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Prologue

This report contains some first small area developments of the partners of the WP2 in the SAM-

PLE project. The target of the report is to illustrate with applications to real data some of the

statistical methodology that is being developed within the SAMPLE project. The manuscript

is organized in four chapters.

Chapter 1 introduces the basic theory of linear mixed models (LMMs). Special attention is

given to the model fitting methods and algorithms, to the calculation of EBLUP estimates and

to the estimation of their mean squared errors.

Chapter 2 deals with area-level time models. Two models are presented. The first one

contains time random effects following an auto-regressive process AR(1) and the second one

is a simplification where these effects are independent. Complete theoretical developments are

presented as well as some simulations to study the behavior of the fitting algorithms and to

investigate when it is worthwhile to employ AR(1) random effects. An application to the Spanish

Living Conditions Survey data is also given. The target of the application is to estimate poverty

proportions and gaps in Spanish provinces by gender.

Chapter 3 describes a methodology for obtaining empirical best predictors of general, possibly

non-linear, domain parameters using unit level linear regression models. The proposed method

is particularized to FGT poverty measures as particular cases of non-linear parameters. The

mean squared error of the proposed estimators is obtained by a parametric bootstrap for finite

populations. The method is applied to the estimation of FGT poverty measures in Spanish

provinces by gender.

Chapter 4 presents M-quantile regression, nonparametric M-quantile regression and M-

quantile Geographically Weighted regression and describes how quantile or M-quantile models

can be employed for measuring area effects and estimators of cumulative distribution function.

This chapter also discusses mean squared error estimation for M-quantile small area predictors.

It also reports a first empirical evaluation for the estimation of the mean squared error for the

mean and quantile estimates. Finally Chapter 4 describes the EU-SILC data and the Census

data which are used to produce the small area estimates and it presents the first results.

This report has been coordinated by Domingo Morales (UMH). He has also been in charge of

writing Chapters 1-2. Isabel Molina (UC3M) has been responsible for the elaboration of Chapter

3. Finally, Nikos Tzavidis (CCSR) and Monica Pratesi (UNIPI-DSMAE) have coordinated the

production of the contents of Chapter 4.
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Chapter 1

Linear mixed models

1.1 Linear mixed models with known variance

1.1.1 Introduction

We consider the model

y = Xβ + Zu + e, (1.1)

where yn×1 is the vector of observations, βp×1 is the vector of fixed effects, uq×1 is the vector of

random effects, Xn×p and Zn×q are the incidence matrices and en×1 is the vector of sampling

errors. We assume that sampling errors and random effects are independent and normally

distributed with mean equal to zero and known matrices of variances,

var[u] = E[uu′] = Vu and var[e] = E[ee′] = Ve,

depending on a parameter θ containing the variance components. From (1.1) we obtain

V = var[y] = ZVuZ
′ + Ve,

where V is assumed to be not singular.

1.1.2 Least squared estimation of β

In this section we assume that the variance components of model (1.1) are known. The random

term is Zu + e, with variance var[Zu + e] = ZVuZ
′ + Ve = V. We transform the model to

have uncorrelated random terms and common variance equal to 1, i.e.

V−1/2y = V−1/2Xβ + V−1/2(Zu + e).

Assuming that y∗ = V−1/2y, e∗ = V−1/2(Zu + e) and X∗ = V−1/2X; the model is

y∗ = X∗β + e∗

3



4 Chapter 1. Linear mixed models

with var[e∗] = V−1/2var[Zu + e]V−1/2 = V−1/2VV−1/2 = In. Therefore, one can apply the

ordinary least squared method, i.e.

β̂ = argminβ(e∗′e∗).

We observe that

e∗′e∗ =
(
V−1/2y − V−1/2Xβ

)′ (
V−1/2y − V−1/2Xβ

)

= (y − Xβ)′ V−1 (y − Xβ) = y′V−1y − 2β′X′V−1y + β′X′V−1Xβ.

By taking derivatives, we obtain

∂e∗′e∗

∂β
= −2X′V−1y + 2X′V−1Xβ.

The normal equations are

X′V−1Xβ = X′V−1y (1.2)

and the solution is

β̂ = (X′V−1X)−1X′V−1y, (1.3)

when X′V−1X and V are invertible. Under normality β̂ is also the maximum likelihood estimator

(MLE) of β, i.e.

β̂ = argmaxβ

(
−1

2
(y − Xβ)′V−1(y − Xβ)

)
.

1.1.3 Best linear unbiased prediction of a linear combination of effects

We look at the model (1.1) and define τ = a′
r(Xrβ + Zru), where ar (k × 1), Xr (k × p) and

Zr (k × q) are known vectors and matrices. Let τ̂ = g′y + g0 be a linear estimator (predictor)

of τ , where g (n× 1) and g0 (1 × 1) are such that

1. τ̂ is unbiased, i.e.

E[τ ] = a′
rXrβ and E[τ̂ ] = g′Xβ + g0

are equal. Thus g0 = 0 and a′
rXr = g′X.

2. τ̂ minimizes the prediction error

E[(τ̂ − τ)2] = V (τ̂ − τ) = V (g′y − a′
rXrβ − a′

rZru) = V (g′y − a′
rZru)

= g′Vg + a′
rZrVuZ

′
rar − 2g′CZ′

rar,

where C = cov(y,u) = ZVu.

Therefore, the problem to be solved is

minimize V (τ̂ − τ), restricted to a′
rXr = g′X.
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Since a′
rZrVuZ

′
rar does not depend on g, the Lagrangian function is

L(g,λ) = g′Vg − 2g′CZ′
rar + 2(g′X − a′

rXr)λ.

By taking partial derivatives with respect to g and λ, we obtain

0 =
∂L(g,λ)

∂g
= 2Vg − 2CZ′

rar + 2Xλ ⇐⇒ Vg + Xλ = CZ′
rar

0 =
∂L(g,λ)

∂λ
= 2g′X− 2a′

rXr ⇐⇒ g′X = a′
rXr

In matrix form, the above equations are
(

V X

X′ 0

)(
g

λ

)
=

(
CZ′

rar
X′
rar

)

If we apply the formula
[
A B
B′ C

]−1

=

[
A−1 0
0 0

]
+

[
−A−1B

I

] (
C −B′A−1B

)−1 [−B′A−1, I
]
,

with A = V, B = X, C = 0, then we obtain
[

V X

X′ 0

]−1

=

[
V−1 0

0 0

]
−
[
−V−1X

I

] (
X′V−1X

)−1 [−X′V−1, I
]

=

(
V−1 − V−1X(X′V−1X)−1X′V−1 V−1X(X′V−1X)−1

(X′V−1X)−1X′V−1 −(X′V−1X)−1

)

Therefore (
g

λ

)
=

(
V X

X′ 0

)−1(
CZ′

rar
X′
rar

)
,

with

g = V−1CZ′
rar − V−1X(X′V−1X)−1X′V−1CZ′

rar + V−1X(X′V−1X)−1X′
rar.

The best linear unbiased predictor (BLUP) of τ is

τ̂ = g′y = a′
rXr{(X′V−1X)−1X′V−1y} + a′

rZrC
′V−1y

− a′
rZrC

′V−1X{(X′V−1X)−1X′V−1y}
= a′

r

[
Xrβ̂ + ZrC

′V−1(y − Xβ̂)
]
,

where

β̂ = (X′V−1X)−1X′V−1y

is the least squared estimator of β.

As C = cov(y,u) = ZVu, by taking Xr = 0, ar = 1(i) = (0, . . . , 0, 1(i), 0, . . . , 0)′ and Zr = I

we obtain

ûi = 1′
(i)VuZ

′V−1(y − Xβ̂), i = 1, . . . , q,

or equivalently

û = VuZ
′V−1(y − Xβ̂).
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1.1.4 Best linear unbiased prediction of u

The best linear unbiased predictor (BLUP) of u is

û = VuZ
′V−1

(
y − Xβ̂

)
. (1.4)

The predictor (1.4) has the following properties:

• “Best” in the sense that minimizes E[(û − u)′A(û − u)] for any given positive definite

matrix A.

• Linear with respect to y.

• Unbiased: E[û − u] = 0.

For more details see Searle (1971), 458-462, or chapter 7 of Searle et al. (1992).

1.2 Linear mixed models with unknown variances

Let us consider the mixed model

y = Xβ + Z1u1 + . . .+ Zmum + e , (1.5)

where y = (y1, . . . , yn)
′ is the vector of sample observations, β = (β1, . . . , βp)

′ is the vector of

fixed effects, and ui = (ui1, . . . , uiqi
)′ is the vector containing the effects of the qi levels of the

i-th random factor. The expression i-th random factor is used to denote the vector ui. Finally,

e = (e1, . . . , en)
′ is the vector of sampling errors, and X, Z1, . . . ,Zm are design matrices with

dimensions n× p, n× q1, . . . , n× qm respectively.

The model (1.5) can be written in the form (1.1) if we define

Z = [Z1, . . . ,Zm] and u = [u′
1, . . . ,u

′
m]′, q =

m∑

i=1

qi.

The following assumptions ensure that the model parameters are estimable.

(F1) u1, . . . ,um, e are independent, and

e ∼ Nn(0, σ
2
0Σe), ui ∼ Nqi(0, σ

2
iΣui

), i = 1, . . . ,m,

with Σe and Σui
, i = 1, . . . ,m, known.

(F2) r(X) = p .

Note The assumption (F2) always holds if an adequate re-parametrization of the model is made.

The next hypothesis states that the number of observations should be greater than the number

of parameters.
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(F3) n ≥ p+m+ 1 .

If assumption (F4) holds, then the fix effects are not confused with the random effects of any

factors.

(F4) r(X : Zi) > p, i = 1, . . . ,m.

Assumption (F5) ensures that random effects of a factor are not confused with random effects

of other factors. Let G0 = Σe and Gi = ZiΣui
Z′
i, i = 1, . . . ,m.

