDY +weZel with p=1.

(b) Extraction of samples. Far=1,...,D,t =1,...,my, select theng; units of the leveldt in

positions[lJNrfr’;m] i, i=1....ngt

(c) Calculateﬁ(k), 63“(), Gi(k) andag’(m by using the REML method.

~eblup(k)
(d) Ford=1,...,D,t =1,...,mg calculateY 4

3. Output: Fod =1,...,D,t=1,...,my calculate

1 seblup(k) 2 1 ~eblup(k
EMSE; = — ( —Yai ) , BIASt=— Y gt —YOIt
K kZl K k;
120 120
EMSE= — EMSE;, BIAS= — BIAS;:
M £& M &é
Nt
WhereYdt - Nd 21 lydtj
The simulation experiment is carried out with=30,my =5,d =1...,D. The obtained results appears
in Table 9.2.7.1.
N 4500 6000 7500 9000 10500 12000 13500 15000
Ng 150 200 250 300 350 400 450 500
Nat 30 40 50 60 70 80 90 100
Nyt 3 4 5 6 7 8 9 10
BIAS | 0.00043 -0.00004 0.00122 -0.00010 0.00008 -0.00034 01D0ANO0007
MSE | 0.25191 0.19521 0.15969 0.13521 0.11699 0.10357 0.092808401

~eblup
Table 9.2.7.1. EMSE and BIAS ofy;, for my =5 and/ = 0.

9.2.8 Simulation experiment 3
The scope of simulation experiment 1 is to analyze the beha¥ithe mean squared error estimators of
the EBLUPs. Samples are generated in the following way.

1. Generation of deterministic elements

e Simulation of explanatory variables: Ford=1,...,D,t=1,...,mq, j = 1,...,Ng, gen-

erate i
. J

“— (Duys — Ugti + with Ugtj = ———,

Xdtj = (Bat — agt)Uatj + adt dt] Nt + 1

Takeagt = 1, bt = 1+ ;- (Ma(d—1)+t), d=1....D,t=1...,my.
e Pesos: Ford=1,...,D,t=1,..,my, j=1,...,Nat, dowarj = 1/xg;, £ =0, 1/2.
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2. RepeakK = 100000 timeskK=1,...,K)

(@) Generation of random elements

e Simulation of random factors and errors: Ford=1,...,D,t=1,...,mq, j=1,...,Ngt,
generate

u(lkc)j ~N(0,03), ul, ~N(0,03), efj'?j ~N(0,03), with 05=0%=05=1.
e Simulation of target variables: Ford=1,...,D,t=1,...,myg, j =1,...,Ng;, generate

2 .
ydtJ Bxat; + u(1c>:| + u(z 2it +Wdtlj/ eE‘it)Jv withp=1.

e Extraction of samples. Fat=1,...,D,t =

in positions[%ﬁm} ii=1... N

1,...,my, select thang; units of the levett

o CalculateB, G (k)» 07 () @ndd3 ) by using the REML.

~eblup(k) ~eblup(k)
e Ford=1,...,D,t=1,...,my calculateY y andmseY ).

(b) Ford=1,...,D,t=1,...,my read the values dt MSEy; calculated in Simulation 2.

3. Output: Fod=1,...,D,t=1,...,my calculate

1 K ~eblup(k) 1 K ~eblup(k)
Egqt = < kZ mseY g ) — EMSE,t Bdt " kZ mseY g ) — EMSE,t),
1 1 DM
E=—- E B=— B
M dt M L 2 dt

=1t=

The simulation experiment is carried out with=30,mg =5,d=1...,D. The obtained results appears
in Table 9.2.8.1.

N 4500 6000 7500 9000 10500 12000 13500 15000
N 150 200 250 300 350 400 450 500
Nat 30 40 50 60 70 80 90 100
Nt 3 4 5 6 7 8 9 10

B | 0.6933 0.6859 0.6760 0.6710 0.6681 0.6653 0.6668 0.6625

E | 0.5096 0.4966 0.4813 0.4727 0.4689 0.4647 0.4673 0.4607

~eblup
Table 9.2.8.1E andB of mséYy, ) formg=5and/=0.




Chapter 10

M-quantile methods

In recent years there have been significant developmentsdehkbased small area estimation. The
most popular approach to small area estimation employsorareffects models for estimating domain
specific parameters (see Rao (2003)). An alternative apprtmsmall area estimation that relaxes
the parametric assumptions of random effects models byaimgl M-quantile models was recently
proposed by Chambers and Tzavidis (2006) and Tzavidis e{28110). This model is presented in
section 10.1 and estimation of small area means and quauatiger the M-quantile model is discussed.
We further discuss the estimation of the Mean Squared EM&H) of the small area estimators and
we present model-based simulation results for assesingrtpoerties of point and MSE estimators.
Having developed the methodology for estimating small aesrages and quantiles, in Section 1.2
we focus on the estimation of poverty indicators which pnésespecial case of estimating small area
guantiles. We consider estimation for two popular povenigidators namely, the Head Count Ratio
(HCR) and the Poverty Gap. In addition, we also considemedion for fuzzy set indicators that have
more recently attracted interest in poverty studies. Twthoas of poverty estimation are considered
namely, the EBP approach (Molina and Rao, 2009), see Chapgerd the M-quantile approach that is
based on the methodology proposed in Tzavidis et al. (200.two approaches are then contrasted in
a model-based study and in a design-based simulation study.

When the functional form of the relationship between thgpoese variable and the covariates is
unknown or has a complicated functional form, an approasiedan use of a nonparametric regression
model using penalized splines can offer significant adgg®aompared with one based on a linear
model. Pratesi et al. (2008) and Pratesi et al. (2009) haeméed the p-spline regression model to the
M-quantile method for the estimation of the small area patens using a nonparametric specification
of the conditional M-quantile of the response variable gitiee covariates. The model is discussed in
section 10.3.

M-quantile models assume independence of the small areet®ffln some applications, however,
observations that are spatially close may be more related abservations that are further apart. This
spatial correlation can be accounted for by assuming tleatethression coefficients vary spatially across
the geography of interest. In a recent paper Salvati et @0§Pproposed an M-quantile Geographically
Weighted Regression (GWR) small area model extending dugiwnal M-quantile regression model by
allowing local rather than global parameters to be estichalbe model is shown in section 10.4.

181
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10.1 Linear M-quantile regression models

A recently proposed approach to small area estimation isdban the use of M-quantile models (see
Chambers and Tzavidis 2006)). M-quantile regression pesvia “quantile-like” generalization of re-
gression based on influence functions (see Breckling ananBées (1988)). M-quantile models do
not depend on strong distributional assumptions nor on defireed hierarchical structure, and outlier
robust inference is automatically performed when theseaisodre fitted. The M-quantile of order
for the conditional density of given X is defined as the solutioQq(x; ) of the estimating equation
JWe(y— Q) f(y|X)dy= 0, wherey denotes the influence function associated with the M-glgantn

a linear M-quantile regression model thgh M-quantile Qq(x, ) of the conditional distribution oy
givenX is such that

Qa(X; W) = XByy () (10.1)

whereWq(rigy) = 2{s *rigy} {al(rjgy >0)+(1—g)l(rjqy <0)} andsis a suitable robust estimate
of scale, e.g. the MAD estimate= mediarnrjqy| /0.6745. A popular choice for the influence function
is the Huber Proposal 8j(u) = ul(—c < u < c)+csgn(u). However, other influence functions are also
possible. For specifiegland continuousy, an estimatg,,(q) of B,,(q) is obtained via iterative weighted
least squares. Note that there is a different set of regmregsirameters for eaah

10.1.1 Estimation of small area means and quantiles

We now consider the problem of estimating the small area raedrnthe cumulative distribution func-
tion of a given variable of interest using M-quantile modetgler a unified estimation framework for
estimating any small area target parameter that was defin@éddvidis et al. (2010).

Let Q4 = {1,...,Ngq} be the population of ared Letyq = (y1,...,Yn,)" denote the variable values
for the Ny small area population elements. We consider a samjpte Qq, of ng < Ny units, and we
denote withrq = Qg4 — 54 the set of non sampled units. For each population yrét X; = (X1j, ..., Xpj)
denote a vector op known auxiliary variables. The small area specific empiiriistribution function
of y for aread is

Fa=Ng![ S 15 <0+ Y 10y <) (10.2)
= j€Tq
The problem of estimatingy(t) given the sample data essentially reduces to predictingathesy;
for the non-sampled units in small aréaOne straightforward way of achieving this is to simply eega
the unknown non-sample values v{10.2) by their predicted valugg Under an appropriate model,
leading to a plug-in estimator of (10.2) of the form

Fa = Nd—l[jezsduyj <O+ 316 <t (10.3)

An estimator of the meaiy of y in aread is then defined by the value of the mean functional defined
by (10.3). This leads to the usual plug-in estimator of thame

?d:/t:tdlfd(t):NJl<Zyj+29j>.

XEYY j€ryg



10.1. Linear M-quantile regression models 183

The predicted value of a non-sample upih aread corresponds to an estimate of its expected value
given that it is located in ared

Following Chambers and Tzavidis (2006), an alternativeattdom effects for characterizing the
variability across the population is to use the M-quantdeficients of the population units. For unit
with valuesy;j andx;j, this coefficient is the valu; such thaQp, (xj; ) =y;. These authors observed
that if a hierarchical structure does explain part of thaalality in the population data, units within
clusters (areas) defined by this hierarchy are expectedviodimilar M-quantile coefficients. When the
conditional M-quantiles are assumed to follow a linear nhodih Bw(q) a sufficiently smooth function
of g, this suggests an estimator of the distribution function:

FYQ(t) = Ndl{ Ty <)+ 3 1(xiBy(Ba) gt)} (10.4)

j€s j€rg

WhererBw(éd) is used to predict the unobserved vajydor population unitj € rq. When there are no
sampled observations in ardahenfy = 0.5.

Using the empirical distribution function and the linearddantile small area models one can defined
the estimator of the small area mean as:

/ tdFy"(t) { Vit S xiBy(6a) } (10.5)
=S j€Tq

We refer to the small area estimator that can be expressemhetsoials of (10.3), with non-sample
predictions derived as estimates of expected values.

Chambers and Tzavidis (2006) observed that the naive Mtigianean estimator (10.5) can be
biased. The distribution function estimator (10.3) ungiag (10.4) is not consistent in general. Thus,
when the non-sample predicted values in (10.3) are estihetpectations that converge in probability
to the actual expected values, we see that

2 < =S 1yi— (=9 <t)= S lyj<t+e) # Y 1y <t),

JE€rd JEr4 JEr4 JE€rd
whereeg; are the actual regression errors. If these errors are indepdly and identically distributed
symmetrically about zero we expect that the summation otefhband side above will closely approx-
imate the summation on the right for valuest afear the median of the non-sampled adealues ofy
but not anywhere else. More generally, for heteroskedastiéor asymmetric errors this correspondence
will typically occur elsewhere in the support yafalthough one would expect that in most reasonable sit-
uations it will be “close” to the median gf In other words, it is not advisable to use (10.3) to predict a
guantile of the ared distribution ofy other than the median.

By combining a smearing argument (Duan, 1983) with a modahie finite population distribution

of y, Chambers and Dunstan (1986) (hereafter referred to as 8R)aped a model-consistent estimator
for a finite population distribution function. In the contef the small area distribution function (10.2),
and assuming that the residuals are homoskedastic withisnttall area of interest, this is of the form

F$P {Zly,<t+zn > 1y 9j)§t)}- (10.6)

I kerg j€s
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It can be shown that under the CD estimator of the small agtalition function the mean functional
defined by (10.6) takes the value

Vo = [ tefEP) :Ndl{ Y+ S B+ - T o —m} (10.7)
- == j€Tq ==

where fqg = nde‘l is the sampling fraction in ared, y; = xjﬁw(éd) andyj can be obtained under the
linear M-quantile small area model. We refer to (10.7) ashtias adjusted M-quantile mean predictor.
Due to the bias correction in (10.7), this predictor will baigher variability than (10.5) and so it should
only be used when (10.4) is expected to have substantial digs when there are large outlying data
points. An alternative approach for dealing with this biasiance trade off is to limit the variability
of the bias correction term in (10.7) by using robust (hutest) residuals instead of raw residuals. In
particular,

FEPRoNE) = Ndl{_z s <t)+ Y ngt S 1 Ek+viw{y; -9} < t)} (10.8)
€S kerg JE€ES
wherev;j is a robust estimate of scale for area individyia aread.

Wang and Dorfman (1996) pointed out that the CD estimatot6])1i® model-consistent but design-
inconsistent. An alternative to this estimator that is lhign-consistent and model-consistent has been
proposed by Rao et al. (1990) (hereafter referred to as RKIMder simple random sampling within the
small areas the RKM estimator of the finite population disttion function is

FRM(t) = ngl{ SV <+NS Sy -9 <t—%) (10.9)
i kerg jesy

—(gt=NgH Y ngt Sy - gt—9k>}.
kEsy jesd

Chambers et al. (1992) compared the large-sample meanestjaaors of (10.6) and (10.9) and
concluded that neither dominates the other. When the medsmdriectly specified we expect (10.6) to
outperform (10.9). However RKM demonstrated that (10.6) ba substantially biased when model
assumptions fail, while (10.9) is much less sensitive. heggust note that the RKM estimator can be
used to define an estimator of a small area characteristicémabe represented as a functional of the
small area distribution function in exactly the same wayhas@D-type estimator (10.7) can be used for
this purpose. In general, the resulting estimators willbb®the same. An exception is the RKM-based
estimator of the ared mean, which is the same as the CD-based estimator of this omaher simple
random sampling.