(F5) G0,G1, . . . ,Gm are linearly independent, then,

m∑

i=0

αiGi = 0 =⇒ αi = 0, i = 0, 1, . . . ,m .

Finally, assumption (F6) states that Zi, i = 1, . . . ,m, are standard design matrices.

(F6) Zi has only 0’s and 1’s. In each row there is exactly one 1, and in each column there is at

least one 1, i = 1, . . . ,m.

This assumption implies that Z′
iZi is a qi×qi nonsingular diagonal matrix, r(Zi) = qi and qi ≤ n,

i = 1, . . . ,m.

Another consequence of the previous assumption is that

y ∼ Nn(Xβ,V), with V =

m∑

i=0

σ2
iGi.

Let σ = (σ2
0 , σ

2
1 , . . . , σ

2
m)′. When necessary, we will emphasize the dependency of V on σ by

writing V(σ). Let M = p +m+ 1 and let θ′ = (β′,σ′) be the vector of unknown parameters.

The parameter space is

Θ = {θ′ = (β′,σ′);β ∈ Rp;σ2
0 > 0;σ2

i ≥ 0, i = 1, . . . ,m} . (1.6)

The likelihood of θ, given a vector of observations y, is denoted in the same way as the joint

density function of y given θ, i.e.

fθ(y) = (2π)−n/2|V|−1/2 exp

{
−1

2
(y − Xβ)′V−1(y − Xβ)

}
. (1.7)

1.3 Maximum likelihood estimation

1.3.1 Description of the method

The maximum likelihood estimator θ̂ = (β̂1, . . . , β̂p, σ̂
2
0 , . . . , σ̂

2
m)′ of θ is the vector satisfying

θ̂ = argmaxθ∈Θfθ(y) = argmaxθ∈Θ log fθ(y) .
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Note that l(θ) = log fθ(y). We denote the vector of derivatives as S(θ) = (Sβ, Sσ2
0
, . . . , Sσ2

m
)′,

where

S(θ) =
∂l(θ)

∂θ
=

(
∂l(θ)

∂β
,
∂l(θ)

∂σ2
0

, . . . ,
∂l(θ)

∂σ2
m

)′

.

If θ̂ exists in the interior Θ, then it is the solution of the likelihood equations which are obtained

by equating to zero the components of the vector of scores. By deriving the log-likelihood with

respect to the parameters we obtain the score components of model (1.5), i.e.

Sβ = X′V−1(y − Xβ) , (1.8)

Sσ2
i

= −1

2

∂ log |V|
∂σ2

i

− 1

2
(y − Xβ)′

∂V−1

∂σ2
i

(y −Xβ), i = 0, 1, . . . ,m.

We know that

∂ log |V|
∂σ2

i

= tr

{
V−1 ∂V

∂σ2
i

}
, (1.9)

∂V−1

∂σ2
i

= −V−1 ∂V

∂σ2
i

V−1 . (1.10)

Since ∂V/∂σ2
i = Gi,we have

Sσ2
i

= −1

2
tr{V−1Gi} +

1

2
(y − Xβ)′V−1GiV

−1(y − Xβ), i = 0, 1, . . . ,m. (1.11)

When we equate (1.8) and (1.11) to zero, we obtain the likelihood equations

X′V−1Xβ = X′V−1y , (1.12)

tr{V−1Gi} = (y − Xβ)′V−1GiV
−1(y − Xβ), i = 0, 1, . . . ,m. (1.13)

These equations cannot be solved to obtain explicit expressions of the maximum likelihood

estimators. The Newton-Raphson or the Fisher-Scoring algorithms calculate them iteratively,

starting with an initial value θ0. In each iteration, the Newton-Raphson method updates the

estimator of θ by using the formula

θi+1 = θi − H(θi)−1S(θi),

where S(θi) is the vector of derivatives and H(θi) is the Hessian matrix of l(θ), both calculated

with the estimator obtained at the last iteration θi. The elements of the Hessian matrix are

obtained by taking new derivatives, using (1.10) and applying the property that the derivative

of the trace of a matrix is the the trace of the derivative of the matrix, i.e.

∂2l(θ)

∂β∂β′ = −X′V−1X , (1.14)

∂2l(θ)

∂σ2
i ∂β

=
∂2l(θ)

∂β∂σ2
i

= −X′V−1GiV
−1(y −Xβ) , (1.15)

∂2l(θ)

∂σ2
jσ

2
i

=
1

2
tr{V−1GjV

−1Gi} − (y − Xβ)′V−1GjV
−1GiV

−1(y − Xβ) , (1.16)
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for i, j = 0, 1, . . . ,m. We illustrate the calculation of the second sum on (1.16). Let Q =
1
2y

′A−1y, where A−1 = V−1GiV
−1. Then A = VG−1

i V and ∂A
∂σ2

j

= VG−1
i Gj + GjG

−1
i V.

Therefore

∂Q

∂σ2
j

= −1

2
y′A−1 ∂A

∂σ2
j

A−1y = −1

2
y′(V−1GiV

−1)[VG−1
i Gj + GjG

−1
i V](V−1GiV

−1)y

= −1

2
y′V−1GjV

−1GiV
−1y − 1

2
y′V−1GiV

−1GjV
−1y = −y′V−1GjV

−1GiV
−1y

The Fisher-scoring method replaces the Hessian matrix by its expectation with the sign changed,

that is, the information of Fisher matrix. The updating formula is

θi+1 = θi + F (θi)−1S(θi),

and F(θi) is the Fisher information matrix defined by

F(θ) = −E[H(θ)],

and evaluated in θi. Taking expectations in (1.14)-(1.16), changing the sign and using the result

E[(y − Xβ)′A(y − Xβ)] = tr{AV} ,

for any not random matrix A, we get the elements of the Fisher information matrix

Fββ = X′V−1X , (1.17)

Fσ2
i β = Fβσ2

i
= 0, i = 0, 1, . . . ,m , (1.18)

Fσ2
j σ

2
i

=
1

2
tr{V−1GiV

−1Gj}, i, j = 0, 1, . . . ,m. (1.19)

We get

F (θ) =




Fββ 0 0 · · · 0

0 Fσ2
0σ

2
0

Fσ2
0σ

2
1

· · · Fσ2
0σ

2
m

0 Fσ2
1σ

2
0

Fσ2
1σ

2
1

· · · Fσ2
1σ

2
m

...
...

...
. . .

...
0 Fσ2

mσ
2
0

Fσ2
mσ

2
1

· · · Fσ2
mσ

2
m




=

(
F (β) 0

0 F (σ)

)
.

The block structure of matrix F (θ) allows to separate the updating equation separately in two

equations

βi+1 = βi + F (βi)−1S(βi), σi+1 = σi + F (σi)−1S(σi).

Finally

βi+1 = βi + (X′V−1(σi)X)−1X′V−1(σi)(y − Xβi) = (X′V−1(σi)X)−1X′V−1(σi)y.
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1.3.2 Maximum likelihood with alternative parametrization

We consider the model (1.5) and the parameters

σ2 = σ2
0 , ϕi = σ2

i /σ
2
0 , i = 1, . . . ,m.

Let σ′ = (σ2, ϕ1, . . . , ϕm), θ′ = (β′,σ′) and V = σ2 (Σe +
∑m

i=1 ϕiGi) = σ2Σ. The likelihood

of θ, for a known observation vector, is

fθ(y) = (2π)−n/2(σ2)−n/2|Σ|−1/2 exp

{
− 1

2σ2
(y − Xβ)′Σ−1(y −Xβ)

}
.

The likelihood function is

l(θ) = −n
2

log 2π − n

2
log σ2 − 1

2
log |Σ| − 1

2σ2
(y − Xβ)′Σ−1(y − Xβ).

The components of the vector of scores are

Sβ =
1

σ2
X′Σ−1(y − Xβ), (1.20)

Sσ2 = − n

2σ2
+

1

2σ4
(y − Xβ)′Σ−1(y − Xβ), (1.21)

Sϕi
= −1

2
tr(Σ−1Gi) +

1

2σ2
(y − Xβ)′Σ−1GiΣ

−1(y − Xβ), i = 1, . . . ,m. (1.22)

By making Sβ = 0 and Sσ2 = 0 we obtain

β = (X′Σ−1X)−1X′Σ−1y and σ2 =
1

n
(y − Xβ)′Σ−1(y − Xβ).

Partial derivatives of the log-likelihood function are

Hββ = − 1
σ2 X

′Σ−1X, Hβσ2 = − 1
σ4 X

′Σ−1(y − Xβ),

Hβϕi
= − 1

σ2 X
′Σ−1GiΣ

−1(y − Xβ), Hσ2σ2 = n
2σ4 − 1

σ6 (y − Xβ)′Σ−1(y − Xβ),

Hσ2ϕi
= − 1

2σ4 (y − Xβ)′Σ−1GiΣ
−1(y − Xβ),

Hϕiϕj
= 1

2 tr(Σ
−1GjΣ

−1Gi) − 1
σ2 (y − Xβ)′Σ−1GjΣ

−1GiΣ
−1(y − Xβ).

Taking expectations and changing the sign, we obtain the elements of the Fisher information

matrix, i.e.

Fββ = 1
σ2 X

′Σ−1X, Fβσ2 = 0, Fβϕi
= 0,

Fσ2σ2 = n
2σ4 , Fσ2ϕi

= 1
2σ2 tr(Σ

−1Gi), Fϕiϕj
= 1

2tr(Σ
−1GjΣ

−1Gi).

1.4 Residual maximum likelihood estimation

1.4.1 Description of the method

Residual maximum likelihood estimation (REML) is introduced to reduce the bias of the maxi-

mum likelihood estimators of the variance components. For this sake, it transforms the vector
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y in two independent vectors y⋆1 = K1y and y⋆2 = K2y, with the condition that the distribution

of y⋆1 does not depend on the fixed effect β. Let K1 be a matrix such that K1X = 0. Therefore

E[y⋆1] = E[K1y] = E[K1(Xβ + Z1u1 + . . .Zmum + e)] = 0.

The vector y⋆2 is selected to be independent of y⋆1. Then it has to satisfy

E[y⋆1y
⋆t
2 ] = K1E[yy′]K′

2 = K1VK′
2 = 0.

Rows k′ of matrix K1 are called contrasts, as they fulfill k′X = 0. The maximum number of

contrasts linearly independent is n− r(X). We suppose that X has full rank p, so that rank of

K1 is n− p. Matrix K2 is selected with rank p.

To introduce matrix K1, we consider the model without random effects

y = Xβ + ε, with ε ∼ N (0,Σε). (1.23)

The maximum likelihood estimator of β in (1.23) is

β̃ =
(
X′Σ−1

ε X
)−1

X′Σ−1
ε y.

We define the transformed vector (normalized residual)

y⋆1 = Σ−1
ε (y − Xβ̃) = Σ−1

ε

(
y − X(X′Σ−1

ε X)−1X′Σ−1
ε y

)
= K1y,

where K1 = Σ−1
ε − Σ−1

ε X(X′Σ−1
ε X)−1X′Σ−1

ε . Further we select K2 = X′V−1.

Since K1 = K′
1, it holds that

E[y⋆1] = E[K1y] =
(
Σ−1
ε −Σ−1

ε X(X′Σ−1
ε X)−1X′Σ−1

ε

)
Xβ = 0,

E[y⋆2] = E[K2y] = X′V−1Xβ,

V [y⋆1] = E[y⋆1y
⋆t
1 ] = K1VK1,

V [y⋆2] = K2VK′
2 = X′V−1VV−1X = X′V−1X,

E[y⋆1y
⋆t
2 ] = K1E[yy′]K′

2 = K1VK′
2 = K1VV−1X = K1X = 0.

As the maximum number of columns linearly independent of K1 is n− r(X), after the selection

of n − r(X) of these columns we can construct a sub-matrix K with the order n × (n − r(X))

and satisfying K′X = 0. We define the vectors y1 = K′y and y2 = y⋆2. Since r(X) = p we have

that

y1 ∼ Nn−p(0,K
′VK), y2 ∼ Np(X

′V−1Xβ,X′V−1X) are independent.

We define σ = (σ2
0 , σ

2
1 , . . . , σ

2
m)′ and P = K(K′VK)−1K′. The likelihood function of y1 is

l(σ) = −1

2
(n− p) log 2π − 1

2
log |K′VK| − 1

2
y′

1(K
′VK)−1y1,
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where V =
∑m

i=0 σ
2
iGi and y1 = K′y. By taking partial derivatives with respect to σ2

i , we

obtain

Sσ2
i

=
∂l(σ)

∂σ2
i

= −1

2

∂

∂σ2
i

{
log |K′VK|

}
− 1

2

∂

∂σ2
i

{
y′K(K′VK)−1K′y

}

= −1

2
tr
(
(K′VK)−1K′GiK

)
+

1

2
y′K(K′VK)−1(K′GiK)(K′VK)−1K′y

= −1

2
tr(PGi) +

1

2
y′PGiPy.

As
∂P

∂σ2
j

=
∂[K(K′VK)−1K′]

∂σ2
j

= −K(K′VK)−1K′GjK(K′VK)−1K′ = −PGjP,

the second order partial derivatives are

∂l(σ)

∂σ2
i ∂σ

2
j

=
1

2
tr (PGjPGi) − y′PGjPGiPy.

If we take expectations and change the sign, we obtain the Fisher information matrix. To

calculate this matrix we use the relations PX = 0 and PVP = P, and the following result.

If E[y] = µ and var[y] = V, then E[y′Ay] = tr(AV) + µ′Aµ . (1.24)

The elements of the Fisher information matrix are

Fσ2
jσ

2
i

= −E
[
∂l(σ)

∂σ2
i ∂σ

2
j

]
= −1

2
tr (PGjPGi) + tr (PGjPGiPV) + β′X′PGjPGiPXβ

= −1

2
tr (PGjPGi) + tr (GjPGiPVP) =

1

2
tr (PGjPGi) .

To calculate the residual maximum likelihood estimators, the Fisher-scoring method uses the

following updating formula

σk+1 = σk + F (σk)
−1S(σk) ,

where F(σk) is the Fisher information matrix calculated in σk. We observe that F(σ) is a

matrix (m+ 1)× (m+ 1); however the Fisher information matrix needed to calculate maximum

likelihood estimators, F(θ), is (p+m+ 1) × (p+m+ 1).

Fisher-scoring algorithm gives the estimate of σ. If we plug that estimate in the likelihood

function of y2, we consider it as a constant, and we maximize on β, we get the REML estimators

of β. The likelihood function of y2 is

l(β) = −p
2

log 2π − 1

2
log |X′V−1X| − 1

2
(y2 − X′V−1Xβ)′

(
X′V−1X

)−1
(y2 − X′V−1Xβ).

By taking partial derivatives with respect to β, and equating to zero, we obtain

0 =
∂l(β)

∂β
= X′V−1X

(
X′V−1X

)−1
(y2 − X′V−1Xβ) = X′V−1(y − Xβ).
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Therefore

β̂REML =
(
X′V̂−1X

)−1
y2 =

(
X′V̂−1X

)−1
X′V̂−1y.

where V̂ =
∑m

i=0 σ̂
2
iGi and σ̂2

0 , σ̂
2
1 , . . . , σ̂

2
m are the REML estimators of σ2

0 , σ
2
1 , . . . , σ

2
m.

By taking again derivatives with respect to β, we get

Fββ = −E
[
∂2l(β)/∂β∂β′

]
= X′V̂−1X,

that is the same value of Fββ obtained with the maximum likelihood procedure.

Theorem 1.4.1 implies that residual maximum likelihood method does not depend on the

selected matrix K (with K′X = 0).

Theorem 1.4.1. Let K′ be a full rank (n− r)× n matrix. Let V be a symmetric and positive

definite n× n matrix. Let X an n× p matrix with rank r ≤ p. If K′X = 0, then

K(K′VK)−1K′ = P, with P = V−1 − V−1X(X′V−1X)−1X′V−1.

1.4.2 Residual maximum likelihood with alternative parametrization

In the model (1.5), we consider the parameters

σ2 = σ2
0 , ϕi = σ2

i /σ
2
0 , i = 1, . . . ,m.

Let ϕ′ = (σ2, ϕ1, . . . , ϕm), θ′ = (β′,ϕ′) and V = σ2 (Σe +
∑m

i=1 ϕiGi) = σ2Σ. For the REML

method, the log-likelihood associated to the this parametrization is

l(ϕ) = −1

2
(n− p) log 2π − 1

2
(n− p) log σ2 − 1

2
log |K′ΣK| − 1

2σ2
y′Py,

where P = K(K′ΣK)−1K′ = Σ−1 − Σ−1X(X′Σ−1X)−1X′Σ−1. The components of the vector

of scores are

Sσ2 = −n− p

2σ2
+

1

2σ4
y′Py,

Sϕi
= −1

2
tr(PGi) +

1

2σ2
y′PGiPy, i = 1, . . . ,m.

Second partial derivatives of the log-likelihood are

Hσ2σ2 = n−p
2σ4 − 1

σ6 y
′Py, Hσ2ϕi

= − 1
2σ4 y

′PGiPy,

Hϕiϕj
= 1

2tr(PGjPGi) − 1
σ2 y

′PGjPGiPy.

By taking expectations, changing the sign and applying PX = 0 and PΣP = P, we obtain the

elements of the Fisher information matrix

Fσ2σ2 = −n− p

2σ4
+

1

σ4
tr(PΣ) =

n− p

2σ4
, Fσ2ϕi

=
1

2σ2
tr(PGi), Fϕiϕj

=
1

2
tr(PGjPGi).
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Observation 1.4.1. From equation Sσ2 = 0, we get

σ̂2 =
1

n− p
y′Py (1.25)

which allows to introduce an algorithm that updates σ2 with (1.25) and the remaining compo-

nentes of ϕ with

ϕi+1 = ϕi + F (ϕi)−1S(ϕi).

1.5 The Henderson 3 method

1.5.1 Description of the method

The maximum likelihood method gives at the same time the estimates of models coefficients β

and components of variance σ2
1 , . . . , σ

2
m. In this section we present the method of fitting constants

to estimate the components of variance. The regression parameter β is estimated by the least

squared method and random effects are predicted by using the BLUP theory, but replacing

the components of variance by its obtained estimates. The predictor of u is called EBLUP

(empirical BLUP). The method of fitting constants is also known as Henderson 3 method since

its introduction by Henderson (1953). We write the general linear mixed model, y = Xβ + e,

in the form

y = X1β1 + X2β2 + e, (1.26)

where e ∼ N(0, σ2
0W

−1) and W is a known symmetric and positive definite matrix. We assume

that X′WX and X′
1WX1 are invertible. The partition simply divides β in two groups of effects

β1 and β2, without taking into account if they represent fixed or random effects. This issue will

be considered later.

We apply the transformation

W1/2y = W1/2X1β1 + W1/2X2β2 + W1/2e

and we denote y∗ = W1/2y, X∗
1 = W1/2X1, X∗

2 = W1/2X2 and e∗ = W1/2e. The new model

is

y∗ = X∗
1β1 + X∗

2β2 + e∗, (1.27)

with e∗ ∼ N(0, σ2
0In).