Turning now to the small area quantiles we note that an egimoatheqth quantile of the distribution
of yin aread is straightforwardly defined as the solution to the estimgpéquation

foa .
/ dFs(t) = q, (10.10)
whereFy(t) is suitable estimator of the arealistribution ofy such as the CD or the RKM estimators and
fga is the estimatedth quantile in small ared. As the preceding discussion makes clear, we anticipate
that a better approach for quantiles other than the meditmuse either the CD-type specifications or
the RKM specification forfd(t), with y; defined by an M-quantile linear small area model.
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10.1.2 Mean Squared Error (MSE) estimation for estimators & small area means and
guantiles

A robust mean squared error estimation method for the nargibhtile estimator (10.5) was described
in Chambers and Tzavidis (2006). Here we extend this argtietiefine an estimator that is a first

order approximation to the mean squared error of the esim(&0.6) of the small area mean when this
is based on an M-quantile regression fit. A more detailedudision of this approach to mean squared
error estimation is set out in Chambers et al. (2008). Ta, sternote that since an iteratively reweighted
least squares algorithm is used to calculate the M-quametijeession fit ay, we have

Igw(éd) = (XeWg,Xs) IXEWys

whereXg andys denote the matrix of samplevalues and the vector of samplealues respectively, and
Wy, denotes the diagonal weight matrix of oraethat defines the estimator of the M-quantile regression
coefficient withq = 84. It immediately follows that (10.5) can be written

~MQ ,
Yg =WgYs, (10.112)

wherews, = (Wjg) = Ny A, + (1 — Ny ng)WaXs(XWgXs) "1 {Xr, — Xs, } With Asg denoting then-vector
that “picks out” the sample units from ardaHereXs, andX;, denote the sample and non-sample means
of xin aread. Also, these weights are ’locally calibrated’ misince

> WiaXj =X + (1= fa) (Xry = Xs,) = Xa.
JES
A first order approximation to the mean squared error of (I)0then treats the weights as fixed and
applies standard methods of robust mean squared erroragistinfor linear estimators of population

~CD
quantities (see Royall and Cumberland (1978)). With thisragch, the prediction variance ¥f is
estimated by

__ ~CD d A A N2
Var(Yg )= 3 3 Ajdg (YJ —Xij(eg)) : (10.12)
g=ljcy
wherehjag = {(Wjg — 1)+ (g — 1) ~*(Na — ng) }1(g = d) + w2, 1(g # d). This prediction variance es-
timator implicitly assumes a model where the regressiog of x varies between areas, and that this
variation is consistently estimated by the fit of the M-qilantegression model in each area. Further-

~CD
more, since the weights defining, are locally calibrated om, it immediately follows that (10.6) is
unbiased under the same model and hence no correction foiagss necessary when estimating its
mean squared error. This can be compared with the estimhtbe eanean squared error of the naive

M-quantile estimatoi??,/I Q described in Chambers and Tzavidis (2006), which includsguared bias
term.

The linearization-based prediction variance estimat0orl@) is defined only when the estimator of
interest can be written as a weighted sum of sample valuassegoently, it cannot be used with quantile
estimators defined by solving (10.10). In this section wedles a nonparametric bootstrap approach to
MSE estimation of small area quantiles that was describ&davidis et al.(2010) and is based on the
approach of Lombardia et al. (2003).
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We define two bootstrap schemes that resample residualsadrom-quantile model fit. The first
scheme draws samples from the empirical distribution ofably recentered residuals. The second
scheme draws samples from a smoothed version of this empiigtribution. Using these two schemes,
we generate a bootstrap population, from which we then d@oetstrap small area samples. In order
to define the bootstrap population, we first calculate theudntile small area model residualg =
Yid — By(Ba)-

A bootstrap finite populatio)* = (yj4,Xjd), ] €U,d =1,---,D with

Yia = XidBuy(8a) + €ja
is then generated, where the bootstrap resiohq@lare obtained by sampling from an estimator of the dis-
tribution functionG(u) of the model residualsjq. In order to define5(u) we consider two approaches:
(i) sampling from the empirical distribution function ofedhmodel residuals and (ii) sampling from a
smoothed distribution function of these residuals. In ezade sampling of the residuals can be done in
two ways, (i) by sampling from the distribution of all resals without conditioning on the small area
- we refer to this as the unconditional approach; (ii) by simgpfrom the conditional distribution of
residuals within small ared - we refer to this as the conditional approach. The empitcabnditional

distribution of the residuals is 5

Sw=n"5 ¥ lfeig—<y
JE€ES

whereegs is the sample mean of thgq. Similarly, the empirical conditional distribution of the
residuals in ared is

Ga(u) =ng* 5 1(gj—Esa<u)
j€sd
where ggq is the sample mean of thgq in aread. A smoothed estimator of the unconditional

distribution is
(€ &5
u) =t dz ( Jd ))
1jesy

whereh > 0 is a smoothing parameter aidis the distribution function corresponding to a bounded
symmetric kernel density, .
= / k(z)dz

Similarly a smoothed estimator of the conditional disttibn in aread is

W=ty k(4R

jesy
, wherehy > 0 andK are the same as abou€.is defined by the Epanechnikov kernel,
3
K(u) = 5 (1 u)I(ul < 1),

while the smoothing parametensandhy are chosen so that they minimize the cross-validationraite
suggested by Bowman et al. (1998). That is, in the uncomditioaseh is chosen in order to minimize

_n‘lczlJESd/ €jd — €s) <u> G j(u ))Zdu,
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where é,j(u) is the version ofG(u) that omits sample unif with the extension to the conditional
case being obvious. It can be shown (see Section 1.5 in Li awhB (2007)) that choosing and

hy in this way is asymptotically equivalent to using the MSEim@atl values of these parameters. In
the simulation studies reported in the next section, we eaepoth the conditional and unconditional
smoothed distribution functions of residuals usingtipepackage of Hayfield and Racine (2008) in the
R software environment (R Development Core Team (2008)) ithptements the above approach. In
either case, bootstrap sampgjsare then drawn using simple random sampling within the saralhs
and without replacement. In what follows we denoteFy(t) the unknown true distribution function
of the finite population values in areh by IdeD(t) the CD estimator oFy 4(t) based on samplg, by

F g(t) the known true distribution function of the bootstrap papidnUj in aread, and bylf(j Py

the CD estimator oFy 4(t) based on bootstrap sampgg We then estimate the mean squared error of
the CD estimator (10.6) as follows. Starting from sanglselected from a finite populatids without
replacement, we generaBbootstrap populationg) *?, using one of the four above mentioned methods
for estimating the distribution of the residuals. From elbebtstrap populatiort) *?, we select. samples
using simple random sampling within the small areas andowitheplacement in a way such tgjt=ny.
Finally, bootstrap estimators of the bias and variance @Gb estimator of the distribution function in
areaj are defined respectively by

- B L
Biagy =B L? X
=1

=1l
and
o= B & bl.C ¢ bICD 1\ 2
Varg=BLLY 5 (K ~FMPw)’
b=11=1
, Where

=%bl,CD — = xbl,CD
ROt =Lty B

is the distribution function of theth bootstrap population arﬁj1 bl CD ) is the CD estimator of’ ( )
computed from théth sample of thdsth bootstrap populatiofp=1,--- ,B,l =1,--- |L). The bootstrap

estimator of the mean squared error of the CD-based small&snténate is finally calculated as

MSEs(FS2()) —Vary + Bias.. (10.13)

Note that the above bootstrap procedure can also be usedstruct confidence intervals for the
value ofFy 4(t) by “reading off” appropriate quantiles of the bootstraptrilisition of FdCD(t). Clearly,
the procedure can be used with any small area estimator, aiedrs be used to compute bootstrap
estimates of the mean squared errors of the M-quantile assyof the small area means as well as
associated confidence intervals, which can be contrastédtiaé estimates derived using the analytic
mean squared error estimator.

10.1.3 Model-based simulations for the estimators of sma#irea means and quantiles

In this section we present results from a simulation stuaydue compare the performance of the robust
M-quantile small area estimators. In particular, we comgd a model-based simulation in which small
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area population and sample data were simulated based onlawgldinear mixed model with different
parametric assumptions for the area and unit level randésntef

Two methods were used to simulate bivariate populationegyyx) in d = 30 small areas. In both,
N = 232 500 withNyg = 500 in aread. For each ared, we selected a simple random sample (without
replacement) of sizey = 30, leading to an overall sample sizerof 900. The sample values gfand
the population values ofwere then used to estimate the small area target parametecs, were taken
to be the small area means and selected quantilgsTdfis process was repeated 1000 times.

The first simulation experiment (scenario 1) generated fagipn values ofy usingyjq = 5+ Xjq +
Yj+€jd , With thex;q generated as independently and identically distributefisations fronN(Ed,E§/36).
The small arex-meansty were themselves drawn at random from the uniform distrdoutn the in-
terval (40, 120), and held fixed over the simulations. Siryilahe random effectyy andejq were
independently and identically generatedNy®, 1) andN(0,64) realisations respectively. The second
simulation experiment (scenario 2) generated values dbtiget variable using the same linear model as
in scenario 1, but in this case valuesxpf were generated as independently and identically dis&tbut
realisations fromx?(Z4), with the Zy drawn at random from the integers 1 to 200, and held fixed over
the simulations. Also, the random effegtsandejq were independently and identically generated as
mean-correcte{?(1) andx?(3) realisations respectively. The purpose of scenario 2 wagdmine the
effect of misspecification of the Gaussian assumptions oixaarmodel. Two different types of small
area linear models were fitted to the sample data obtaindgtgetMonte Carlo simulations. These were
(a) a linear mixed model, and (b) a linear M-quantile regoesspecification. The random intercepts
model used in (a) was fitted using the default settings ofriefLinction (see Section 10.3 in Venables
and Ripley (2002)) in the R software package. The M-qualitikar regression fit underpinning (b) was
obtained using a modified version of the rim function (se€iSe®.3 in Venables and Ripley (2002)) in
R. Estimated model coefficients obtained from these fits were used to compute a range of EBLUP
and M-quantile-based estimators of means and quantilémidifferent areas.

Biases and mean squared errors over these simulationagadenver the 30 areas, are set outin Table
10.1 (scenario 1) and in Table 10.2 (scenario 2). Under sicethall estimators performed reasonably
well. The differences between the estimators were much promounced under scenario 2 (area effects
distributed as chi-squared). Here we see that the use of maitimators led to substantial biases as
far as quantiles were concerned. In contrast, the estimébmth EBLUP and M-quantile) based on
(10.6) and (10.9) were essentially unbiased, even for mdrguantiles, with the CD-based estimators
somewhat more efficient. On the basis of these results itdhapbear that estimators that are defined as
functionals of the CDF estimators (10.6) or (10.9) are peddke if there is concern about misspecification
of the distribution of area effects.
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Method Target Parameters
10th 25th  50th  Mean  75th 90th
Relative Bias (%)
EBLUP/Naive 0.088 0.041 -0.002 -0.002 -0.036 -0.062
EBLUP/CD 0.096 0.046 0.051 -0.002 0.072 0.160
EBLUP/RKM 0.005 0.015 -0.024 -0.002 0.015 0.105
M-quantile/Naive 0.090 0.044 0.003 0.003 -0.030 -0.055
M-quantile/CD 0.058 0.003 -0.003 -0.002 0.008 0.064
M-quantile/RKM -0.011 0.002 0.008 -0.002 0.009 0.014
Relative RMSE (%)

EBLUP/Naive 0.29 0.23 0.20 0.23 0.19 0.19
EBLUP/CD 0.34 0.25 0.22 0.24 0.21 0.26
EBLUP/RKM 031 0.25 0.21 0.24 0.20 0.20

M-quantile/Naive 0.46 0.38 033 032 031 0.30
M-quantile/CD 034 025 021 024 021 024
M-quantile/RKM  0.32 025 022 024 021 0.22

Table 10.1: Model-based simulation results for Scenari@augsian area effects) averaged over 30
small areas. The target parameters are the small area meduselacted percentiles of the small area
distributions.

Method Target Parameters
10th  25th  50th  Mean  75th 90th
Relative Bias (%)

EBLUP/Naive 22.48 9.731 0.420 0.024 -4.708 -6.969
EBLUP/CD 0.373 0.205 0.079 -0.018 -0.073 -0.186
EBLUP/RKM 0.216 0.599 0.125 -0.018 -0.348 0.001
M-quantile/Naive 17.24 5.653 -2.641 -1.794 -7.021 -8.787
M-quantile/CD 0.373 0.176 0.028 -0.018 -0.086 -0.188
M-quantile/RKM  0.211 0.596 0.124 -0.018 -0.348 0.003

Relative RMSE (%)
EBLUP/Naive 2256 9.99 2.86 1.97 4.93 7.03
EBLUP/CD 3.23 3.08 3.01 2.01 3.32 3.90
EBLUP/RKM 410 356 3.30 2.01 3.46 4.12
M-quantile/Naive 17.60 6.70  3.30 2.49 7.04 8.80
M-quantile/CD 323 3.09 311 2.01 3.48 3.89
M-quantile/RKM  4.11 356  3.36 2.01 3.46 412

Table 10.2: Model-based simulation results for ScenariGl#-6quared area effects) averaged over 30
small areas. The target parameters are the small area nedusglacted percentiles of the small area
distributions.



190 Chapter 10. M-quantile methods

In order to evaluate the performance of the linearizatiaselll MSE estimator (10.12) and the boot-
strap MSE estimator (10.13), we carried out a further mba@sied simulation study. In this study we
focussed on MSE estimation for the 25th, 50th and 75th pélesnising the bootstrap estimator (10.13),
and for the mean using either the linearization-based ashin10.12) or the bootstrap estimator (10.13).
A total of 200 Monte Carlo simulations were carried out focle@ercentile and 100 Monte Carlo sim-
ulations for the mean, with the bootstrap MSE estimationlémented by generating a single bootstrap
population at each Monte Carlo simulation and taking L = 566tstrap samples from this population.
The bootstrap population was generated unconditionalily) Bootstrap population values obtained by
sampling from the smoothed residual distribution gendratethe sample data obtained in each Monte
Carlo simulation. Although it would have been theoreticalteferable to have generated multiple boot-
strap populations from each Monte Carlo sample, computmigdtions restricted our investigation to B
= 1. Since the estimates generated by the bootstrap pracedre then averaged over the 200 Monte
Carlo simulations in our evaluation, this limitation is ras severe as it might appear to be, since the
Monte Carlo simulations themselves serve as proxies fotipheibootstrap populations. Simulation re-
sults evaluating the resulting MSE estimators are set otialoles 3 and 4 and in Figure 10.1. Focusing
first on Table 10.3, we note that under both simulation séesathe linearization-based and the boot-
strap MSE estimators tracked the true MSEs of the small assmrastimators very well, and provided
coverage rates that were close to the nominal 95%.

Method MSE estimator for the small area mean
Min 25th 50th Mean 75th Max
Gaussian area effects

True 0.271 0.331 0.411 0.419 0.481 0.783
Linearization 0.289 0.317 0.400 0.416 0.500 0.680
Bootstrap 0.282 0.319 0.401 0.418 0.504 0.715
Coverage Linearizaton 0.88 093 095 094 0.97 0.99
Coverage Bootstrap 0.88 094 09 096 0.97 0.99
Chi-squared area effects
True 0.344 0.453 0.549 0589 0.736 1.051
Linearization 0.411 0.453 0.552 0.592 0.689 0.980
Bootstrap 0.398 0.444 0.559 0.589 0.706 1.003
Coverage Linearization 0.87 0.89 092 093 0.96 0.98
Coverage Bootstrap 092 095 09 09 0.97 1.00

Table 10.3: Across areas distribution of true (i.e. Montel@anean squared error and average over
Monte Carlo simulations of estimated mean squared errocaverage rates of nominal 95% confidence
intervals for the M-quantile/CD estimator 10.11. Estintateean squared errors based on (10.13) using
the smoothed unconditional approach (Bootstrap) or (3QLiRearization). Intervals were defined as

the M-quantile/CD estimator (10.11) plus or minus twiceeissimated standard error, calculated as the
square root of (10.12) or (10.13).

Focusing next on Table 10.4 and Figure 10.1 we see that thetbagpMSE estimator also performed
well in terms of approximating the true MSEs of the small ajeantile estimators. Again, coverage rates
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generated by 95% prediction intervals based on these M$&agst were close to their nominal level.

MSE Percentiles of across areas distribution
Min  25th  50th Mean 75th Max
Gaussian area effects

0.25 quantile True 0.354 0.391 0.491 0.514 0.595 0.887
Estimated 0.345 0.383 0.475 0.500 0.598 0.857

0.50 quantile True 0.311 0.353 0.444 0.469 0.547 0.761
Estimated 0.314 0.348 0.433 0.455 0.543 0.774

0.75 quantile True 0.339 0.386 0.495 0.516 0.611 0.909
Estimated 0.338 0.375 0.471 0.495 0.592 0.867

Chi-squared area effects

0.25 quantile True 0.289 0.357 0.454 0.471 0569 0.919
Estimated 0.314 0.346 0.437 0.458 0.554 0.795

0.50 quantile True 0.376 0.454 0.575 0.594 0.735 1.087
Estimated 0.395 0.439 0.554 0.578 0.696 1.001

0.75 quantile True 0.594 0.678 0.848 0.893 1.035 1.727
Estimated 0.592 0.666 0.843 0.877 1.058 1.579

Table 10.4: Across areas distribution of the true (i.e. MdDarlo) mean squared error and average over
Monte Carlo simulations of estimated mean squared erroth®ICD estimates of 0.25, 0.50 and 0.75

guantiles from (10.10). Estimated mean squared error fantjes is based on (10.13) using smoothed
unconditional approach.
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Figure 10.1: Distribution of area-specific coverage rafesominal 95% confidence intervals for small
area quantiles in the model-based simulations. Intervel®wefined as the M-quantile/ CD estimator
(10.10) plus or minus twice its estimated standard errdcutated as the square root of (10.13).

10.2 Small Area Models for Poverty Estimation

In this report we have already discussed small area estimafiaverages and quantiles using the unit-
level nested error regression model and the M-quantile Isaneh model. Both models can be also
utilized for estimating more complex statistics such aslkanaa poverty indicators (Foster et al., 1984).
Recently, Molina and Rao (2009) proposed the Empirical Bestiction (EBP) approach to poverty
estimation under the nested error regression model. Uhi@emntodel, the EBP approach provides the
best estimator of the target parameter. Nevertheless,redthdata the assumptions of statistical models
may hold only approximately and in fact, on many occasiomsetare significant departures from the
model assumptions. An alternative approach to povertynesion is based on the M-quantile small
area model. The M-quantile method does not impose strorighdisonal assumptions and is outlier
robust. Hence, the use of the M-quantile model for povertynegion may protect us against departures
from assumptions of the unit-level nested error regressiodel. In this section we contrast these two
small area methodologies for poverty estimation both wherassumptions of the unit-level nested error
regression model hold and when these assumptions areedolat

10.2.1 Definitions of poverty indicators

Although small area averages are widely used in small arplicafions, relying only on averages may
not provide an very informative picture about the distribatof wealth in a small area. In economic
applications for example, estimates of average income roapnovide an accurate picture of the area
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wealth due to the high within area inequality. Here we fooudusively on the estimation of two poverty
indicators i.e. the incidence of poverty ldead Count Ratio g-and thePoverty Gap k- (see Foster et al.
(1984)). Denoting by the poverty line, the FGT poverty measures for a small draae defined as

t—Yijd
t
Settinga = 0 defines thédead Count Ratiavhereas setting = 1 defines thé?overty Gap

Fad = ( )4 (yja <t). (10.14)

10.2.2 The M-quantile approach for poverty estimation

In this section we discuss estimation of the poverty indicsaof interest under the M-quantile model. To
start with, the target is to estimaltgy using the M-quantile small area model

Faa =Ng*| 3 Foa+ Y Faal: (10.15)

j€sd j€rq

The question again is how to estimate the out of sample coentan the expression above. This can
be achieved using the ideas we described in Section 10.4 dsfomating the small area distribution
function under the M-quantile small area model. As we mewmibin Section 10.1.1, using the empirical
distribution of the small area population distribution étion may provide biased results especially when
the aim is to estimate small area quantiles. Poverty estimét a special case of quantile estimation
since we are interested in estimating the number of indal&lhouseholds below a threshold. As a result
one approach to estimatitigq is by using a smearing-type estimator of the distributiamcfion such as
the Chambers-Dunstan estimator. In this case, an estifRgioiof Fo? is

lfad:Ndl{_Z <+ 3 ngt y '(9k+(y1'—37j)§t)}

i€y Kery j€y

The above can be evaluated using the following procedure.

1 Fit the M-quantile small area model (1.1) using the sav@ample values and obtain estimates of
B andqg;

2 draw an out of sample vector using

ijdr = derB(ed) + eijdn
Wheree’j‘dr is a vector of sizéNy — ng drawn from the Empirical Distribution Function (EDF) of

the estimated M-quantile regression residuals or from eosimeersion of this distribution anﬁl,
B4 are obtained from the previous step;

3 repeat the procedd times. Each time combine the sample data and out of sampefatagsti-
mating the target using

R =N S 1 <t + S 1y <)
j€s j€Tg
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4 average the results ovdrsimulations.

At this point, we should elaborate on some aspects of theoapprused for estimating the poverty
indicators under the M-quantile small area model. To stéith,wwe must point out that one can use
different approaches for drawir&j;dr. One can draw conditional (upon the small area) or uncanditi
residuals from the EDF or from a smoothed version of the EDE.dutlined approach for estimating the
poverty indicators, although less parametric, is simitsspirit to the EBP approach proposed by Molina
and Rao (2009). Note for example th%r is generated usingjdrB(éd) i.e. from the conditional M-

guantile model plus a draw from the empirical distributidnesiduals. Under this approaéh play the
role of the area random effects in the M-quantile modellirggrfework. These area-specific M-quantile
coefficients are not fixed i.e. they are estimated under thguiitile model using fewer assumptions
than the ones utilized by the unit-level nested error regwasmodel for estimating the area random
effects. Of course, when the assumptions of the random #exsemodel hold, the EBP approach of
Molina and Rao (2009) offers the best predictor. Howevernmvthe assumptions of the random area
effects model are not met, the M-quantile approach for edtirg the incidence of poverty may offer a
competitive alternative. A mean squared error of the M-tjleestimates of the incidence of poverty
can be obtained using the non-parametric bootstrap agpaescribed in Tzavidis et al. (2010). In the
following section, we use two model-based simulation sgesdor contrasting the EBP and M-quantile
approaches to poverty estimation. Under the first scenadcassumptions of unit-level nested error
regression model are perfectly met and we assess the effjcgains from using the EBP approach.
Under the second scenario we generate population data altelgrative parametric assumptions and we
aim at assessing whether the less parametric M-quantil@agip offers any efficiency gains in this case.

10.2.3 A Model-based Simulation

The model-based simulation scenario we consider is exttat\same as the one employed by Molina
and Rao (2009). In particular, we simulated populationsizd 5 = 20000 for 80 small areas with
Ng = 250. The response variable for the population upiisvas generated from a linear mixed model
taking as auxiliary variables two dummies plus an inter¢eph. The values of these two dummies for
the population units were generated from Bernoulli distitins with success probabilities increasing
with the area index for X1 and constant for X2 and more spedific

0.5d
= U. —_— == .2
P1d 0.3+ 30 , Pad 0 9

and welfare variables are exponential functions of theaesesyjq. A set of sample indicesy with
nd = 20 was drawn independently in each adeasing simple random sampling without replacement.
The values of the auxiliary variables for the populationtsiand the sample indices were kept fixed over
theH = 5000 Monte Carlo simulations. The intercept and the regresoefficients associated with the
two auxiliary variables used to generate populations \@ere(3,0.03,.0.04) and the poverty lin¢ was
fixed as 0.6 times the median of tlge We considered two scenarios for generating the area-tawk!
unit-level residuals.

e Scenario 1: Scenario Ly ~ N(0,0.15%) andejq ~ N(0,0.5%)

e Scenario 2: Mean-centeretf with ug ~ X2(2) andejg ~ X?(4).
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For each Monte-Carlo population we computed the true pyo\iadicatorsFaTdR and we also used

three small area estimators (a) the direct estimgRi, (b) the EBPFEBP, and (c) the M-quantil& 2.
The performance of these three estimators is evaluated tigrfollowing two measures

H g TR

o Fad—F1R)

o Bias:RBy = 1 y (e Ffad)
By H hgl FIR

(Faa — F)%]2

M

e Root Mean Square Err@®®RMSE = [£

h=1

The results of the model-based simulations are summarideigures 1.2-1.5. As expected when the
assumptions of the unit-level nested error regression hinwdie, the EBP approach offers estimates with
the smallest MSE. The M-quantile estimates have a bit |avfgfe and the direct estimates are the most
inefficient. On the other hand, when the Gaussian assungptibthe unit-level nested error regression
model do not hold, we notice that the M-quantile approackrefsmall area estimates of poverty that
are more efficient while the EBP estimates are more effickent the direct ones. These results indicate
that the less parametric M-quantile approach can proteagamst model mispecification. However, if
we are certain that the model assumptions are met, the EBBambpwill always offer the most efficient
method to poverty estimation.

MSE Head Count Ratio
0.002 0004 0006 0008 0010 0012 0014
|

areas

Figure 10.2: Model based simulations: MSE of the EBP (reigctl (black), and MQ (blue) estimators
of HCR, for each area when the normality assumptions hold.
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Figure 10.3: Model based simulations: MSE of the EBP (reid@ctl (black), and MQ (blue) estimators
of PG, for each area when the normality assumptions hold.
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Figure 10.4: Model based simulations: MSE of the EBP (reigctl (black), and MQ (blue) estimators
of HCR, for each area when the chi-square assumptions hold.
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Figure 10.5: Model based simulations: MSE of the EBP (reid@ctl (black), and MQ (blue) estimators
of PG, for each area when the chi-square assumptions hold.
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10.2.4 A Design-based Simulation

The aim of this section is to empirically contrast the two heelologies using a design-based simulation
that utilizes real data from the 2007 European Survey onnrcand Living Conditions (EU-SILC) in
Italy. Our target is the estimation of the incidence of ptyéor 29 Italian Provinces in three Regions:
Lombardia (Northern Italy), Toscana (Central Italy) andr@ania (Southern Italy). Data on the house-
hold equivalised income, on household characteristiee (sf the household in square meters) and on
individual characteristics of the head of the householdhdge education, marital status and employ-
ment) are available.

The synthetic population data on which this simulation isdghis generated by nonparametrically
bootstrapping (within each of the 29 target small areas)BbeSILC original sample dataset. This
synthetic population was kept fixed and five hundred withiovpprce simple random samples of size
equal to the sample size of each province in the originalsgataere selected independently. Estimated
values of the incidence of poverty at province level weramigd using the MQ (on the raw equivalised
income) and the EBP (on the logarithm of equivalised incoastimators described in the previouos
sections. The simulation results are set out in Figures, 10.6, 10.8 which show the relative bias, the
square root of the variance, and the root mean squared errtre estimation of the HCR. This assists
us in understanding how the different components i.e. bidsvariance contribute to the mean squared
error. To start with, we note that the M-quantile-based pgvestimation method has smaller RMSE in
most provinces (Figure 10.8). To explain this result we fiosstis on the variance results. It is clear that
the EBP method has lower variance in most provinces (Figduwg) lwhich we may expect given that the
EBP is based on a random effects model. This result indichétghe worse performance of the EBP in
terms of RMSE must be due to bias. Indeed, the bias of the EBBhgr than the bias of the M-quantile
estimates for most provinces (Figure 10.6).

At this point it is important to remind that the synthetic pégiion of this design-based simula-
tion is not generated under a model but by non-parametyitalbtstrapping the original sample data.
One may argue that the nonparametric bootstrap for crettimgynthetic population creates an over-
representation of influential points in this populationtthffects the EBP approach and favors the
M-quantile approach. For this reason, we replicated théggddsased simulation this time generating
the synthetic population by non-parametrically bootginag the original sample using also the survey
weights. The results from this second design-based siionlate not reported here but the conclusions
about the performance of the two approaches to poverty astimremain the same as above. One
explanation about higher bias in the EBP estimates is timtrihy be due to the effect of the simple ex-
ponential backtransformation. However, we are not comdrihat the backtransformation is the source
of the problem. Looking at the fit of the random effects modethite sample data, we noted that the
Gaussian assumptions utilized by the EBP method are notveatwhen the log-transformed income
is used. Hence generating area random effects and indivédieas under these assumptionsmay not be
realistic in this case. On the other hand, utilizing the erogi distribution of the residuals, as in the case
of the M-quantile approach, may protect us against the ra@Bpation of the parametric assumptions.
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Figure 10.6: Design based simulations: relative bias oEfBE and MQ estimators of the HCR, for each
area.
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Figure 10.7: Design based simulations: square root of thanee of the EBP and MQ estimators of the
HCR, for each area.
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Figure 10.8: Design based simulations: root MSE of the EBPMQ estimators of the HCR, for each
area.

10.2.5 Alternative measures for poverty: fuzzy indicatorsat a small area level with M-
guantile models

In this section we propose estimators for the fuzzy monetany fuzzy supplementary indicators at
a small area level based on the M-quantile model. Fuzzy approonsiders poverty as a matter of
degree rather than an attribute that is simply present @ralisr individuals in the population of Betti
et al.(2009).

Fuzzy indicators have been made such that they vary from Qvithdre O indicates the richest person
in the population while 1 indicates the poorest.