If we fit the model (1.27) under the assumption that β1 and β2 are fixed effects, the total

sum of squares is

SST = y∗′y∗ = y′Wy. (1.28)

The residual sum of squares is

SSE(β1,β2) = y′My, (1.29)
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where M = [In − X(X′WX)−1X′W]′W[In − X(X′WX)−1X′W]. The reduction of sum of

squares (regression sum of squares) is

SSR(β1,β2) = SST − SSE(β1,β2) = y′Qy,

where Q = WX(X′WX)−1X′W.

If we fit the submodel

y∗ = X∗
1β1 + e∗,

under the assumption that β1 is a fixed effect, the residual sum of squares is

SSE(β1) = y′M1y, (1.30)

where M1 = [In − X1(X
′
1WX1)

−1X′
1W]′W[In − X1(X

′
1WX1)

−1X′
1W]. The reduction of the

sum of squares (regression sum of squares) is

SSR(β1) = SST − SSE(β1) = y′Q1y,

where Q1 = WX1(X
′
1WX1)

−1X′
1W. The reduction of the sum of squares because of the

introduction of X2 in the model, that only had X1, is

SSR(β2|β1) = SSR(β1,β2) − SSR(β1) = SSE(β1) − SSE(β1,β2).

To introduce the Henderson 3 method, we first calculate the expectation of SSR(β2|β1) and

SSR(β1,β2). In a second step we modify these statistics to make them unbiased. Note that

all the considered sums of squares are quadratic functions of y, so that we will apply (1.24)

systematically. For a general linear model y = Xβ + e, where β may contain fixed or random

effects, we have E[y] = XE[β] and var[y] = Xvar[β]X′ + σ2
0W

−1. From (1.24), we obtain

E[y′Qy] = tr
(
Q
[
Xvar[β]X′ + σ2

0W
−1
])

+ E[β]′X′QXE[β]

= tr
(
QXvar[β]X′

)
+ σ2

0tr
(
QW−1

)
+ tr

(
QXE[β]E[β]′X′

)

= tr
(
QXE[ββ′]X′

)
+ σ2

0tr
(
QW−1

)

= tr
(
X′QXE[ββ′]

)
+ σ2

0tr
(
QW−1

)
.

The expectation of the total sum of squares appearing in (1.28) is

E[SST ] = E[y′Wy] = tr
(
X′WXE[ββ′]

)
+ σ2

0tr (In) = tr
(
X′WXE[ββ′]

)
+ nσ2

0 (1.31)

The expectation of the sum of residual squares in (1.29) is

E[SSE(β1,β2)] = E[y′My] = tr
(
X′MXE[ββ′]

)
+ σ2

0tr
(
MW−1

)
.

This expression can be simplified if we take into account that

X′MX = X′[In − X(X′WX)−1X′W]′W[In − X(X′WX)−1X′W]X = X′WX

− 2X′WX(X′WX)−1X′WX + X′WX(X′WX)−1X′WX(X′WX)−1X′WX

= 0
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and

MW−1 = [In − X(X′WX)−1X′W]′W[In − X(X′WX)−1X′W]W−1

= [In − X(X′WX)−1X′W]′[In − WX(X′WX)−1X′]

= In − 2WX(X′WX)−1X′ + WX(X′WX)−1X′WX(X′WX)−1X′

= In − WX(X′WX)−1X′,

Since X′WX(X′WX)−1 is equal to the identity, we obtain that

tr
(
MW−1

)
= tr

(
In − WX(X′WX)−1X′

)
= n− tr

(
X′WX(X′WX)−1

)

= n− p = n− r (X) ,

where r(X) denotes the rank of X. This result can be proved in the case r(X) < p too. Therefore

E[SSE(β1,β2)] = σ2
0 [n− r(X)] (1.32)

and also with (1.31) and (1.32) we obtain that

E[SSR(β1,β2)] = E[SST ] − E[SSE(β1,β2)] = tr
(
X′WXE[ββ′]

)
+ σ2

0r(X).

From the model (1.26) it follows that

X′WX =

(
X′

1

X′
2

)
W (X1, X2) =

(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX2

)
,

consequently

E[SSR(β1,β2)] = tr

{(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX2

)
E[ββ′]

}
+ σ2

0r(X). (1.33)

From (1.30) and (1.24) we obtain

E[SSE(β1)] = tr
{
X′M1XE[ββ′]

}
+ σ2

0tr
{
M1W

−1
}

= tr
{
X′M1XE[ββ′]

}
+ σ2

0 [n− r {X1}] . (1.34)

From (1.31) and (1.34), we have that

E[SSR(β1)] = E[SST ] − E[SSE(β1)] = tr
{
X′Q1XE[ββ′]

}
+ σ2

0r {X1} ,

where Q1 = W − M1 = WX1(X
′
1WX1)

−1X′
1W. If X′

1WX1 is invertible, then

X′Q1X =

(
X′

1

X′
2

)
WX1(X

′
1WX1)

−1X′
1W (X1 X2)

=

(
X′

1WX1 X′
1WX1(X

′
1WX1)

−1X′
1WX2

X′
2WX1(X

′
1WX1)

−1X′
1WX1 X′

2WX1(X
′
1WX1)

−1X′
1WX2

)

=

(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX1(X
′
1WX1)

−1X′
1WX2

)
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and

E[SSR(β1)] = tr

{(
X′

1WX1 X′
1WX2

X′
2WX1 X′

2WX1(X
′
1WX1)

−1X′
1WX2

)
E[ββ′]

}
+ σ2

0r(X1). (1.35)

Therefore, applying (1.33) and (1.35), we obtain

E[SSR(β2|β1)] = E[SSR(β1,β2)] − E[SSR(β1)]

= tr

{(
0 0

0 X′
2W[W−1 − X1(X

′
1WX1)

−1X′
1]WX2

)
E[ββ′]

}
+ σ2

0 [r(X) − r(X1)]

= tr
{
X′

2W[W−1 − X1(X
′
1WX1)

−1X′
1]WX2E[β2β2

′]
}

+ σ2
0[r(X) − r(X1)]. (1.36)

We observe that E [SSR(β2|β1)] is simply a function of E
[
β2β

′
2

]
and σ2

0. It does not

depend on E
[
β1β

′
1

]
and E

[
β1β

′
2

]
. We also observe that (1.36) has been obtained without

doing assumptions about the form of E
[
ββ′

]
. Therefore (1.36) holds for any structure of

covariance matrix of β.

Let us consider again the model (1.5)

y = Xβ + Z1u1 + . . .+ Zmum + e ,

with e ∼ Nn(0, σ
2
0W

−1), and ui ∼ Nqi(0, σ
2
i Iqi), i = 1, . . . ,m. We define

β(i) = (β′,u′
1, . . . ,u

′
i−1)

′ y u(i) = (u′
i, . . . ,u

′
m)′ .

For i = 1, . . . ,m we consider the case

X1 = X
(i)
1 = (X,Z1, . . . ,Zi−1), β1 = β(i),

X2 = X
(i)
2 = (Zi, . . . ,Zm), β2 = u(i)

and define

Mi = W − WX
(i)
1 (X

(i)t
1 WX

(i)
1 )−1X

(i)t
1 W,

Li = Z′
iW[W−1 − X

(i)
1 (X

(i)t
1 WX

(i)
1 )−1X

(i)t
1 ]WZi .

Then (1.32) and (1.36) becomes

E[SSE(β(i),u(i))] = E[SSE(β,u)] = σ2
0[n− r(X Z)] (1.37)

E[SSR(u(i)|β(i))] =

m∑

k=i

tr {Lk}σ2
k + σ2

0 [r(X Z) − r(X,Z1, . . . ,Zi−1)] (1.38)

From (1.37) and (1.38), and applying the method of moments, we get the following linear and
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triangular system of equations.

SSE(β,u) = σ2
0[n− r(X,Z1, . . . ,Zm)]

SSR(u(m)|β(m)) = σ2
0[r(X Z) − r(X,Z1, . . . ,Zm−1)] + σ2

mtr {Lm}
SSR(u(m−1)|β(m−1)) = σ2

0[r(X Z) − r(X,Z1, . . . ,Zm−2)] + σ2
mtr {Lm} + σ2

m−1tr {Lm−1}
...

SSR(u(1)|β(1)) = σ2
0[r(X Z) − r(X)] +

m∑

i=1

σ2
i tr {Li}

From the first equation we obtain an unbiased estimator of σ2
0,

σ̂2
0 =

SSE(β,u)

n− r(X Z)
= MSE(β,u). (1.39)

From the second equation we get an unbiased estimator of σ2
m,

σ̂2
m =

SSR(u(m)|β(m)) − σ̂2
0 [r(X Z) − r(X,Z1, . . . ,Zm−1)]

tr {Lm}
. (1.40)

From the third equation we get an unbiased estimator of σ2
m−1,

σ̂2
m−1 =

SSR(u(m−1)|β(m−1)) − σ̂2
0 [r(X Z) − r(X,Z1, . . . ,Zm−2)] − σ̂2

mtr {Lm}
tr {Lm−1}

,

and so on.

As SSR(u(i)|β(i)) = SSE(β(i)) − SSE(β(i),u(i)) = SSE(β(i)) − SSE(β,u), then the pre-

vious formula can be expressed as a function of residual sum of squares. That is,

σ̂2
0 =

y′Mm+1y

n− r(X
(m+1)
1 )

σ̂2
m =

y′Mmy − y′Mm+1y − σ̂2
0

[
r(X

(m+1)
1 ) − r(X

(m)
1 )

]

tr(Lm)

...
...

σ̂2
i =

y′Miy − y′Mm+1y − σ̂2
0

[
r(X

(m+1)
1 ) − r(X

(i)
1 )
]
−∑m

j=i+1 σ̂
2
j tr(Lj)

tr(Li)

...
...