The fuzzy monetary indicator is based on the equivalisednm&E. For small ared is defined as:

Ny
FMg=Ng''$ FM;
)

whereF M; is the fuzzy monetary index for thigh unit in the population:

Ny a-1 Ng .
FM; = [(Ng— 1)1 S I(E > E; Zk—lE"'(Ek>E’)].
i=|(Na—1) k;( K J)] [ SN El

The parametea is arbitrary, but Cheli and Betti (1999) have choseso that the mean d¥M; for the
whole population is equal to the head count ratio computethiofficial poverty line.
An estimator ofF My under the M-quantile model is given by
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FMy o=Ngt | S FM;+ 5 FMT . (10.16)

JES J€rd

Under the M-quantile model an empirical approach for edimgeequation (10.16) is implemented using
the same Monte-Carlo approximation described in sectio.20

1. Fitthe M-quantile model (10.1) using the ré&sample values and obtain estimate§@g);

2. draw an out of sample vector using

Ef =x;B(@u)+€ jerq,

whereej, j € rq is drawn from the EDF of the estimated M-quantile regressgsiduals an@(éd)
is obtained from the previous step;

3. repeat the proceds times. Each time combine the sample data and the out of samafdefor
estimating the target using

FMy O = Ny

)

Z FM; + z EM?AQ

JES jerg

wherefl\\/ljMQ is estimated using the observed and the predicted eq@talisomesy = {E;, j
StUE],j €ra}.

4. average the results ovelsimulations.

The fuzzy supplementary indicator put together diversécatdrs of deprivation, such as housing
conditions, possession of durable goods, perception ofhgr, expectations, norms and values.
To quantify and put together diverse indicators severgissége necessary (see Betti et al. (2009)):

1. Identification of items;

2. transformation of the items into th@ 1] interval;

3. exploratory and confirmatory factor analysis;

4. calculation of weights within each dimension;

5. calculation of scores for each dimension;

6. calculation of an overall score and the parameter

7. construction of the fuzzy deprivation measure in eactediion (and overall).
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The steps 1 to 3 are used to identify different dimension$efgoverty where each dimension is
composed of a given number of items.

Let K be the number of dimensions akdthe number of items & 1, ..., k,) within the hth dimen-
sion h=1,...,K). The weight,w, for a given dimensiorh formed byky items and a given iterg
is

o ki - kn -

h7 i * *

Whi [ [1_%} <1+Zirh.,z;h.,4’| (thazhz < rh,a;h,;’)> <1+_Zirh7z;h72i’| ("hzhz > rh,z;h,4)> ;
1= 1=

wherez andop ; are the mean and the standard deviation oftfinéem respectivelyr, ;.n z is correla-
tion coefficient between deprivation indicators corresjiog to itemz and the other items present in the
hth dimension,r;ﬁ’a;hz is the critical value of the correlation coefficient (seetBet al. (2009)). Once
weights are calculated for each items in a given dimensien #ne scaled in such a way that they sum
to 1 within the dimension.

The score for théath dimension for thgth individual is then computed as

sh-:khwh-@
Ny i; s

wherezy; j is the value of théth item in thehth dimension for the individuaj.
An overall score for thgth individual is calculated as the following unweighted mea

K
5=K™1Y s
h=1

Finally the fuzzy supplementary for thHéh individual over all dimensions is computed as:

FS — [Zg—m'(sg > Sj)r_l [ZB'—mSg'(Sg > Sj)]
Vsl (s> s) Sl s) |

wherea is computed as for the fuzzy monetary indicator. Using tlgesof a given dimension we can
compute fuzzy supplementary indicators for each dimension

At a small area level we propose to compute scores for the lsdnopits as mentioned before and
then use the M-quantile model (or other proper models) tdiprescores for the non sampled units in
the population. Once we have the scores for each individuatres are observed andare predictet]
we can estimate the fuzzy supplementary indicator for eatdllsareas using the same Monte-Carlo
approximation described for the fuzzy monetary index.

We remand to the final WP1 deliverable for a deepened dismusdiout fuzzy sets. Here, we want
just to provide a first approach to estimate fuzzy indicatdra small area level. The used approach is
similar in spirit to the EBP approach proposed by Molina aad R2009).

INote that in this statemestindicates the set of the sampled units and not the scorebleria
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Biast10P Min. 1stQu. Median Mean 3rdQu. Max.

EBP —-1.00 169 257 259 370 540
MQ —1745 -1493 -1339 -1284 -1114 -5.07
MSEx10* Min. 1stQu. Median Mean 3rdQu. Max.
EBP 523 544 550 552 561 589
MQ 521 543 552 552 561 585

Table 10.5: Distribution over areas of the b{ag0°) and mean squared errgrl0%) of the EBP and MQ
estimators of the small area fuzzy monetary index

10.2.6 Model based simulation for fuzzy monetary indicatomat a small area level

The model-based simulation has been carried out using the seenario as the one employed by Molina
and Rao (2009). This scenario has been already describedtinrs 10.2.3 as scenario 1.

We evaluate the performance of the fuzzy monetary indiasorg the following two measures:

e Bias:

L
Bg=L1S FMg—FMJR;

e Mean Squared Error:

L
MSE =L1 > (FMa— FMIR)?Z
I=1

whereF MJR is the true value of the fuzzy monetary indicator in aleBMy is an estimator of the fuzzy
monetary chosen between the EBP estimator and the M-guastimator. The EBP estimator is based
on the EBP approach described in chapter 2.

Results for EBP and MQ estimators are summarised in TabldriFgures 10.9 and 10.10 we show
the performance in each area of the EBP and MQ estimatorgd@ifzy indicator.

The EBP shows the best performance in terms of bias while #enrsquared error is similar for
EBP and MQ estimator. The MQ estimator shows a bigger bias B&P and this is probably due to
the fact that we used a scenario that fit perfectly with thamatric assumptions of the EBP so that MQ
estimator can’t reach the same level of precision.

Fuzzy supplementary indicators are thought to resume a lksat of variables that are proxies for
poverty and social exclusion. Typically one have to idgnéifgiven number of dimensions with factor
analysis, where each dimension is build by a set of itemser@ivat, since in our scenario we considered
only two dummy variables, we decided to not include the fustgyplementary indicator in the simulation
study: we believe that it does not have sense to computeniffisaitor with a so poor set of variables.
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Figure 10.9: Model based simulations: bias of the EBP and Kt{pnators of the fuzzy monetary indi-
cator, for each area.
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Figure 10.10: Model based simulations: mean squared eftbedBP and MQ estimators of the fuzzy
monetary indicator, for each area.

10.3 Nonparametric M-quantile regression models in small @ea estima-
tion

M-quantile models do not depend on strong distributionsliagptions, but they assume that the quantiles
of the distribution are some known parametric function &f tovariates. When the functional form of
the relationship between thgth M-quantile and the covariates deviates from the assuomed the
traditional M-quantile regression can lead to biased egtsiof the3 coefficients. Pratesi et al. (2008)
and Salvati et al. (2010b) have extended this approach tdhaantile method for the estimation of the
small area parameters using a nonparametric specificatitie conditional M-quantile of the response
variable given the covariates. When the functional formhefrelationship between tlgeth M-quantile
and the covariates deviates from the assumed one, thedredib-quantile regression can lead to biased
estimators of the small area parameters. Using p-splirelslfguantile regression, beyond having the
properties of M-quantile models, allows for dealing withamdefined functional relationship that can
be estimated from the data. When the relationship betwezg-tih M-quantile and the covariates is not
linear, a p-splines M-quantile regression model may hayeifstant advantages compared to the linear
M-quantile model.

Let us consider only smoothing with one covarigtea nonparametric model for tlggh quantile can



10.3. Nonparametric M-quantile regression models in sarath estimation 207

be written ag)q(x1, P) = My q(X1), where the functiomny 4(-) is unknown and, in the smoothing context,
usually assumed to be continuous and differentiable. Hegayill assume that it can be approximated
sufficiently well by the following function

K

My, q[X; By (9): Vi (0)] = Bou () + Bag (A)Xe + -+ Bpy (@)X} + > Vi (@) (1 — ki) % (10.17)

k=1

wherep is the degree of the spliné,)? =tP if t > 0 and 0 otherwise for k=1,...,K is a set of fixed
knots, By, (q) = (Bo(a), B1y(a), - -, Bpw(@))* is the coefficient vector of the parametric portion of the
model andByy (d) = (Yay(a),-- -, Yky(a))* is the coefficient vector for the spline one. The latter joorti
of the model allows for handling nonlinearities in the stase of the relationship. The spline model
(10.17) uses a truncated polynomial spline basis to apmrate the functionmy ¢(-). Other bases can
be used; in particular radial basis functions can be usedndlb bivariate smoothing. More details on
bases and knots choice can be found in Ruppert et al. (2003).

The influence of the knots is limited by putting a constrainttbe size of the spline coefficients:
typically ZE:l qu(CI) is bounded by some constant, while the parametric coefte[g§(q) are left un-
constrained. Therefore, by dropping the area subsdript ease of notation, estimation can be accom-
modated by mimicking penalization of an objective functeord solving the following set of estimating
equations

n 0
Z —XjBy(a) — ZjYy(A))(X;, Zj)trace+ A [y;lzrqu)] = 0(11p+K)> (10.18)

assuming that

Wq(Tiqu) = 20{s Tjqy}{(L— )l (rjgy < 0)+7l(rjqy > 0)}
whererjqy = Yj — XjBy(a) — ZjYy(a), sis a robust estimate of scale, e.g. the MAD estimsite
medianr jqy|/0.6745,Xx; here is thej-th row of then x (1+ p) matrix

1 X1 - X]?l
X=]1 & 1
1 Xin v an
while z; is the j-th row of then x K matrix
(xa1—kp)f o (ar—kk)?
(Xln—Kl)Er (Xln—KK)Er

andA is a Lagrange multiplier that controls the level of smoo#imef the resulting fit. An iterative
solution is needed here to obtain estimaigsq) and?w(q). Consider the Huber proposal 2 influence
function (see Huber(1981)) an algorithm based on iterigtiseveighted penalized least squares is pro-
posed in Pratesi et al. (2009) to effectively compute theipater estimates.

Once parameter estimates are obtaimegg[%] = myg[x1; By (d),Vy(a)] can be computed as an
estimate foIQq(x1, ). The approximation ability of this final estimate will helvilepend on the value
of the smoothing parametar. Generalized Cross Validation (GCV) has been usefullyiadph the
context of smoothing splines (see Craven and Wahba (19@€l)jsaused also in Pratesi et al. (2009).
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Extension to bivariate smoothing can be handled by assu@igy, X2, P) = My q(X1,X2). This is
of central interest in a number of application areas wheereefced responses need to be converted to
maps, as in environment and poverty mapping. In partictitarfollowing model is assumed at quantile
g for uniti:

My,q[Xaj, X2j; By (a) Y (A)] = Bow (A) + Bay (A)Xaj + B2y (A)X2j + ZiVy (a).- (10.19)

Herez; is the j-th row of the followingn x K matrix

o [C(Kk — ki) 1 St - (10.20)

whereC(Bt) = ||Bt]|?log ||Bt||, X; = (xaj,%zj) andkk, k=1,...,K are knots. See Pratesi et al. (2009) for
details on this. Here, it is enough to note that the estimgifocedure can again be pursued with (10.18)
wherex; = (1,X;).

The choice of knots in two dimensions is more challengingn timaone. Two solutions suggested
in literature that provide a subset of observations nicesttered to cover the domain aspace filling
designgsee Nychka and Saltzman (1998)) anddlaea algorithm. The first one is based on the maximal
separation principle df points among the uniqug and is implemented in thiei el ds package of the
R language. The second one is based on clustering and sKleefresentative objects out pf it is
implemented in the packagd ust er of R

It should be noted, then, that the estimating equations Gril@) can be used to handle univariate
smoothing and bivariate smoothing by suitably changingoirametric and the spline part of the model,
i.e. once theX and theZ matrices are set up. Finally, other continuous or categbxiariables can
be easily inserted parametrically in the model by addingiools to theX matrix. This allows for
semiparametric modeling, as intended in Ruppert et al.32Q0 be inherited and applied to M-quantile
regression.

10.3.1 Small area estimator of the mean and of the quantiles

Salvati et al. (2010b) have applied the P-splines M-quaunéigression to the estimation of a small area
mean as follows. The first step is to estimate the M-quantiffcientsqjq as illustrated in paragraph
10.1 for the linear case treated in Chambers and Tzavid3gj2@Recall that the M-quantile coefficient
Qja of unit j in aread is the valuegjq such thatQq, (X1ja, W) = Yja- The unit level coefficients are
estimated by defining a fine grid of values on the intef@all) and using the sample data to fit the p-
splines M-quantile regression functions at each valas this grid. If a data point lies exactly on the
g-th fitted curve, then the coefficient of the correspondinga unit is equal t@. Otherwise, to obtain
Qjd, a linear interpolation over the grid is used. An estimatéhefmean quantile for arehis obtained

by taking the corresponding average value of the sample &ija coefficient of each unit in areh
The small area estimator of the mean may be taken as:

a l R
Yg = N_d{ j;dyjd 1 j;d ¥id }, (10.21)

where the unobserved value for population yritrq is predicted using

9ia = XjaBy (8a) +zja%y,(Bo).
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whereféw(éd) and\?w(éd) are the coefficient vectors of the parametric and splinegrortespectively, of
the fitted p-splines M-quantile regression functiofat
However, the estimator of the small area mean can be biassdhfll areas containing outliers. This
has already been noted in Tzavidis and Chambers (2006)dastimator under the a linear M-quantile
regression model. They propose an adjustment for bias basalde Chambers and Dunstan (1986)
estimator of the small area distribution function. Thisustliinent can be used also in case of p-splines
M-quantile regression models. The bias-adjusted estinfiateéhe mean is given by
1
?dNPMQ/CD - {

S Ny
Yijd g

, > (YVia— 37jd)}, (10.22)
j€0q =

whereyjq denotes the predicted values for the population unitg iand inUy. This estimator will be
here denoted wittNPMQ when using the p-splines M-quantile regression model, aitid MQ when
using the linear one.

Due to the bias correction in (10.22), this predictor wiledigher variability and so should only be
used when the estimator (10.21) is expected to have suiasthiais, e.g. when there are large outlying
data points. An alternative approach to dealing with the-piiance trade off in (10.22) in such a
situation is to limit the variability of the bias correctigarm in (10.22) by using robust (huberized)
residuals instead of raw residuals. In particular,

“NPMQ/Rob 1 .~ Ng—ng Yid — Yid

Yq =1 Yy Via+ Y Vid+ vg (5 (10.23)
N { j;d j;d Nd j;d ( Vd >}

wherevy is a robust estimate of scale for adésee Tzavidis and Chambers (2007)).

Using the nonparametric M-quantile predictor for the nomgled units we can define a model
unbiased estimator of the small area distribution func{ith6):

F‘d“PQWCDa):Ndl{z 1y <O+ 3 gt S 1(xeaBy(8a) — 2ja¥y (Ba) + (v — XjaBy (Ba) + ZiaTy(Ba)) < 1)

j€sq kerg JES

(10.24)

Similarly to M-quantile small area models, thth quantilejiyq of the distribution ofy in aread is
straightforwardly estimated by the solution to

(VRN
/ dchd'\'F’QM(t):q. (10.25)

—00

10.3.2 Mean squared error estimation

Salvati et al. (2010b) also propose an estimator of the MStBetmall area mean. For fixgdandA,
theY; in (10.23) can be written as the following linear combinataf the observegjq plus an additional
part due to the huberized residuals. In particular,

SNPMQ/Rob_ 1 o
Ya ~ Ng gswjdyjdv (10.26)
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where the weightsvg = (Wg,...,Wnq)' are given by

Ng

—N
Wd:{l—l— dbjd}lsd—|—
Nd

+W(8q)[X,Z] <[X,Z]traceN(éd)[X,Z] +)\G)_l (Trd — '\"’T_dndTSd) (10.27)

with bjg = w(yjd\;yjd>/<yjd\;9jd ) 15, the n-vector with j'" component equal to one whenever the cor-

responding sample unit is in arg¢aand to zero otherwis&yV (éd) a diagonaln x n matrix that contains
the final set of weights produced by the iteratively rewedhpenalized least squares algorithm used to
estimate the regression coefficier®= diag{01, p, 1k } with 1+ p the number of columns of andK

the number of columns df, and withT,, andTsg, the totals of the covariates for the non-sampled and
the sampled units in areh respectively. Note thais, = ¥ jcs, [Xjd Zja] " bja-

The weights derived from (10.27) are treated as fixed anduy‘l” estimator of the mean squared
error of estimator (10.26) can be proposed by using standattods for robust estimation of the vari-
ance of unbiased weighted linear estimators (see RoyalCamaberland (1978)) and by following the
results due to Chambers and Tzavidis (2006). The predietimiance of (10.26) can be approximated
by

SNPMQRob oy 1 2, Ng—nyg , 2 _
var(Yy —Yq) & N_§ L;d {djd + m}var(y,d) + jGZ\Sd bjdvar(y,d)] (10.28)
with bjg =wjq — 1 if j € sy andbjq = wjq otherwise, and\sy the set of sampled units outside acka
Following the area level residual approach of Tzavidis ahdr@bers (2006), we can interpret (g4 )
conditionally to the specific ared from whichyy is drawn and hence replace () in (10.28) by
(Yjd —yjd)z. Salvati et al. (2010b) develop a robust estimator of themsemared error of (10.26) that
is given by

AN 1 Ng —n . N
var(vy TMReD) — INE [Z {bjzd + H} (Yia = ¥ia)?+ Y bia(Yia —de)2] - (10.29)
d | €5 d jes\sy

Since the bias-adjusted nonparametric M-quantile estimistan approximately unbiased estimator
of the small area mean, the squared bias will not impact fsignitly the mean squared error estimator.
The main limitation of the MSE estimator is that it does nat@amt for the variability introduced in
estimating the area specifis andA. We note also that we can obtain an estimate only for areasewhe
there are at least two sampled units. Details on the propdrthie MSE estimator can be found in
Tzavidis et al. (2010) and Salvati et al. (2010a).

10.3.3 Simulations for nonparametric M-quantile models

In this section we use simulation studies to illustrate thédisample performance of the small area
mean estimator based on p-splines M-quantile regressiRMQ. It is compared with the estimator
computed by standard linear M-quantile regressidiQ— and with the Empirical Best Linear Unbiased
Prediction estimators based on Battese et al. (1988) mdaBL-UP — and on nonparametric regression
model by Opsomer et al. (2008NPEBLUP. We carried out one simulation study where the properties
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of the estimators of the small area mean and of its MSE have d&sessed by Monte Carlo experiments
using models with a single covariate. These results arertegpin Salvati et al. (2010b) and will be
published in theJournal of Statistical Computation and Simulatioive also consider and compare the
estimators of the small area quantiles, namely of quar@il2s, 0.5 and 0.75. In this case

Given the number of small areds= 30, three synthetic populations of side= 10,550 are generated
under the random intercepts model

Yid = M(Xjd) + Yd + €jd

with x drawn from a Uniform distributiori0, 1] and area effectyy were independently drawn from
N(0,0.04). The true underlying relationship between the covariaend the expected value of the
response variablg E(y|x) = m(x) were generated by the following models:

Linear. m(x) =3+ 2(x— 0.5): it represents a situation in whidtiQ andEBLUP are based on a good
representation of the true model aN®@MQ andNPEBLUP may be too complex;

Cycle. m(x) = 2sin(2rx): it defines an increasingly more complicated structure efréiationship be-
tweeny andx;

Jump. m(x) = 1+ 2(x—0.5)I(x < 0.5) + 0.5 (x > 0.5): it is a discontinuous function for which all
estimators are based on a misspecified model.

Two different settings are considered for the individudbetfseq:

e Gaussian errors with mean 0 and standard deviation 0.4 éoutiits belonging to twenty-four
small areas and

e 15% contaminated Gaussian errors for the units belongitigetather six small areas where 85%
percent of errors are generated from a Normal distributiadh mean 0 and standard deviation 0.4
and the remaining 15% percent of errors are generated fromra& distribution with mean 0
and standard deviation 2.

The setting for the first 24 small areas is considered as atmoff)regularlyf) noisy data withp =
UscTig = 0.2. The setting for the second group of six small areas, ondh&ary, defines a situation of
more noisy data with the likely presence of outlying obstoves. We will denote by contaminated data
the latter setting, while by uncontaminated data the former

A sample of sizen = 600 was selected from the simulated population, by simpidam sampling.
Each population was kept fixed for all simulation runs. AltofalT = 500 simulations were carried out.
For each sampl&Q, NPMQ, EBLUP andNPEBLUP have been used to estimate the small area means.
First, second and third quantile have been computed with @R MQ models under linear, cycle and
jump signal. FoMQ andNPMQ, the Huber Proposal 2 influence function is used with 1.345. This
value gives reasonably high efficiency in the normal caseoiiypces 95% efficiency when the errors are
normal and still offers protection against outliers (sed&h(1981)). Moreover, in the correction term of
the MQ andNPMQ estimators, robust (huberized) residuals instead of raiduals are used. For each
estimator and for each small area we computed the Monte Estilmate of the percentage relative bias

Bamc
d

RBY%y = 100; (10.30)
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the Root Mean Squared Error

1L ~ =
RMSEymc = ?Z(Ydt—Yd)za (10.31)
o=

and the corresponding percentage Relative Root Mean SijHarer

RMSEjuc 1

Yq
Figures 10.11, 10.12 and 10.13 report the RBRRMSE% values obtained for this study under the
linear, cycle and jump signal, respectively. Tables 1.67,dnd 1.8 show the behavior of quantiles
estimates under the same types of signal. MSE estimatiom@agored comparing MSE estimates and
Monte Carlo MSEs, and by checking 95% confidence intervalsrege rates CR%. For MSE estimation
of the NPMQ estimator we used expression (10.29), whereas the MSEat&imof MQ predictor was
carried out following the method suggested in Chambers aadidis (2006). MSE estimation of the
EBLUP andNPEBLUP comes from analytical expressions introduced in PrasadRawd(1990) and
Opsomer et al. (2008), respectively. Intervals are defiryeithd small area mean estimate plus or minus
twice their corresponding estimated root mean squared. ekreas are arranged in order of increasing
population size and divided between uncontaminated anhconated.

From Figure 10.11 — linear signal — we can see that in the daodnated areas 1-24 M-quantile
type estimatorsNPMQ and MQ) have a much better performance in terms of bias than the dVixe
Model (MM) type estimatorsgBLUP and NPEBLUP), while in terms of efficiency they all perform
almost the same. In the contaminated areas 25-30, on thetathd, things change. Bias becomes an
issue also for MQ estimators, although it seems that modtadmes from their poor performance in
area 27. In addition, MM estimators are less efficient than &fmators in these areas. As of MSE
estimation investigated through coverage rates, it shoeildoted that MQ estimators have a much better
performance than MM estimators for both contaminated ambutaminated areas. In the former, MM
estimators have a way too low coverage, while in the latteagat@o high. Finally, note that the fact that
estimators based on nonparametric modedRMQ andNPEBLUP — have the same performance of
those based on linear model$4Q andEBLUP — shows that they do not loose efficiency under a linear
model even using a too complex model. Focusing on the estimaf the quantiles from Table 1.6 it
stems out that NPMQ and MQ have the same performance in tdrnafative bias and relative mean
squared error. The result is expected as the signal is lifmsh in contaminated and uncontaminated
areas the two methods give very similar results in averaderadian values of bias and variability.

From Figure 10.12 we can see that MQ type estimators have agsiller bias than MM estimators
for uncontaminated areas. Efficiency, in this case, heakdfyends on the model used, with the nonpara-
metric estimators having smaller variability than the inenes.NPMQ andNPEBLUP have similar
performance, the former seems to have a better performamaesvage, while the latter in median. This
is due to the poor performance NPEBLUP in area 16. In the contaminated areld®MQ shows the
best performance in terms of bias and efficiency. Coverags mre comparable to those observed in
the Linear signal simulation. Results from Figure 10.13emg similar in substance to those from the
Linear signal. This is due to the fact that this signal isdinéor most of its domain. MQ estimators
are again better in terms of bias in the first 24 areas. Effigiémn comparable for all estimators with
NPMQ having the best performance on average. MQ estimators hbetiex performance in terms of
bias and efficiency in the contaminated areas. Under the gatting Table 1.7 shows the results ob-
tained in the estimation of the quantiles. The main findingg g that when relaxing the assumption of

RRMSE% = 00 (10.32)
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Figure 10.11: Relative Bias (RB%), Relative Root Mean Seddrrors (RRMSE%) and 95% Coverage
Rate (CR%) in case of Linear signal. Areas are arranged ierafincreasing population size.
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Figure 10.12: Relative Bias (RB%), Relative Root Mean Sed&rrors (RRMSE%) and 95% Coverage
Rate (CR%) in case of Cycle signal. Areas are arranged i ofdecreasing population size.
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Figure 10.13: Relative Bias (RB%), Relative Root Mean Seddrrors (RRMSE%) and 95% Coverage
Rate (CR%) in case of Jump signal. Areas are arranged in ofdlecreasing population size.



216 Chapter 10. M-quantile methods

linearity NPMQ definitely has a better performance than thditional MQ estimator. Relative bias and

Relative Root Mean Squared Error are always lower in the ohgen parametric model with relevant

gains especially in the last six contaminated areas. Thdtrssconfirmed under the jump setting of

Table 1.8. Here the mean and median level of bias are gepndrgher than in the linear and cycle

setting and also the RRMSE states a much higher variatioheoéstimates both in contaminated and
uncontaminated areas. However the performance of NPM@atsir is still appreciable in comparison

with the traditional MQ estimators which rely on the lindgssumption.

Figures 10.14, 10.15 and 10.16 show how different root mgaared estimators track the true root
mean squared error of the different estimator under linrgade and jump signal. Each figure has the
same structure. Top left is tiéPMQ predictor (10.22) with RMSE estimated using (10.29). Tati
is theMQ predictor with RMSE estimator suggested by Tzavidis andn@eas (2007). Bottom left is
EBLUP predictor with RMSE estimator suggested by Prasad and R#@D)jland bottom right is the
NPEBLUP estimator with RMSE analytical estimator suggested by @msaet al. (2008).

Figure 10.14 shows the area-specific values of RMSE and geerstimated RMSE in case of lin-
ear signal. Estimator (10.29) performs well, showing onlsnaall amount of undercoverage both for
NPMQ and MQ estimators. Given that all its underlying assumptions aes, the Prasad and Rao
(1990) and Opsomer et al. (2008) estimators of RMSE workg wedl in terms of empirical coverage.
However, we note that they have a smoothing effect on thmatgid variability of the small areas. This
is due the fact that RMSE estimates are based on Prasad and $&) type-estimator, which targets
the unconditional RMSE, whereas in the simulation expemineach population is kept fixed, then the
empirical MSE is conditioned on the small area effects. Weslaso run simulations in which we ran-
domized over the small area distribution and the resulte/shidl a good performance of the conditional
RMSE estimators for the M-quantile type-estimators. Asarfance estimators for mixed model-type
estimators, their performance is better than in the canthifi case considered here, even if it still suffers
from the smoothing effect. Figure 10.17 shows such resualtase of linear signal. The other detailed
results are available to the interested reader from theoesitfHowever, we believe that the setting con-
sidered here, by effectively fixing the differences betwtensmall areas, constitutes a more practical
and appropriate representation of the small area estimptablem in a finite population perspective and
the conditioned RMSE is likely closer to the RMSE of interespeople using small area methods.