σ̂2
1 =

y′M1y − y′Mm+1y − σ̂2
0

[
r(X

(m+1)
1 ) − r(X

(1)
1 )
]
−∑m

j=2 σ̂
2
j tr(Lj)

tr(L1)

For more details see the Searle at al. (1992), 202-208, or Searle (1971), 443-445. If we replace

the variance components σ2
0 , σ

2
1 , . . . , σ

2
m by their estimators σ̂2

0, σ̂
2
1 , . . . , σ̂

2
m in (1.3) and (1.4), we

obtain the estimator of β and the predictors u1, . . . ,um.



1.6. The area-level Fay-Herriot model 19

Observation 1.5.1. If we use the alternative parametrization the system of equations is not

linear any more. Consequently, by solving the transformed system one does not obtain unbiased

estimators.

1.6 The area-level Fay-Herriot model

1.6.1 The model

Let us introduce the following notations and assumptions:

1. Let xd = (xd1, . . . , xdp) be known vectors containing explanatory variables for the target

variable µd = Y d·, d = 1, . . . ,D, where Y d· is the domain mean of variable y.

2. Assume that the µd’s are independent with distribution N(xd β, σ2
u), where β is a vector

of dimension p containing the regression parameters, i.e. µ = (µ1, . . . , µD)′ ∼ N(Xβ,Σu)

with Σu = σ2
uID.

3. Let y = (y1·, . . . , yD·)
′ be a vector of direct estimators of µ with distribution N(µ,Ve),

where Ve = diag(σ2
1 , . . . , σ

2
D) and the diagonal elements σ2

d are assumed to be known.

The area-level Fay-Herriot model is

yd· = µd + ed y µd = xd β + ud, d = 1, . . . ,D, (1.41)

where e = (e1, . . . , eD) and u = (u1, . . . , uD) are independent with distribution N(0,Ve) and

N(0,Σu) respectively. If we write (1.41) in the form Xβ + Zu + e, we get




y1·
...

yD·


 =




x11 . . . x1p
...

...
...

xD1 . . . xDp







β1
...

βp


+




u1
...

uD


+




e1
...

eD


 .

It holds that Z = ID, tr(Z′Z) = D, r(X, Z) = D, Cov[y,u] = ZΣu,

V = var(y) = ZΣuZ
′ + Ve = Σu + Ve = diag(σ2

u + σ2
1 , . . . , σ

2
u + σ2

D),

and

V−1 = diag((σ2
u + σ2

1)
−1, . . . , (σ2

u + σ2
D)−1).

If σ2
u is known, then the best linear unbiased estimator (BLUE) and predictor (BLUP) of β =

(β1, . . . , βp)
′ and u = (u1, . . . , uD)′ are

β̃ = (X′V−1X)−1X′V−1y and ũ = ΣuZ
′V−1

(
y − Xβ̃

)
.

It is easy to check that the components of ũ are

ũd =
σ2
u

σ2
u + σ2

d

(
yd· − xdβ̃

)
, d = 1, . . . ,D,
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where xd is the row d of matrix X.

The BLUP of µd = xdβ + ud is

Ŷ
blup

d = µ̃d = xdβ̃ + ũd = xdβ̃ +
σ2
u

σ2
u + σ2

d

(
yd· − xdβ̃

)
=

σ2
u

σ2
u + σ2

d

yd· +
σ2
d

σ2
u + σ2

d

xdβ̃ (1.42)

Proposition 1.6.1. The best predictor of µd is

E[µd|yd·] =
σ2
u

σ2
u + σ2

d

yd· +
σ2
d

σ2
u + σ2

d

xdβ,

so that the BLUP can be obtained from the BP substituting β by β̃.

Proof. As yd· ∼ N(xdβ, σ
2
u + σ2

d), yd·|ud ∼ N(xdβ + ud, σ
2
d) and ud ∼ N(0, σ2

u), then

f(ud|yd·) ∝ f(yd·|ud)f(ud) =
1

σ2
d

√
2π

exp
{
− 1

2σ2
d

(yd − xdβ − ud)
2
} 1

σ2
u

√
2π

exp
{
− 1

2σ2
u

u2
d

}

∝ exp



− 1

2
σ2

d
σ2

u

σ2
d
+σ2

u

[
u2
d − 2

σ2
u

σ2
d + σ2

u

(yd· − xdβ)ud

]
 ,

which corresponds to a normal distribution with mean E[ud|yd·] = σ2
u

σ2
d
+σ2

u
(yd·−xdβ) and variance

var[ud|yd·] =
σ2

d
σ2

u

σ2
d
+σ2

u
. Therefore

E[µd|yd·] = xdβ + E[ud|yd·] = xdβ +
σ2
u

σ2
d + σ2

u

(yd· − xdβ) =
σ2
u

σ2
u + σ2

d

yd· +
σ2
d

σ2
u + σ2

d

xdβ.

Definition 1.6.1. The empirical BLUP (EBLUP) of the domain mean Y d, under the model

(1.41) is obtained plugging an estimator σ̂2
u in the place of σ2

u por un estimador σ̂2
u, i.e.

Ŷ
FH

d =
σ̂2
u

σ̂2
u + σ2

d

yd· +
σ2
d

σ̂2
u + σ2

d

xdβ̂ (1.43)

in the case that the σ2
d’s are known, or

Ŷ
FH

d =
σ̂2
u

σ̂2
u + σ̂2

d

yd· +
σ̂2
d

σ̂2
u + σ̂2

d

xdβ̂, (1.44)

with σ̂2
d = V̂ (yd·), d = 1, . . . ,D, otherwise.
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1.6.2 Random effect variance estimation

We consider three procedures for estimating σ2
u: (1) Moments, (2) Maximum likelihood, and (3)

residual maximum likelihood.

The method of moments

An unbiased estimator of σ2
u 1s

σ̂2
u =

1

D − p




D∑

d=1

ũ2
d −

D∑

d=1

σ2
d


1 − xd

(
D∑

d=1

x′
dxd

)−1

x′
d




 ,

where ũd = yd − xdβ̃ and β̃ = (X′X)−1X′y =
(∑D

d=1 x′
dxd

)−1 (∑D
d=1 x′

dyd

)
.

It may occur that σ̂2
u takes negative values, but Pr(σ̂2

u ≤ 0) tends to 0 when a → ∞. If σ̂2
u

is negative, we equate it to zero and we define

σ̃2
u = max

{
σ̂2
u, 0

}
(1.45)

Maximum likelihood method

In what follows we particularize the results of Section 1.3 to the case m = 1, q1 = D, σ2
1 = σ2

u,

Ω1 = ID. It holds that y ∼ N(Xβ,V), with covariance matrix V = diag1≤d≤D(σ2
u + σ2

d). The

log-likelihood is

ℓ(σ2
u,β;y) = −D

2
ln 2π − 1

2
ln |V| − 1

2
(y − Xβ)′V−1(y − Xβ).

The partial derivatives of the log-likelihood are

Sβ = X′V−1(y − Xβ) =

D∑

d=1

x′
d

1

σ2
u + σ2

d

(yd − xdβ),

Sσ2
u

= −1

2
tr(V−1Gu) +

1

2
(y − Xβ)′V−1GuV

−1(y − Xβ)

= −1

2

D∑

d=1

1

σ2
u + σ2

d

+
1

2

D∑

d=1

1

(σ2
u + σ2

d)
2
(yd − xdβ)2,

where Gu = ∂V/∂σ2
u = ID. To calculate the second order partial derivatives we use the formulas

(1.14)-(1.16) to obtain

Hββ = −X′V−1X, Hβσ2
u

= −X′V−2(y − Xβ),

Hσ2
uσ

2
u

=
1

2
tr(V−2) − (y − Xβ)′V−3(y −Xβ).
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The components of the Fisher information matrix are

Fββ = X′V−1X =

D∑

d=1

1

σ2
u + σ2

d

x′
dxd, Fβσ2

u
= Fσ2

uβ
= 0,

Fσ2
uσ

2
u

= −1

2
tr(V−2) + tr(V−3V) =

1

2
tr(V−2) =

1

2

D∑

d=1

1

(σ2
u + σ2

d)
2
.

Observation 1.6.1. Let

T = (V−1
e + σ−2

u ID)−1 = σ2
uID − σ4

uV
−1.

Applying the formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

with A = σ−2
u ID, B = ID, C = V−1

e = diag1≤d≤D(σ−2
d ) and D = ID, we get

T = σ2
uID − σ4

uV
−1 y V−1 =

σ2
uID − T

σ4
u

.

Therefore

Fσ2
uσ

2
u

=
1

2σ8
u

tr
(
(σ2
uId − T)2

)
=

1

2σ4
u

(
D − 2

σ2
u

tr(T) +
1

σ4
u

tr(T2)

)
.

The updating formulas of the Fisher-scoring algorithm are

σ2(k+1)
u = σ2(k)

u + F−1

σ
2(k)
u σ

2(k)
u

S
σ

2(k)
u

, β(k+1) = β(k) + F−1
β(k)β(k)Sβ(k) .

Residual maximum likelihood method

In what follows we particularize the results of Section 1.4 to the case m = 1, q1 = D, ϕ1 = σ2
u,

σ2 = 1, Ω1 = ID. The REML log-likelihood is

ℓR(σ2
u;y) = −D − p

2
log 2π +

1

2
log |X′X| − 1

2
log |V| − 1

2
log |X′V−1X| − 1

2
y′Py,

where P = V−1 − V−1X(X′V−1X)−1X′V−1. It holds that

y′ ∂P

∂σ2
u

y = −(y − Xβ̂)′V−1V−1(y − Xβ̂) = −
D∑

d=1

1

(σ2
u + σ2

d)
2
(yd − xdβ̂)2,

and

P =
1

σ2
u

(
ID − 1

σ2
u

R

)
, tr(P) =

1

σ2
u

[
D − 1

σ2
u

tr(R)

]
,
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where

R = T + M, M = TV−1
e X(X′V−1X)−1X′V−1

e T,

T =
(
V−1
e + σ−2

u ID
)−1

= diag1≤d≤D

(
σ2
uσ

2
d

σ2
u + σ2

d

)
.