In case of cycle signal (Figure 10.15) the®PMQ and theMQ MSE estimators have the best per-
formance in tracking the true variabilittEBLUP andNPEBLUP MSE estimators smooth the behavior
across the areas. Under the jump signal (Figure 10.16) astinL0.29) foNPMQ andMQ estimators
tracks the true behavior of RMSE. Both Prasad and Rao (198D)Xpsomer et al. (2008) estimators
confirm their smoothing effect.
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Figure 10.14: Area-specific values of RMSE (solid line) amdrage estimated RMSE (dashed line) in
case of Linear signal. Areas are arranged in order of inorggsopulation size (last six areas are the
contaminated areas).
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Figure 10.15: Area-specific values of RMSE (solid line) amdrage estimated RMSE (dashed line) in
case of Cycle signal. Areas are arranged in order of inarggsbpulation size (last six areas are the
contaminated areas).
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Figure 10.16: Area-specific values of RMSE (solid line) amdrage estimated RMSE (dashed line) in
case of Jump signal. Areas are arranged in order of incrggg@pulation size (last six areas are the
contaminated areas).
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Figure 10.17: Area-specific values of unconditional RMS@alidsline) and average estimated RMSE
(dashed line) in case of Linear signal. Areas are arrangeddier of increasing population size (last six
areas are the contaminated areas).
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Quantile 0.25 Quantile 0.5 Quantile 0.75
Area NPMQ MQ NPMQ MQ NPMQ MQ
RB% RRMSE% | RB% RRMSE% | RB% RRMSE% | RB% RRMSE% | RB% RRMSE% | RB% RRMSE%
Uncontaminated areas

1 -0.64 5.20 -0.71 5.15 -0.06 3.97 -0.23 3.96 -0.28 3.38 -0.44 3.39
2 -0.74 5.51 -0.58 5.52 -0.65 4.48 -0.60 4.48 -0.26 3.72 -0.24 3.74
3 -0.74 4.84 -0.60 4.68 -0.41 3.86 -0.59 3.92 -0.30 3.49 -0.38 3.52
4 -0.71 4.63 -0.49 4.41 -0.44 3.78 -0.54 3.63 -0.44 3.31 -0.30 3.12
5 -0.53 4.25 -0.36 4.28 -0.32 3.58 -0.45 3.54 -0.28 3.06 -0.31 3.15
6 -0.06 5.95 -0.05 5.92 -0.16 4.65 -0.01 4.63 -0.02 4.14 -0.11 4.21
7 -0.74 4.61 -0.71 4.81 -0.07 3.67 -0.40 3.76 -0.18 3.25 -0.22 3.26
8 -0.68 6.30 -0.81 6.32 -0.69 4.97 -0.50 5.00 -0.64 4.26 -0.74 4.43
9 -0.22 4.53 -0.36 4.65 -0.44 3.84 -0.45 3.89 -0.24 3.31 -0.42 3.21
10 -0.71 4.68 -0.54 451 -0.47 3.49 -0.47 3.37 -0.31 3.10 -0.35 2.97
11 -0.53 4.75 -0.61 4.83 -0.27 3.75 -0.33 3.80 -0.27 3.46 -0.23 3.41
12 -0.68 4.69 -0.61 4.71 -0.31 3.74 -0.26 3.58 -0.37 3.14 -0.35 3.21
13 -0.61 4.46 -0.69 4.63 -0.41 3.32 -0.49 3.34 -0.22 2.93 -0.41 2.92
14 -0.54 4.73 -0.70 4.71 -0.58 3.74 -0.60 3.71 -0.41 3.33 -0.50 3.35
15 -0.37 4.72 -0.32 4.86 -0.37 3.86 -0.35 3.69 -0.23 3.36 -0.23 3.26
16 -0.55 6.15 -0.47 6.21 -0.31 5.06 -0.44 5.19 -0.39 4.42 -0.41 4.42
17 -1.48 5.54 -1.17 5.40 -0.77 4.35 -0.84 4.22 -0.57 3.74 -0.63 3.77
18 -0.11 5.65 -0.14 5.59 -0.15 4.42 -0.26 4.48 -0.22 3.67 -0.17 3.95
19 -0.34 4.15 -0.52 4.08 -0.40 3.41 -0.42 3.43 -0.27 2.94 -0.42 3.00
20 -0.63 4.53 -0.60 4.54 -0.53 3.68 -0.73 3.75 -0.27 3.08 -0.39 3.11
21 -0.60 4.27 -0.88 4.52 -0.60 3.64 -0.74 3.59 -0.32 3.03 -0.45 2.99
22 -1.00 5.04 -0.82 4.88 -0.43 4.11 -0.51 3.77 -0.35 3.41 -0.28 3.36
23 -0.61 5.29 -0.51 5.17 -0.40 4.22 -0.48 4.24 -0.48 3.52 -0.36 3.56
24 -0.35 5.24 -0.39 5.06 -0.24 4.14 -0.19 4.01 -0.01 3.50 -0.23 3.62
Mean 0.59 4.99 0.57 4.98 0.39 3.99 0.45 3.96 0.31 3.44 0.36 3.46
(abs. values)

Median 0.61 4.74 0.59 4.82 0.40 3.85 0.46 3.79 0.28 3.37 0.35 3.36
(abs. values)

Contaminated areas

25 0.08 5.73 0.00 5.57 -0.33 4.29 -0.39 4.13 -0.16 4.20 -0.10 4.04
26 -0.84 5.80 -0.85 6.11 -0.19 4.11 -0.24 4.16 0.29 3.78 0.25 3.77
27 -0.75 6.82 -1.24 6.98 -1.26 5.47 -1.37 5.27 -0.70 5.01 -0.95 5.21
28 -0.18 6.80 -0.42 6.72 -0.32 4.54 -0.22 4.83 -0.26 4.14 -0.14 4.23
29 -0.99 5.99 -0.93 6.03 -0.50 4.29 -0.40 4.20 -0.28 4.18 -0.31 4.37
30 -1.25 8.90 -1.51 9.61 -0.77 6.26 -0.75 6.34 -0.19 6.13 -0.28 6.32
Mean 0.68 6.67 0.83 6.84 0.56 4.83 0.56 4.82 0.31 4.57 0.34 4.66
(abs. values)

Median 0.80 6.39 0.89 6.42 0.41 4.42 0.39 451 0.27 4.19 0.26 4.30
(abs. values)

Table 10.6: Relative Bias (RB%) and Relative Root Mean Sepli&rrors (RRMSE%) in case of Linear
signal. Areas are arranged in order of increasing populaiire.



222 Chapter 10. M-quantile methods
Quantile 0.25 Quantile 0.5 Quantile 0.75
Area NPMQ MQ NPMQ MQ NPMQ MQ
RB% RRMSE% | RB% RRMSE%| RB% RRMSE% | RB% RRMSE%| RB% RRMSE% | RB% RRMSE%
Uncontaminated areas
1 -0.96 9.92 3.67 14.20 -0.29 6.81 1.19 8.61 -0.27 491 -2.78 7.32
2 -1.61 10.14 6.42 15.01 -0.65 7.11 -1.37 8.97 -0.34 5.27 -3.80 8.14
3 -0.98 8.32 3.91 12.76 -0.43 5.46 -1.80 7.74 -0.46 4.28 -2.54 7.05
4 -0.97 8.54 0.77 11.35 -0.36 5.79 -0.03 7.44 -0.56 4.45 -1.19 6.30
5 -0.77 8.03 7.02 13.49 -0.51 5.95 -0.16 7.34 -0.13 4.08 -4.08 6.89
6 -0.27 11.16 4.40 15.05 0.19 7.25 0.39 9.75 -0.18 5.64 -2.09 7.72
7 -0.98 9.13 3.82 12.82 -0.23 6.13 1.15 8.31 -0.25 4.84 -2.82 6.81
8 -1.37 10.51 5.14 16.55 -0.84 7.55 -0.77 11.13 -0.87 5.87 -4.45 9.52
9 -1.00 9.08 8.61 15.51 -0.51 6.12 -0.09 7.67 -0.21 4.53 -4.07 7.46
10 -1.36 8.45 7.47 13.83 -0.59 5.51 -0.92 7.25 -0.59 4.09 -3.92 6.86
11 -1.07 9.01 4.36 13.47 -0.30 5.77 0.08 7.94 -0.17 4.47 -1.74 6.37
12 -1.00 8.91 4.36 12.74 -0.54 5.73 1.76 7.55 -0.50 4.41 -3.65 6.90
13 -0.70 7.60 5.13 11.84 -0.51 5.06 -1.63 7.20 -0.45 4.08 -2.51 6.13
14 -1.14 8.32 1.30 10.36 -0.54 5.78 -0.81 6.80 -0.76 4.68 -1.36 5.77
15 -0.65 8.86 8.47 15.64 -0.45 5.95 -0.32 7.98 -0.39 471 -4.04 7.25
16 -1.96 12.36 10.24 18.77 -0.35 8.04 -0.59 10.26 -0.58 6.15 -6.40 10.58
17 -1.85 9.80 6.75 15.39 -1.28 7.10 -0.55 9.08 -0.70 5.07 -4.73 8.51
18 -0.60 10.04 5.53 14.70 -0.52 6.80 -1.29 8.97 -0.13 5.28 -2.75 7.54
19 -0.62 7.70 7.56 12.96 -0.13 5.18 -0.61 6.91 -0.34 3.97 -4.00 6.43
20 -1.41 8.38 5.79 13.58 -0.83 5.80 0.55 7.56 -0.32 4.45 -4.21 7.38
21 -1.24 8.19 4.98 11.82 -0.98 5.61 -0.71 7.29 -0.64 4.25 -2.71 6.32
22 -1.73 8.96 5.33 14.18 -0.66 6.50 -0.90 8.13 -0.38 5.01 -3.92 7.41
23 -0.98 9.79 6.79 14.33 -0.82 6.18 -0.13 7.98 -0.39 4.96 -4.08 7.33
24 -0.69 10.11 0.13 13.94 -0.07 6.96 0.98 9.07 0.22 5.25 -1.74 7.31
Mean 1.08 9.22 5.33 13.93 0.52 6.26 0.78 8.21 0.41 4.78 3.32 7.30
(abs. values)
Median 0.99 8.98 5.23 13.88 0.51 6.03 0.74 7.96 0.38 4.69 3.72 7.28
(abs. values)
Contaminated areas
25 -0.82 11.42 6.81 15.87 -0.11 7.54 -0.31 7.93 0.28 5.22 -3.01 7.51
26 -0.70 11.19 6.95 16.50 0.20 7.32 -1.12 8.12 0.19 5.08 -2.97 7.27
27 1.24 12.78 7.73 18.78 1.72 9.18 1.80 10.44 0.27 6.41 -2.32 8.51
28 -0.94 12.17 2.99 16.23 -0.64 7.89 -0.40 8.92 -0.55 6.10 -1.46 7.82
29 -1.34 11.35 5.27 16.36 -0.55 7.60 -0.34 9.02 -0.36 5.67 -3.69 8.31
30 -3.31 16.47 1.02 21.18 -0.01 9.89 -1.23 11.87 0.45 8.20 -1.69 10.75
Mean 1.39 12.56 5.13 17.49 0.54 8.24 0.87 9.38 0.35 6.11 2.52 8.36
(abs. values)
Median 1.09 11.80 6.04 16.43 0.38 7.75 0.76 8.97 0.32 5.89 2.64 8.07
(abs. values)

Table 10.7: Relative Bias (RB%) and Relative Root Mean Sepli&rrors (RRMSE%) in case of Cycle

signal. Areas are arranged in order of increasing populaioe.
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Quantile 0.25 Quantile 0.5 Quantile 0.75
Area NPMQ MQ NPMQ MQ NPMQ MQ
RB% RRMSE% | RB% RRMSE% | RB% RRMSE% | RB% RRMSE% | RB% RRMSE% | RB% RRMSE%
Uncontaminated areas
1 -2,92 26,43 3,39 27,10 1,39 12,22 -6,91 13,27 -0,72 8,42 -3,03 9,00
2 -4,23 29,43 2,61 31,45 -1,65 13,39 -6,73 15,40 -1,07 9,12 -3,54 10,38
3 -4,27 26,69 3,70 28,97 -1,08 11,44 -6,36 14,01 -0,96 8,27 -3,86 9,68
4 -3,09 24,65 5,06 26,02 -0,04 11,01 -7,32 13,36 -0,88 7,50 -3,23 8,46
5 -2,52 20,02 0,19 22,37 0,03 11,21 -5,97 12,08 -0,35 7,05 -2,63 8,09
6 0,05 30,59 6,75 33,72 1,75 14,18 -5,73 15,35 -0,12 10,05 -3,30 11,29
7 -3,08 21,29 -2,71 22,65 0,89 11,09 -6,43 12,65 -0,76 7,74 -1,63 8,35
8 -4,39 31,04 2,49 34,46 -1,13 14,31 -7,25 17,00 -1,27 10,22 -5,42 12,33
9 -1,67 22,04 4,27 23,68 0,08 11,46 -6,70 13,11 -0,86 7,70 -4,20 9,08
10 -3,42 22,89 2,05 23,36 -0,39 9,69 -6,40 11,92 -0,65 7,29 -3,76 8,49
11 -2,21 21,86 -2,26 24,45 0,09 12,10 -6,83 13,18 -0,49 8,17 -1,90 9,09
12 -3,06 21,67 0,46 22,48 0,37 11,02 -6,62 12,15 -0,62 7,21 -2,36 8,19
13 -3,36 24,16 2,05 23,30 -0,90 9,84 -5,73 11,66 -0,62 7,34 -2,73 8,09
14 -2,48 23,18 2,25 24,57 -0,35 11,29 -7,07 13,93 -1,04 7,63 -3,59 9,07
15 -2,15 22,71 3,48 24,39 0,32 11,25 -5,82 12,18 -0,64 7,77 -2,85 8,75
16 -3,69 31,87 6,58 34,82 -0,07 14,88 -5,43 16,37 -1,02 10,83 -4,11 11,92
17 -6,71 28,69 2,66 29,61 -1,29 13,01 -1,77 15,16 -1,24 8,93 -4,94 10,57
18 -1,54 28,34 3,05 29,57 0,17 12,81 -4,74 14,46 -0,46 9,26 -2,26 9,86
19 -1,42 19,89 4,77 22,13 -0,20 10,45 -6,27 11,77 -0,66 7,08 -4,00 8,42
20 -3,60 21,31 0,41 21,79 -1,06 11,44 -7,33 13,03 -0,64 7,18 -2,36 8,24
21 -2,66 20,83 -0,09 22,63 -0,64 11,50 -7,38 12,93 -0,76 7,39 -3,41 8,28
22 -4,92 24,14 2,53 24,94 -1,43 12,33 -6,58 13,41 -0,64 8,20 -3,50 9,41
23 -3,77 27,58 4,41 27,64 -0,10 13,01 -6,85 14,50 -0,91 8,45 -3,59 9,84
24 -0,27 24,51 -1,11 26,77 0,46 12,85 -7,05 14,07 0,36 8,40 -0,32 9,13
Mean 2,98 24,82 2,89 26,37 0,66 11,99 6,55 13,62 0,74 8,22 3,19 9,33
(abs. values)
Median 3,07 24,15 2,64 24,75 0,42 11,48 6,66 13,32 0,69 7,97 3,36 9,07
(abs. values)
Contaminated areas
25 1,20 33,06 6,28 30,91 -1,27 13,07 -5,93 13,47 -0,47 9,23 -1,89 9,91
26 -4,09 34,34 6,21 34,32 -0,41 12,50 -5,10 13,33 0,42 8,75 -1,75 9,46
27 -5,39 35,60 -2,62 37,68 -2,96 15,58 -8,02 17,10 -0,79 11,23 -1,65 12,29
28 0,06 40,83 4,69 40,84 -0,41 14,34 -6,18 15,07 -0,39 9,57 -1,39 10,58
29 -3,78 29,62 -0,41 29,58 -0,22 13,31 -6,22 13,63 -0,47 9,09 -0,54 10,01
30 -4,69 50,00 -0,04 50,10 -1,12 18,40 -6,88 20,52 -1,00 13,73 -2,82 15,14
Mean 3,20 37,24 3,38 37,24 1,07 14,53 6,39 15,52 0,59 10,26 1,67 11,23
(abs. values)
Median 3,93 34,97 3,65 36,00 0,77 13,83 6,20 14,35 0,47 9,40 1,70 10,30

(abs. values)

Table 10.8: Relative Bias (RB%) and Relative Root Mean Sepi&rrors (RRMSE%) in case of Jump
signal. Areas are arranged in order of increasing populaiire.
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10.4 M-quantile GWR models

Typically, random effects models assume independenceeafatiidom area effects. This independence
assumption is also implicit in M-quantile small area modétseconomic applications, however, obser-
vations that are spatially close may be more related thaereditsons that are further apart. This spatial
correlation can be accounted for by extending the randoettsfinodel to allow for spatially correlated
area effects using, for example, a Simultaneous Autorsiye$SAR) model (see Petrucci and Salvati
(2006), Pratesi and Salvati (2008) and Pratesi and SaR@@i9)). An alternative approach to incorpo-
rate the spatial information in the regression model is lspasng that the regression coefficients vary
spatially across the geography of interest. GeographitEfighted Regression (GWR) (see Brundson
et al. (1996)) extends the traditional regression modellloyving local rather than global parameters
to be estimated. In a recent paper Salvati et al. (2008) gexpan M-quantile GWR small area model.
The authors proposed an extension to the GWR model, the Mtitpi&WR model, i.e. a locally robust
model for the M-quantiles of the conditional distributiohtbe outcome variable given the covariates.
Here we report a brief description of the M-quantile GWR mode

10.4.1 M-quantile geographically weighted regression

In this Section we define a spatial extension to linear M-tjlearegression based on GWR. Since M-
gquantile models do not depend on how areas are specified,sovaladp the area subscrigtfrom our
notation in this Section.

Givenn observations at a set bflocations{u;;| =1,...,L;L < n} with n; data valueg (yj,Xji );i =
1,...,n} observed at location, a linear GWR model is a special case of a locally linear agpration
to a spatially non-linear regression model and is definedlbsifs

yir =X} B(u) +gj, (10.33)

where(u) is a vector ofp regression parameters that are specific to the locajiand theg; are
independently and identically distributed random erroite wero expected value and finite variance. The
value of the regression parameter ‘functif@iu) at an arbitrary locatiom is estimated using weighted

least squares
n n

B(u) = { IgW(ul ,u) _ZXN X }_1{ ZW(UI u) _;le yi }

wherew(u;, u) is a spatial weighting function whose value depends on ttawite from sample location
U to u in the sense that sample observations with locations closeadceive more weight than those
further away. In this paper we use a Gaussian specificatiahifoweighting function

w(u,u) = exp{ — dﬁhu/sz}, (10.34)

whered,, , denotes the Euclidean distance betwaeandu andb > 0 is the bandwidth. As the distance
betweery; andu increases the spatial weight decreases exponentiallyexeonple, ifw(u;,u) = 0.5 and
w(um,u) = 0.25 then observations at locationhave twice the weight in determining the fit at location
u compared with observations at locatiogf. Alternative weighting functions, corresponding to densi
functions other than the Gaussian, can be used. See Fgthanmnet al. (2002) for a discussion of other
weighting functions.
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The bandwidttb is a measure of how quickly the weighting function decay#itreasing distance,
and so determines the ‘roughness’ of the fitted GWR funct#ospatial weighting function with a small
bandwidth will typically result in a rougher fitted surfadeh the same function with a large bandwidth.
In this paper we use a single bandwidth for our extension ofRGMY M-quantile regression. This
global bandwidth is defined by minimising the cross-valifatcriterion proposed by Fotheringham et

al. (2002):
L n

Cv=>5 > li =Y ()17,
I=1]=1

wherey(j) (b) is the predicted value of;, using bandwidtlb, with the observatiory; omitted from the
model fitting process. The value bfthat minimisesCV is then selected. An alternative approach is
to use optimal local bandwidths (see Farber and Paez (ROBdyvever, this significantly increases the
computational intensity of the model fitting process.

The GWR model (10.33) is a linear model for the conditiongdextation ofy given X at location
u. That is, this model characterises the local behaviour @tctinditional expectation gfgiven X as a
linear function ofX. However, a more complete picture of the relationship betweandX at location
u can be constructed by specifying a model for the conditidisitibution ofy given X at this location.
Since the M-quantiles serve to characterise this conditidistribution, such a model can be defined by
extending

Qq(Xj; W) =] By, (). (10.35)

to specify a linear model for the M-quantile of ordgiof the conditional distribution of given X at
locationu, writing

Qq(Xji; W, u) = X] By, (u; ), (10.36)

where nowp,(u;q) varies withu as well as withg. Like (10.33), we can interpret (10.36) as a local
linear approximation, in this case to the (typically) namebr orderg M-quantile regression function of
y on X, thus allowing the entire conditional distribution (nosjuhe mean) of given X to vary from
location to location. The parametBy,(u;q) in (10.36) at an arbitrary location can be estimated by
solving

M

w(ur, u) Zl We{Yji — X} By (U; @) 1xj =0, (10.37)
=1

=1

whereyyq () = 2W(s te){ql(e > 0) + (1 - g)l (¢ < 0)}, sis a suitable robust estimate of the scale of the
residualsy; — x; By (u; q), €.g. s= mediany; — x] B,(u;0)|/0.6745, and we will typically assume a
Huber Proposal 2 influence functioi(e) = €l (—c < € < ¢) +sgn(e)l (|g| > ¢). Providedc is bounded
away from zero, we can solve (10.37) by combining the iteeatire-weighted least squares algorithm
used to fit the ‘spatially stationary’ M-quantile model (38) and the weighted least squares algorithm
used to fita GWR model. Puiy(€) = Yqy(g)/€ andwyj = wy(gji ). Then (10.37) can be written as

L n

> w(ur,u) _ZWuJJI {yii —x}iBy(u; @) }xj = 0.
=1 j=

Note that the spatial weights(u;,u) in (10.37) do not depend oq That is, the degree of spatial
smoothing is the same at every valugjoSpatial weights that vary withpare straightforward to define by
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allowing the bandwidth underpinning these weights to vaith . Such ag-specific optimal bandwidth
b can be obtained by minimising the following function wittspect tab

i YJI ]2

wherey(j) (g;b) is the estimated value of the right hand side of (10.36) anhtjieaq and locationuj
using bandwidthb when the observatiow; is omitted from the model fitting process. However, using
this g-specific cross-validation criterion can significantlyease the computational time. In this work
we therefore use the optimal bandwidthgat 0.5 for all other values off. We note that this choice
could potentially lead to over-smoothing for small or lakgdues ofg and hence bias. Nevertheless, it
is a reasonable first approximation to tiggpecific optimal bandwidth that can be computed reasonably
quickly.

An R function that implements an iterative re-weighted tegsiares algorithm for for fitting (10.36)
is available from Salvati and Tzavidis (2010). The stepsisf algorithm are as follows:

HMI—

1. For specified) and for each location of interest, define initial estimatﬁ?) (u; Q).

2. At each iteratiort, calculate residualsgf_l) =VYj —X; [3 (u g) and associated weig t 1)
from the previous iteration.
3. Compute the new weighted least squares estimates from
R -1
By (u;q) = {XTW*“‘”(U:q)X} XTW D (s )y, (10.38)

wherey is the vector oh sample values and is the corresponding matrix of ordex p of sample

x values. The matrixv*(=3(u;q) is a diagonal matrix of ordem with entry, corresponding to a
particular sample observation, set equal to the produdiisfabservation’s spatial weight, which
depends on its distance from locatiopand the weight that this observation has when the sample
data are used to calculate the ‘spatially stationary’ Mrtileestimate,, ().

4. Repeat steps 1-3 until convergence. Convergence isvachighen the difference between the
estimated model parameters obtained from two successiaidns is less than a very small value.

The fitted regression surfa@(x“ s, u) = xﬁ ﬁw(u; q) then defines the fit of the M-quantile GWR model
for the regression M-quantile of ordgmof y givenX at locationu.

One may argue that (10.36) is over-parameterised as it lfowboth local intercepts and local
slopes. An alternative spatial extension of the M-quantigression model (10.35) that has a smaller
number of parameters is one that combines local intercejthsgiobal slopes and is defined as

Qq(Xji; W, U) = X]i By, () + 8y (u; ), (10.39)

wheredy (u; g) is areal valued spatial process with zero mean functiontbreespace defined by locations
of interest. Model (10.39) is fitted in two steps. At the fitgtswe ignore the spatial structure in the data
and estimat@w(q) directly via the iterative re-weighted least squares dligor used to fit the standard



10.4. M-quantile GWR models 227

linear M-quantile regression model (10.35). Denote thisrede bwa(q). At the second step we use
geographic weighting to estimadg (u; q) via

- L n -
Sy(u;g) =n"* > W) 5 Wat¥i - Xji By (a)}- (10.40)
=1 =1

Choosing between (10.36) and (10.39) will depend on thegpdat situation and whether it is reason-
able to believe that the slope coefficients in the M-quaméiression model vary significantly between
locations. However, it is clear that since (10.39) is a sgdazase of (10.36), the solution to (10.37) will
have less bias and more variance than the solution to (10H¥after we refer to (10.36) and (10.39)
as the MQGWR and MQGWR-LI (Local Intercepts) models redpelst

Note that estimates of the local (GWR) M-quantile regrasgarameters are derived by solving
the estimating equation (10.37) using iterative re-waigHeast squares, without any assumption about
the underlying conditional distribution of; given x; at each locatiorny.. That is, the approach is
distribution-free. For details see Salvati et al. (2008).

10.4.2 Using M-quantile GWR models in small area estimation

SAR models allow for spatial correlation in the model ertousture to be used to improve SAE. Alter-
natively, this spatial information can be incorporatecedily into the model regression structure via an
M-quantile GWR model for the same purpose. In this Sectiom@seribe how this can be achieved. We
now assume that we have only one population value per lagatimwing us to drop the inddx We also
assume that the geographical coordinates of every uniteirptipulation are known, which is the case
with geo-coded data. The aim is to use these data to predicréad mean ofy using the M-quantile
GWR models (10.36) and (10.39).

Following Chambers and Tzavidis (2006), we first estimaggMiquantile GWR coefficients;; j € s
of the sampled population units without reference to thellsanaas of interest. A grid-based interpo-
lation procedure for doing this under (10.35) is describgdChambers and Tzavidis (2006) and can
be used directly with (10.39). We adapt this approach to tléRAM-quantile model (10.36) by first
defining a fine grid ofj values in the interva|0,1). Chambers and Tzavidis (2006) use a grid that ranges
between @M1 and 099 with step 001. We employ the same grid definition and then use the sarapde d
to fit (10.36) for each distinct value gfon this grid and at each sample location. The M-quantile GWR
coefficient for unitj with valuesy; andx; at locationu; is finally calculated by using linear interpolation
over this grid to find the unique valuwg such thalfgqj CSHUNVIDESA I

Provided there are sample observations in dremn areal specific M-quantile GWR coefficienfy
can be defined as the average value of the sample M-quantilgé G&fficients in ared, otherwise we
s_etéd = 0.5. Following Tzavidis et al. (2010), the bias-adjusted Mxatile GWR predictor of the mean
Yy in small areda is then

, N A
%MoewaD:Ndl[z Qéd(xj;qJ,u,-)Jrn—;’ Y {yi — Qg (X WU}, (10.41)
JeUd

i€

whereQéd(xj;qJ,uj) is defined either via the MQGWR model (10.36) or via the MQGWRmnodel
(10.39).
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Variants of the M-quantile GWR model (10.36) can be definedhmnging the value of the tuning
constantc in the Huber Proposal 2 influence function. For example, greede version of the M-
quantile GWR model can be fitted by substituting a large p@sitalue for the tuning constaatin this
influence function. Empirical comparisons of the ‘lagjéi.e. expectile) and the more robust ‘smll
Huber-type M-quantile small area models are reported imeas and Tzavidis (2006).

There are situations where we are interested in estimatimgl @rea characteristics for domains
(areas) with no sample observations. The conventionaloapprto estimating a small area character-
istic, say the mean, in this case is synthetic estimationdedithe linear mixed model the synthetic
mean predictor for out of sample ardds \ELM/SYNTH: Nglzjeud xJTfS The SAR model-based ver-
sion of this predictor,\L(:fAR/SYNTH, has the same form, but substitutes the estimétblnnder the M-
guantile GWR model (10.36) the synthetic mean predictootdrof sample ared is %MQGW%YNTH:
Nd‘lzjeud QQ5(Xj;llJ,Uj). We note that with MQGWR-based synthetic estimation allatemn in the
area-specific predictions comes from the area-specifidiagxinformation, including the locations of
the population units in the area. We expect that when a tpéyialy non-stationary process underlies

the data, use OEMQGWR/SYNTHWHI lead to improved efficiency relative to more conventibsynthetic
mean predictors.

10.4.3 Mean squared error estimation

A “pseudo-linearization” MSE estimator for M-quantile dinarea estimators was recommended by
Chambers and Tzavidis (2006) and it has now been used stidess empirical studies reported in
a number of published papers on SAE, including the recerliqations by Tzavidis et al. (2010) and
Salvati et al. (2010a). Below we extend the argument of tpapers to defining an estimator of a first
order approximation to the mean squared error of (10.41is @ktension is based on (i) a model where
the regression of on X for a particular population unit depends on its locationthwhis regression
specified by the locally linear GWR model (10.33), and (i@ flact that estimators derived under the
MQGWR model (10.36) or the MQGWR-LI model (10.39) can be tgritas linear combinations of the
sample values of. For example, from (10.38) we see that (10.41) can be exgnless a weighted sum
of the samplg/-values

>MQGWR/CD _
YQOWRED NIy, (10.42)
where N N
d d — Nd
Wy = n_1d+ > Hgxj — . > H ;. (10.43)
d jery d &

Herely is then-vector with j-th component equal to one whenever the corresponding samnflis in
aread and is zero otherwise and

~ -1 ~
de = {XTW*(uj;Gd)X} XTW*(Uj;ed),

whereW* (u; ) is the limit of the weighting matrice#/*(~1) (u; q) defined following (10.38).

If we assume that the weights defining the linear representét0.42) are fixed, and that the values
of y follow a location specific linear model, e.g. (10.33), thenestimator of the prediction variance
of (10.42) can be computed following standard methods arbskedasticity-robust prediction variance
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estimation for linear predictors of population quantit{sse Royall and Cumberland(1978)). Rut=
(Wjq). This estimator is of the form

yMQGW R/CD)

mseY; =Ny 2 > > }\jdk{yj —ng(xj;llJ,uj)}z, (10.44)

k>0 jesk

where A = {(w,-d S 12 4+ (g — 1)YNg — nd)}l(k — d) + wWAl(k # d) and
Qék(Xj;l.IJ,Uj) is assumed to define an unbiased estimator of the expected véy; given x; at lo-
cationu;. Since the weights defining (10.43) reproduce the small ar@an ofX, it also follows that
(10.42) is unbiased for this mean in the special case whé&rexipectation does not vary with location
within the small area of interest, and so (10.44) then estismdoe mean squared error of (10.42) in this
special case. More generally, when the expectation givenx; varies from location to location within
the small area, this unbiasedness holds on average proséaepling within the small area is indepen-
dent of location, in which case (10.44) is an estimator ofs éirder approximation to the mean squared
error of (10.42).