First order derivative of the log-likelihood is

∂ℓR
∂σ2

u

= −1

2
tr(P) − 1

2
y′ ∂P

∂σ2
u

y = − 1

2σ2
u

[
D − 1

σ2
u

tr(R)

]
+

1

2

D∑

d=1

1

(σ2
u + σ2

d)
2
(yd − xdβ̂)2.

Second order derivative of the log-likelihood is

∂2ℓR
∂σ2

u∂σ
2
u

=
1

2
tr(P2) − y′P3y

As PVP = P, the Fisher amount of information associated to σ2
u is

Fσ2
u

= −1

2
tr(P2) + tr(P3V) =

1

2
tr(P2) =

1

2σ4
u

[
D − 2

σ2
u

tr(R) +
1

σ4
u

tr(R2)

]
.

The REML estimators may be obtained by applying the following Fisher-scoring algorithm.

1. Set the seeds σ̂2
u,0 = σ̃2

u = max{σ̂2
u, 0} and β̂0 = β̃, where σ̂2

u and β̃ are the moment estimators

given by (1.45).

2. For k = 1, 2, . . ., do

β̂k =

(
D∑

d=1

x′
dxd

σ̂2
u,k−1 + σ2

d

)−1( D∑

d=1

x′
dyd

σ̂2
u,k−1 + σ2

d

)
, σ̂2

u,k = σ̂2
u,k−1 + F−1

k−1Sk−1,

whre

Sk = − 1

2σ̂2
u,k

(
D − tr(R̂k)

σ̂2
u,k

)
+

1

2

D∑

d=1

1

(σ̂2
u,k + σ2

d)
2
(yd − xdβ̂k)

2,

Fk =
1

2σ̂4
u,k

(
D − 2

σ̂2
u,k

tr{R̂k} +
1

σ̂4
u,k

tr{R̂2
k}
)
,

tr{R̂k} = tr(T̂k) + tr(M̂k), tr{R̂2
k} = tr(T̂2

k) + 2tr(T̂kM̂k) + tr(M̂2
k),

tr(T̂k) =

D∑

d=1

σ̂2
u,kσ

2
d

σ̂2
u,k + σ2

d

, tr(T̂2
k) =

D∑

d=1

σ̂4
u,kσ

4
d

(σ̂2
u,k + σ2

d)
2
,
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tr(M̂k) = tr



(

D∑

d=1

σ̂4
u,kx

′
dxd

(σ̂2
u,k + σ2

d)
2

)(
D∑

d=1

x′
dxd

σ̂2
u,k + σ2

d

)−1

 ,

tr(T̂kM̂k) = tr



(

D∑

d=1

σ̂6
u,kσ

2
dx

′
dxd

(σ̂2
u,k + σ2

d)
3

)(
D∑

d=1

x′
dxd

σ̂2
u,k + σ2

d

)−1

 ,

tr(M̂2
k) = tr







(
D∑

d=1

σ̂4
u,kx

′
dxd

(σ̂2
u,k + σ2

d)
2

)(
D∑

d=1

x′
dxd

σ̂2
u,k + σ2

d

)−1




2
 .

3. Stop if |σ̂2
u,k − σ̂2

u,k−1| < ε and
[
(β̂k − β̂k−1)

′(β̂k − β̂k−1)
]1/2

< ε. Output: β̂ML = β̂k,

ûd = ûd,k and σ̂2
u,ML = σ̂2

u,k

Alternatively the following algorithm can be used.

1. Set the seeds σ̂2
u,0 = σ̃2

u = max{σ̂2
u, 0} and β̂0 = β̃, where σ̂2

u y β̃ are the moment estimators

given by (1.45).

2. For k = 1, 2, . . ., do

β̂k =

(
D∑

d=1

x′
dxd

σ̂2
u,k−1 + σ2

d

)−1( D∑

d=1

x′
dyd

σ̂2
u,k−1 + σ2

d

)
,

ûd,k =
σ̂2
u,k−1

(σ̂2
u,k−1 + σ2

d)
(yd − xdβ̂k−1), tr(T̂k) =

D∑

d=1

σ̂2
u,kσ

2
d

σ̂2
u,k + σ2

d

,

σ̂2
u,k =

∑D
d=1 û

2
d,k

D − 1
σ̂2

u,k−1
tr(Tk−1))

.

3. Stop when |σ̂2
u,k− σ̂2

u,k−1| < ε and
[
(β̂k − β̂k−1)

′(β̂k − β̂k−1)
]1/2

< ε. Output: β̂ML = β̂k,

ûd = ûd,k y σ̂2
u,ML = σ̂2

u,k

1.7 The EBLUP and its mean squared error

1.7.1 Introducción

Let us consider model (1.1) with N in the place of n. Let s and r denote subsets of {1, . . . , N}
with sizes n and k respectively. Subset s contains the indexes of observed componentes of vector

y and subset r is used to define a linear combination of fixed and random effects. Note that we

do not assume that n + k = N holds. let us define τ = a′
r(Xrβ + Zru), where ar is a vector

containing known constants. We are interested in predicting τ by using the EBLUP.

We consider 3 cases:
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1. β, θ0, θ1, . . . , θm are known,

2. θ0, θ1, . . . , θm are known, β is unknown,

3. All the model parameters are unknown.

All the model parameters are known

Assume that β and θ0, θ1, . . . , θm are known. The BLUP of τ is

τ̃ = a′
r(Xrβ + Zrũ), with ũ = C′

sV
−1
s (ys − Xsβ)

where Cs = Cov(ys,u) = ZsVu. The prediction error is thus τ̃ − τ = a′
rZr(ũ − u). The mean

squared error is

MSE(τ̃ ) = E[(τ̃ − τ)2] = V (τ̃ − τ) = a′
rZrV ar(ũ− u)Z′

rar

It holds that

V ar(ũ− u) = V ar(ũ) + V ar(u) − 2Cov(ũ,u) = C′
sV

−1
s VsV

−1
s Cs + Vu − 2C′

sV
−1
s Cs

= Vu − VuZ
′
sV

−1
s ZsVu.

We know that V−1
s = (Ves + ZsVuZ

′
s)

−1. By using the inversion formula

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (1.46)

we get

V−1
s = V−1

es − V−1
es Zs(V

−1
u + Z′

sV
−1
es Zs)

−1Z′
sV

−1
es .

We can write Vs as a function of Ts = (V−1
u + Z′

sV
−1
es Zs)

−1 in the following manner

V−1
s = V−1

es − V−1
es ZsTsZ

′
sV

−1
es .

Similarly, by applying (1.46) to Ts we get

Ts = Vu − VuZ
′
s(Ves + ZsVuZ

′
s)

−1ZsVu = Vu − VuZ
′
sV

−1
s ZsVu

Therefore

V ar(ũ − u) = Ts.

and

MSE(τ̃ ) = a′
rZrTsZ

′
rar , g1(θ).
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The variance components are known but the regression parameters are unknown

In this case we assume that θ0, θ1, . . . , θm are known, but β is unknown. Let us define Qs =

(X′
sV

−1
s Xs)

−1 and Cs = Cov(ys,u) = ZsVu. The BLUP of τ is

τ̂blup = a′
r(Xrβ̂ + Zrû),

where

û = C′
sV

−1
s (ys − Xsβ̂) y β̂ = (X′

sV
−1
s Xs)

−1X′
sV

−1
s ys = QsX

′
sV

−1
s ys.

It holds that

MSE(τ̂blup) = g1(θ) + g2(θ),

g1(θ) = a′
rZrTsZ

′
rar,

g2(θ) = [a′
rXr − a′

rZrTsZ
′
sV

−1
es Xs]Qs[X

′
rar − X′

sV
−1
es ZsTsZ

′
rar].

All the parameters are unknown

When the componentes of θ = (θ0, θ1, . . . , θm) are known, the BLUP of τ is τ̂blup = τ(θ). If θ is

unknown, then it is replaced by an estimator to obtain the EBLUP of τ , i.e.

τ̂eblup = τ(θ̂).

The mean squared error of τ̂eblup is

MSE(τ̂eblup) = E
[
(τ̂eblup − τ̂blup + τ̂blup − τ)2

]

= MSE(τ̂blup) + E
[
(τ̂eblup − τ̂blup)

2
]
+ 2E [(τ̂eblup − τ̂blup)(τ̂blup − τ)] .

Kackar and Harville (1981) showed that if E[τ(θ)] is finite and θ̂ is an even and translation

invariante (as the Henderson 3, Ml and REML estimators are), then τ̂eblup = τ(θ̂) is unbiased.

Further, under these assumptions, Kackar and Harville (1984) proved that

E [(τ̂eblup − τ̂blup)(τ̂blup − τ)] = 0. (1.47)

Here we assume that (1.47) holds, so that

MSE(τ̂eblup) = MSE(τ̂blup) + E
[
(τ̂eblup − τ̂blup)

2
]
. (1.48)

In what follows an approximation to

E
[
(τ̂eblup − τ̂blup)

2
]
.

is given. For this sake, consider an admisible value γ = (γ0, γ1, . . . , γm) of θ and define d(θ) =

(d0(θ), d1(θ), . . . , dm(θ))′, where

dj(θ) =
∂τ(γ)

∂γj

∣∣∣∣
θ

, j = 0, 1, . . . ,m.
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A first order Taylor series expansion of τ(γ) around θ yields to

τ(γ) ≈ τ(θ) +
m∑

j=0

dj(θ)(γj − θj).

By doing the substitution γ = θ̂, we get

τ̂eblup ≈ τ̂blup +
m∑

j=0

dj(θ)(θ̂j − θj) = τ̂blup + d′(θ)(θ̂ − θ).

Let us now assume that θ̂ is asymptotically unbiased, i.e.