Note that (10.44) treats the weights (10.43) as fixed and soré@s the contribution to the mean
squared error from the estimation of the area level M-gleacbefficients byéd. This is a pseudo-
linearization assumption since for large overall samplesthe contribution to the overall mean squared
error of (10.42) arising from the variability & will be of smaller order of magnitude than the fixed
weights prediction variance of (10.42). As a consequen@et@) will tend to be almost unbiased. How-
ever, the potential underestimation of the MSE of (10.43)liait in (10.44) needs to be balanced against
the bias robustness of this MSE estimator under misspegicaf the second order momentsypfand
may well lead to (10.44) being preferable to other MSE edtinsebased on higher order approximations
that depend on the model assumptions being true. Empiesalts reported in Tzavidis et al. (2010)
indicate that the version of the MSE estimator (10.44) ferlthear M-quantile predictor performs well
both in model-based and design-based studies.

10.4.4 Simulations for M-quantile GWR models

In this Section we present results from a simulation studdus examine the performance of the M-
guantile GWR small area estimators. In particular, we results from model-based simulations where
population data are generated at each simulation usingearlimixed model with different parametric
assumptions about the distribution of errors and the dpstiacture of the data, and a single sample is
then taken from this simulated population according to aspecified design.

In these simulations, synthetic population values are gee under two versions of a linear mixed
model and two distributional specifications for the randosaaffects and the individual residuals. Each
population is of sizeN = 10,500 and containd = 30 equal-sized small areas. More specifically, under
the first model, population values pfare generated vigjg = 1+ 2Xjq +Y; + €ja Whered =1,...,350
andd=1,...,30. The valuesjq in this model are independently generated from the unifastridution
over the interval0, 1], denoted agjq ~ U [0, 1], and the random effects are generated under two different
distributional specifications: (a) Gaussian errors with- N(0,0.04) andejq ~ N(0,0.16) and (b) Chi-
squared errors withy ~ x2(1) — 1 andegjg ~ x?(3) — 3, i.e. mean corrected Chi-squared variates with
1 and 3 degrees of freedom, respectively. For the secondInradeom effects are still simulated as
in (a) and (b), but in addition the intercept and the slopeheflinear model fol are allowed to vary
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with longitude and latitude. In particular, these simwaa are based on the two-level mogg| =
Qg + BjdXjd + Ya + €jg With

ajg = 0.2 x longitudgg + 0.2 x latitudeyq,

Bja = =5+ 0.1 x longitudgq + 0.1 x latitudejq

with the known location coordinategongitudgq, latitudejq) for each population unit independently
generated fronJ [0,50]. Note that the reason for using different parametric assiomg for the error
terms of the linear mixed model is because we are intereatbdw the small area predictors perform
both when the Gaussian assumptions of the linear mixed naoeaatisfied and when these assumptions
are violated.

This simulation design corresponds to four scenarios (Ganstationary, Gaussian non-stationary,
Chi-squared stationary, Chi-squared non-stationaryjy.eBoh of these scenarids= 200 Monte-Carlo
populations are generated using the corresponding modeifigations. For each generated population
and for each ared we select a simple random sample (without replacement)zefrgi = 20, leading
to an overall sample size af= 600. The sample values gfand the population values &fobtained in
each simulation are then used to estimate the small aressmiklinough a larger number of simulations
would be preferable, this is not feasible due to the compatensive nature of the model-fitting process.
Note also that there is no specific motivation behind theaghof equal area specific sample sizes. Rep-
etition of our simulation studies with unequal area-spe&éimple sizes does not lead to any differences
in the conclusions that we draw below. These results of thiesalations are not reported here, but are
available from the authors.

Four different types of small area linear models are fitteth&se simulated data. These are (i) a
random intercepts version with uncorrelated random arketef (ii) the linear M-quantile regression
specification (10.35), (iii) the MQGWR model (10.36), and) (he MQGWR-LI model (10.39), with
the last two models making use of the known location cootdméor the population units. An alternative
model specification that can be used with this type of spdti#d is one where the longitude and the lati-
tude are included as covariates in the fixed part of the mixedet This additional model specification
is also investigated in the model-based simulations anénstd by EBLUP+longlat in what follows.
We did not include the SAR model in these comparisons bedhasspatial dependency simulated in the
non-stationary scenarios is in the mean structure of theehrattl so favours the two M-quantile GWR
small area models, ensuring that such a comparison wouldtberrone-sided.

The random intercepts model (i) is fitted using the defauliVREoption of thelme function (see
Section 10.3 in Venables and Ripley (2002)) in R. The M-gilmtihear regression model (ii) is fitted
using a modified version of them function (see Section 8.3 in Venables and Ripley (2002)) sng
SO uses iteratively re-weighted least squares to fit thisainse Chambers and Tzavidis (2006)). An
extended version of this R code, available from Salvati aravillis (2010), is used to fit the MQGWR
models (iii) and (iv). Both the M-quantile regression and t-quantile GWR models use the Huber
Proposal 2 influence function with= 1.345. Estimated model coefficients obtained from these fits
are used to compute the EBLUP, the bias-adjusted M-quagnmtddictor , denoted by MQ below, and
the MQGWR and the MQGWR-LI versions of the correspondingstaidjusted M-quantile predictor
(10.41).

The performance of the different small area estimatorsakiated with respect to three basic criteria:
the bias and the root mean squared error of estimates of thkk @rma means and the coverage rate of
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nominal 95 per cent confidence intervals for these meansbiBs€or small ared is computed as

: 1Ll - -
Biagy = T ZL(Ydt —Yat),
t=

and the root mean squared error for adga computed as

10 -~ =
RMSE = \/f Z(Ydt — Yat)?.
=

The coverage performance of the confidence intervals is atedmas
1e,.& o /2
CRog = = ZI (I¥ar — Yar| < 2mse€]}%) x 100
t=

Note that the subscrifithere indexes th& Monte-Carlo simulations, Withgs denoting the value of the
small aread mean in simulation andYy;, mseg; denoting the ared estimated value and the correspond-
ing estimated MSE in simulation

Key percentiles of the across areas distributions of theigtien biases and root mean squared errors
of these estimators over the simulations are set out in THh@. For Gaussian random effects and a
spatially stationary regression surface, we see that EBatdFEBLUP+longlat are the best predictors in
terms of RMSE, as one would expect. The MQ, MQGWR and MQGWHR¥kHictors all have similar
bias and RMSE in this case. In contrast, when the underl@gression function is non-stationary we see
that the MQGWR and MQGWR-LI predictors are considerably ergfficient than the MQ, EBLUP and
EBLUP+longlat predictors, and we also note that the RMSERIf BP+longlat is lower than the RMSE
of the EBLUP. Under Chi-squared random effects this ratgigrformance is unchanged, although the
absolute differences in performance between the variedigiors is much smaller. For a non-stationary
Chi-squared process the RMSEs of EBLUP+longlat and the M@&atimators are similar.

In Table 10.10 we show key percentiles of the across aredadisons of the true and estimated mean
squared errors (the latter based on expression (10.44vanabgd over the simulations) of the MQGWR
and MQGWR-LI predictors, as well as the corresponding aseel lcoverage rates for ‘normal theory’-
based nominal 95 per cent prediction intervals. Here cgeeis defined by the number of times the
interval, defined by the estimate of the small area mean plosrwus twice its estimated MSE, contains
the ‘true’ population value. In general the proposed meaasaf error estimator (10.44) provides a good
approximation to the true mean squared error. These redatisshow that when M-quantile GWR fits
are used in (10.44), then this estimator underestimatesubaenean squared error of the corresponding
predictor, leading to some undercoverage of associatediction intervals. This is consistent with
both the MQGWR and the MQGWR-LI models overfitting the actpapulation regression function.
However, this bias is not excessive, being more pronountéuki case of the MQGWR model.
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Summary of across areas distribution

Predictor Indicator Min Q1 Median Mean Q3 Max
Stationary process, Gaussian errors
EBLUP Bias -0.051 -0.034 0.001 -0.001 0.023 0.068
RMSE 0.068 0.075 0.079 0.081 0.087 0.101
EBLUP+longlat Bias -0.053 -0.030 0.001 -0.001 0.020 0.066
RMSE 0.068 0.075 0.079 0.081 0.087 0.101
MQ Bias -0.015 -0.003 0.001 -0.001 0.003 0.012
RMSE 0.074 0.083 0.088 0.087 0.091 0.100
MQGWR Bias -0.016 -0.007 -0.003 -0.002 0.005 0.008
RMSE 0.067 0.084 0.088 0.087 0.091 0.100
MQGWR-LI Bias -0.010 -0.005 0.001 -0.001 0.003 0.012

RMSE 0.073 0.085 0.087 0.086 0.090 0.097

Non-stationary process, Gaussian errors

EBLUP Bias -0.034 -0.013 -0.003 -0.002 0.011 0.031
RMSE 0.169 0.193 0.205 0.220 0.238 0.323
EBLUP+longlat Bias -0.122 -0.063 -0.010 -0.001 0.041 0.162
RMSE 0.061 0.085 0.119 0.124 0.138 0.225
MQ Bias -0.036 -0.011 0.000 -0.002 0.009 0.015
RMSE 0.164 0.181 0.188 0.188 0.193 0.219
MQGWR Bias -0.047 -0.013 -0.005 -0.004 0.005 0.027
RMSE 0.083 0.092 0.098 0.098 0.103 0.119
MQGWR-LI Bias -0.065 -0.010 -0.005 -0.004 0.007 0.047

RMSE 0.088 0.097 0.107 0.112 0.114 0.186

Stationary process, Chi-squared errors

EBLUP Bias -0.441 -0.097 0.0v5 -0.011 0.112 0.237
RMSE 0.399 0.457 0.482 0.489 0.511 0.651
EBLUP+longlat Bias -0.432 -0.069 0.061 -0.011 0.105 0.206
RMSE 0.421 0.461 0.482 0.489 0.511 0.631
MQ Bias -0.063 -0.043 -0.021 -0.011 0.014 0.062
RMSE 0.437 0.496 0.526 0.522 0.542 0.598
MQGWR Bias -0.075 0.002 0.035 0.028 0.060 0.113
RMSE 0.482 0.507 0.539 0.539 0.564 0.633
MQGWR-LI Bias -0.067 -0.009 0.009 0.010 0.032 0.062

RMSE 0.471 0.500 0.525 0.528 0.552 0.618

Non-stationary process, Chi-squared errors

EBLUP Bias -0.069 -0.046 -0.021 -0.014 0.008 0.069
RMSE 0.465 0.541 0.560 0.566 0.592 0.675
EBLUP+longlat Bias -0.441 -0.071 -0.059 -0.010 0.118 0.209
RMSE 0.440 0.512 0.538 0.539 0.562 0.678
MQ Bias -0.086 -0.048 -0.015 -0.014 0.021 0.051
RMSE 0.460 0.540 0.554 0.555 0.586 0.641
MQGWR Bias -0.083 -0.009 0.022 0.017 0.050 0.124
RMSE 0.482 0.507 0.534 0.535 0.562 0.619
MQGWR-LI Bias -0.085 -0.018 0.004 0.007 0.041 0.080

RMSE 0.466 0.518 0.541 0.542 0.557 0.641

Table 10.9: Across areas distribution of Bias and RMSE oweulsitions.



10.4. M-quantile GWR models 233

Percentile of across areas distribution
Predictor Indicator 10 25 Median Mean 75 90
Stationary process, Gaussian errors
True RMSE 0.080 0.084 0.088 0.087 0.091 0.093
MQGWR Est. RMSE 0.076 0.078 0.081 0.081 0.083 0.085
CR% 89.51 90.34 91.72 91.88 93.71 94.48
True RMSE 0.079 0.085 0.087 0.086 0.090 0.090
MQGWR-LI Est. RMSE 0.077 0.079 0.082 0.082 0.083 0.086
CR% 90.45 91.13 93.00 92.88 94.50 95.00
Non-stationary process, Gaussian errors
True RMSE 0.090 0.092 0.098 0.098 0.103 0.106
MQGWR Est. RMSE 0.074 0.076 0.078 0.079 0.081 0.084
CR% 84.30 85.00 87.00 87.08 89.38 90.50
True RMSE 0.096 0.097 0.107 0.112 0.114 0.138
MQGWR-LI Est. RMSE 0.085 0.088 0.098 0.100 0.103 0.122
CR% 88.50 90.50 91.50 91.25 92.88 93.05
Stationary process, Chi-squared errors
True RMSE 0.489 0.507 0.539 0.539 0.564 0.577
MQGWR Est. RMSE 0.463 0.489 0.507 0.506 0.529 0.542
CR% 85.71 89.10 90.38 90.24 92.15 92.44
True RMSE 0.488 0.500 0.525 0.528 0.552 0.574
MQGWR-LI Est. RMSE 0.467 0.486 0.505 0.508 0.528 0.543
CR% 87.00 90.50 91.00 90.88 92.50 93.10
Non-stationary process, Chi-squared errors
True RMSE 0.494 0.507 0.534 0.535 0.562 0.574
MQGWR Est. RMSE 0.448 0.470 0.488 0.488 0.512 0.524
CR% 85.50 88.13 90.00 89.40 91.00 92.05
True RMSE 0.505 0.518 0.541 0.542 0.557 0.588
MQGWR-LI Est. RMSE 0.485 0.501 0.515 0.514 0.529 0.537
CR% 88.95 90.63 91.50 91.07 92.38 93.05

Table 10.10: Across areas distribution of true (i.e. Mordéel®) root mean squared errors (True RMSE),
area averages of estimated root mean squared errors (ESSERMd area coverage rates (CR%) for
nominal 95% prediction intervals. Intervals are definedH®y small area mean estimate plus or minus
twice their corresponding estimated root mean squared erro

Note that the construction of confidence intervals for sraadh parameters requires careful consid-
eration. In our simulations we use the MSE estimation methextribed in Section 10.4.3 to generate
“normal theory” intervals based on M-quantile model-basstimators. This use of the estimated MSE
to construct confidence intervals, though widespread, éas briticised. Hall and Maiti (2006) and more
recently Chatterjee et al. (2008), discuss the use of baptshethods for constructing confidence in-
tervals for small area parameters since there is no guarémiethe asymptotic behaviour underpinning
normal theory confidence intervals applies in the contexhefsmall samples that characterise small
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area estimation. Further research on using the bootstchpitpies described by Tzavidis et al. (2010)
to construct more accurate confidence intervals under tlypidfitiie GWR model is left for the future.
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