E
[
θ̂j − θj

]
−→ 0
n→∞

, j = 0, 1, . . . ,m.

Then

E
[
(τ̂eblup − τ̂blup)

2
]
≈ E

[
(d′(θ)(θ̂ − θ))2

]
=

m∑

i=0

m∑

j=0

E
[
di(θ)(θ̂i − θi)dj(θ)(θ̂j − θj)

]
. (1.49)

Further, it holds

E [dj(θ)] = 0, j = 0, 1, . . . ,m.

As d(θ) = d(θ,u) is a random vector, the summand (i, j) in (1.49) is

E
[
di(θ)dj(θ)(θ̂i − θi)(θ̂j − θj)

]
= E

θ̂

[
(θ̂i − θi)(θ̂j − θj)Ed

[
di(θ)dj(θ) | θ̂

]]
.

Now we have

Ed

[
di(θ)dj(θ) | θ̂

]
= Cov

(
di(θ), dj(θ) | θ̂

)
.

In the case that θ̂ is obtained from data independent of the data used to calculate τ̂blup = τ̂(θ),

we have that

Cov
(
di(θ), dj(θ) | θ̂

)
= Cov (di(θ), dj(θ))

and therefore

E
[
di(θ)dj(θ)(θ̂i − θi)(θ̂j − θj)

]
= Cov (di(θ), dj(θ))E

[
(θ̂i − θi)(θ̂j − θj)

]

= Cov (di(θ), dj(θ))Cov(θ̂i, θ̂j)

The second summand in (1.48) can be written as

E
[
(τ̂eblup − τ̂blup)

2
]

=
m∑

j=0

m∑

i=0

Cov (di(θ), dj(θ))Cov(θ̂i, θ̂j) = tr {G(θ)B(θ)} ,

where G(θ) and B(θ) are the covariance matrices of d(θ) and θ̂ respectively.
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In the case that θ̂ and τ̂blup = τ̂(θ) are calculated from the same data, Kackar and Harville

(1984) propose the approximation

E
[
(τ̂eblup − τ̂blup)

2
]
≈ tr {G(θ)B(θ)} .

Therefore an approximation of the MSE of τ̂eblup is

MSE(τ̂eblup) ≈MSE(τ̂blup) + tr {G(θ)B(θ)} .

Prasad and Rao (1990) gave the new approximation

tr {G(θ)B(θ)} ≈ tr
{
(∇b′)Vs(∇b′)′E

[
(θ̂ − θ)(θ̂ − θ)′

]}
, (1.50)

where b′ = (b1, . . . , bn) = a′
rZrVuZ

′
sV

−1
s ,

∂b′

∂θj
=

(
∂b1
∂θj

, . . . ,
∂bn
∂θj

)
and ∇b′ =




∂b′

∂θ0
∂b′

∂θ1
...

∂b′

∂θm




=




∂b1
∂θ0

. . . ∂bn
∂θ0

∂b1
∂θ1

. . . ∂bn
∂θ1

... . . .
...

∂b1
∂θm

. . . ∂bn
∂θm




(m+1)×n

.

Finally, if the componentes of the vector of variances θ = (θ0, θ1, . . . , θm) are know, we have

the approximation

MSE(τ̂eblup) = g1(θ) + g2(θ) + g3(θ),

g1(θ) = a′
rZrTsZ

′
rar.

g2(θ) = [a′
rXr − a′

rZrTsZ
′
sV

−1
es Xs]Qs[X

′
rar − X′

sV
−1
es ZsTsZ

′
rar],

g3(θ) ≈ tr
{

(∇b′)Vs(∇b′)′E
[
(θ̂ − θ)(θ̂ − θ)′

]}
.

1.7.2 Mean squared error estimation

A simple estimator of MSE(τ̂ ) is obtained by plugging θ̂ in the place θ to obtain

mse1(τ̂eblup) = g1(θ̂) + g2(θ̂) + g3(θ̂). (1.51)

If consistent estimators θ̂ of θ are used, then E[g2(θ̂)] ∼= g2(θ), E[g3(θ̂)] ∼= g3(θ). However this

property does not hold for for g1.

To evaluate the bias of g1(θ̂), we expand g1(θ̂) in Taylor series aroundθ. We get

g1(θ̂) ≈ g1(θ) + (θ̂ − θ)′∇g1(θ) +
1

2
(θ̂ − θ)′∇2g1(θ)(θ̂ − θ) , g1(θ) + ∆1 + ∆2,

where ∇g1(θ) is the vector of first order derivatives of g1(θ) with respect to θ and ∇2g1(θ) is

the matrix of second order derivatives. If θ̂ is unbiased for θ, then E[∆1] = 0. In general, if the
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term E[∆1] ≈ b′
θ̂
(θ)∇g1(θ) is of inferior order than E[∆2], where b

θ̂
(θ) is an approximation to

the bias E[θ̂ − θ], then the following approximation to E[g1(θ̂)] is obtained

E[g1(θ̂)] ≈ g1(θ) +
1

2
tr
(
∇2g1(θ)V[θ̂]

)
, (1.52)

where V[θ̂] is the asymptotic variance covariance matrix of θ̂. Further, if V has a linear structure

in θ, then (1.52) becomes

E[g1(θ̂)] ≈ g1(θ) − g3(θ). (1.53)

From (1.51) and (1.53) we have that the bias of mse1(τ̂eblup) is

E[mse1(τ̂eblup)]−MSE(τ̂eblup) ≈ (g1(θ)−g3(θ)+g2(θ)+g3(θ))−(g1(θ)+g2(θ)+g3(θ)) = −g3(θ).

Therefore MSE(τ̂eblup) can be estimated with

mse(τ̂eblup) = g1(θ̂) + g2(θ̂) + 2g3(θ̂). (1.54)

Formula (1.54) is valid if θ̂ is estimated by using the Henderson 3 or the REML method, which

produces unbiased or quasi-unbiased estimators θ̂ of θ. However for MLE estimators θ̂ we have

that E[∆1] ≈ b′
θ̂
(θ)∇g1(θ) 6= 0. In this case MSE(τ̂eblup) is estimated with

mse(τ̂eblup) = g1(θ̂) + g2(θ̂) + 2g3(θ̂) − b′
θ̂
(θ)∇g1(θ). (1.55)

The term b
θ̂
(θ) can be calculated more easily if V is a block diagonal matrix

V = diag(V1, . . . ,Vm)

with

Vi = ZiVuiZ
′
i + Vei, i = 1, . . . ,m.

In this case the components of model (1.1) can be written in the form y = (y′
1, . . . ,y

′
m)′,

X = (X′
1, . . . ,X

′
m)′, Z = diag(Z1, . . . ,Zm)′, u = (u′

1, . . . ,u
′
m)′, e = (e′1, . . . , e

′
m)′, where Xi es

ni × p, Zi es ni × qi, yi es ni × 1, n =
∑m

i=1 ni y q =
∑m

i=1 qi. A model of this type can be

decomposed in m submodels

yi = Xiβ + Ziui + ei, i = 1, . . . ,m. (1.56)

Under the model (1.56), if θ̂ is the MLE of θ, an approximation to the bias is (see e.g. Rao

(2003))

b
θ̂
(θ) =

1

2m

{
I−1(θ) col

1≤j≤m

[
tr

[
m∑

i=1

(X′
iV

−1
i Xi)

−1

(
m∑

i=1

X′
iV

(j)
i Xi

)]]}
,

where col
1≤j≤m

[aj] is a column vector with elements aj , j = 1, . . . ,m,

V
(j)
i =

∂V−1
i

∂θj
= −V−1

i

∂Vi

∂θj
V−1
i and Ijk(θ) =

1

2

m∑

i=1

tr

[(
V−1
i

∂Vi

∂θj

)(
V−1
i

∂Vi

∂θk

)]
.
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Prasad and Rao (1990) obtained the estimator of ECM given in (1.54) for moments estimators

and special cases of the general linear mixed model with block diagonal covariance matrix.

Harville and Jeske (1992) proposed (1.54) for a more general linear mixed model (1.1), under

the hypothesis E[θ̂−θ] = 0. Das, Jiang and Rao (2001) gave rigorous proofs of approximations

(1.54) and (1.55) for ML and REML estimators. Finally Lahiri and Rao (1995) have studied

the robustness of the above cited approximations.



Chapter 2

Area-level time models

2.1 Area-level model with time correlated effects

2.1.1 Introduction

In the field of small area estimation, data are often available for many small areas simultaneously,

although possibly for only a few time points. In such cases, it is desired to borrow information

both cross-sectionally and over time. Rao and Yu (1994) gave a simple way of borrowing infor-

mation cross-sectionally and over time by introducing a model containing both contemporary

random effects and time varying effects. They proposed the extension of the basic Fay Herriot

model

ydt = xdtβ + vd + udt + edt, d = 1, . . . ,D, t = 1, . . . , T, (2.1)

where ydt is a direct estimator of the indicator of interest and xdt is a vector containing the

aggregated (population) values of p auxiliary variables. The index d is used for domains and

the index t for time instants. They assume that v1, . . . , vD are i.i.d. normal, (ud1, . . . , udT )’s

follow i.i.d. AR(1) processes (i.e. they follow autoregressive processes of order 1), e11, . . . , eDT
are i.i.d. normal, and the vd’s, the (ud1, . . . , udT )’s and the edt’s are independent.

In this section we introduce a model that it is related to the model (2.1) in the sense that

only udt is considered to take into account the area-by-time variability through specific random

effects. The model is

ydt = xdtβ + udt + edt, d = 1, . . . ,D, t = 1, . . . ,md, (2.2)

where ydt is a direct estimator of the indicator of interest for area d and time instant t, and xdt

is a vector containing the aggregated (population) values of p auxiliary variables. The index d is

used for domains and the index t for time instants. We further assume that the random vectors

(ud1, . . . , udmd
), d = 1, . . . ,D, follow i.i.d. AR(1) processes with variance and auto-correlation

parameters σ2
u and ρ respectively, the errors edtj ’s are independent N(0, σ2

dt) with known σ2
dt’s,

and the udt’s are independent of the edt’s.

31
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In matrix notation the model is

y = Xβ + Zu + e, (2.3)

where y = col
1≤d≤D

(yd), yd = col
1≤t≤md

(ydt), u = col
1≤d≤D

(ud), ud = col
1≤t≤md

(udt), e = col
1≤d≤D

(ed),

ed = col
1≤t≤md

(edt), X = col
1≤d≤D

(Xd), Xd = col
1≤t≤md

(xdt), xdt = col′
1≤i≤p

(xdti), β = col
1≤i≤p

(βi), Z =

IM×M and M =
∑D

d=1md. In this notation, u ∼ N(0,Vu) and e ∼ N(0,Ve) are independent

with covariance matrices

Vu = σ2
uΩ(ρ), Ω(ρ) = diag

1≤d≤D
(Ωd(ρ)), Ve = diag

1≤d≤D
(Ved), Ved = diag

1≤t≤md

(σ2
dt),

where the σ2
dt are known and

Ωd = Ωd(ρ) =
1

1 − ρ2




1 ρ . . . ρmd−2 ρmd−1

ρ 1
. . . ρmd−2

...
. . .

. . .
. . .

...

ρmd−2 . . . 1 ρ
ρmd−1 ρmd−2 . . . ρ 1



md×md

.

If the variance componentes are known, then the BLUE of β and the BLUP of u are

β̂ = (X′V−1X)−1X′V−1y and û = VuZ
′V−1(y − Xβ̂),

where

var(y) = V = σ2
u diag
1≤d≤D

(Ωd(ρ)) + Ve = diag
1≤d≤D

(σ2
uΩd(ρ) + Ved) = diag

1≤d≤D
(Vd).

To calculate β̂ and û we apply the formulas

β̂ =

(
D∑

d=1

X′
dV

−1
d Xd

)−1( D∑

d=1

X′
dV

−1
d yd

)
, û = σ2

u col
1≤d≤D

(
Ωd(ρ)V

−1
d (yd − Xdβ̂)

)
.

2.1.2 REML estimators of model parameters

The REML log-likelihood is

lREML(σ2
u, ρ) = −M − p

2
log 2π +

1

2
log |X′X| − 1

2
log |V| − 1

2
log |X′V−1X| − 1

2
y′Py,

where

P = V−1 − V−1X(X′V−1X)−1X′V−1, PVP = P, PX = 0.
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Let us define θ = (θ1, θ2) = (σ2
u, ρ), V1 = ∂V

∂σ2
u

= diag
1≤d≤D

(Ωd(ρ)) and V2 = ∂V
∂ρ = σ2

u diag
1≤d≤D

(Ω̇d(ρ)).

Then

Pa =
∂P

∂θa
= −P

∂V

∂θa
P = −PVaP, a = 1, 2.

By taking partial derivatives of lREML with respect to θa, we get

Sa =
∂lREML

∂θa
= −1

2
tr(PVa) +

1

2
y′PVaPy, a = 1, 2.

If we take again partial derivatives with respect to θa and θb, we take expectations and we change

the sign, we obtain the elements of the REML Fisher information matrix. These elements are

Fab =
1

2
tr(PVaPVb), a, b = 1, 2.

We use the Fisher-scoring algorithm to calculate the REML estimates of θ. The updating

formula is

θk+1 = θk + F−1(θk)S(θk).

As seeds we use ρ = 0 and σ
2(0)
u = σ̂2

uH , where σ̂2
uH is the Henderson 3 estimator of σ2

u under

the model restricted to ρ = 0. The REML estimator of β is calculated by applying the formula

β̂ = (X′V̂−1X)−1X′V̂−1y.

The asymptotic distributions of the REML estimators of θ and β are

θ̂ ∼ N2(θ,F
−1(θ)), β̂ ∼ Np(β, (X

′V−1X)−1).

Asymptotic confidence intervals at the level 1 − α for θa and βi are

θ̂a ± zα/2 ν
1/2
aa , a = 1, 2, β̂i ± zα/2 q

1/2
ii , i = 1, . . . , p,

where θ̂ = θκ, F−1(θκ) = (νab)a,b=1,2, (X′V−1(θκ)X)−1 = (qij)i,j=1,...,p, κ is the final iteration

of the Fisher-scoring algorithm and zα is the α-quantile of the standard normal distribution

N(0, 1)). Observed β̂i = β0, the p-value for testing the hypothesis H0 : βi = 0 is

p = 2PH0(β̂i > |β0|) = 2P (N(0, 1) > β0/
√
qii ).

In what follows we present some matrix calculation that are useful to implement the Fisher-
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scoring algorithm. The target here is to avoid calculations of M ×M matrices.

Q = (X′V−1X)−1 =

(
D∑

d=1

X′
dV

−1
d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d ) − col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV

−1
d ),

PVa = diag
1≤d≤D

(V−1
d Vad) − col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV

−1
d Vad),

tr(PVa) =
D∑

d=1

tr(V−1
d Vad) −

D∑

d=1

tr(X′
dV

−1
d VadV

−1
d XdQ),

tr(PVaPVb) =
D∑

d=1

tr(V−1
d VadV

−1
d Vbd) − 2

D∑

d=1

tr(X′
dV

−1
d VadV

−1
d VbdV

−1
d XdQ)

+ tr

{(
D∑

d=1

X′
dV

−1
d VadV

−1
d Xd

)
Q

(
D∑

d=1

X′
dV

−1
d VbdV

−1
d Xd

)
Q

}
.

y′PVaPy =

D∑

d=1

y′

d
V−1

d
VadV

−1

d
yd −

(
D∑

d=1

y′

d
V−1

d
VadV

−1

d
Xd

)
Q

(
D∑

d=1

y′

d
V−1

d
Xd

)′

−
(

D∑

d=1

y′

d
V−1

d
Xd

)
Q

(
D∑

d=1

X′

d
V−1

d
VadV

−1

d
yd

)

+

(
D∑

d=1

y′

d
V−1

d
Xd

)
Q

(
D∑

d=1

X′

d
V−1

d
VadV

−1

d
Xd

)
Q

(
D∑

d=1

y′

d
V−1

d
Xd

)′

.

Finally, the derivative of matrix Ωd(ρ) with respect to ρ is

Ω̇d(ρ) =
1

1 − ρ2




0 1 . . . . . . (md − 1)ρmd−2

1 0
. . . (md − 2)ρmd−3

...
. . .

. . .
. . .

...

(md − 2)ρmd−3 . . . 0 1
(md − 1)ρmd−2 . . . . . . 1 0




+
2ρΩd(ρ)

(1 − ρ2)2
.

2.1.3 The mean squared error of the EBLUP

We are interested in predicting the value of µdt = xdtβ+udt by using the EBLUP µ̂dt = xdtβ̂+ûdt.

If we do not take into account the error, edt, this is equivalent to predict ydt = a′y, where

a = col
1≤ℓ≤D

( col
1≤k≤mℓ

(δdℓδtk)) is a vector having one 1 in the position t +
∑d−1

ℓ=1 mℓ and 0’s in the

remaining cells. To estimate Y dt we use Ŷ
eblup

dt = µ̂dt. The mean squared error of Ŷ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ) + g2(θ) + g3(θ),
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where θ = (σ2
u, ρ),

g1(θ) = a′ZTZ′a,

g2(θ) = [a′X− a′ZTZ′V−1
e X]Q[X′a − X′V−1

e ZTZ′a],

g3(θ) ≈ tr
{

(∇b′)V(∇b′)′E
[
(θ̂ − θ)(θ̂ − θ)′

]}

The estimator of MSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂) + g2(θ̂) + 2g3(θ̂).

Calculation of g1(θ)

In the formula of g1(θ) = a′ZTZ′a, we have that Z = IM×M , and

T = Vu − VuZ
′V−1ZVu = σ2

u diag
1≤d≤D

(Ωd(ρ)) − σ4
u diag
1≤d≤D

(Ωd(ρ)) diag
1≤d≤D

(V−1
d ) diag

1≤d≤D
(Ωd(ρ)).

Let us write Ωd = Ωd(ρ) and ad = col
1≤k≤md

(δtk). Then, g1(θ) can be expressed in the form

g1(θ) = σ2
ua

′
dΩdad − σ4

ua
′
dΩdV

−1
d Ωdad.

Calculation of g2(θ)

We have that g2(θ) = [a′X− a′ZTZ′V−1
e X]Q[X′a − X′V−1

e ZTZ′a], where

ZTZ′V−1
e X =

[
σ2
u diag
1≤d≤D

(Ωd) − σ4
u diag
1≤d≤D

(Ωd) diag
1≤d≤D

(V−1
d ) diag

1≤d≤D
(Ωd)

]
diag

1≤d≤D
(V−1

ed ) col
1≤d≤D

(Xd)

= σ2
u col
1≤d≤D

(ΩdV
−1
ed Xd) − σ4

u col
1≤d≤D

(ΩdV
−1
d ΩdV

−1
ed Xd).

Therefore

g2(θ) =
[
a′
dXd − σ2

ua
′
dΩdV

−1
ed Xd + σ4

ua
′
dΩdV

−1
d ΩdV

−1
ed Xd

]
Q

·
[
X′
dad − σ2

uX
′
dV

−1
ed Ωdad + σ4

uX
′
dV

−1
ed ΩdV

−1
d Ωdad

]
.

Calculation of g3(θ)

We have that

g3(θ) ≈ tr
{

(∇b′)V(∇b′)′E
[
(θ̂ − θ)(θ̂ − θ)′

]}
,

where

b′ = a′ZVuZ
′V−1 = σ2

ua
′ diag
1≤ℓ≤D

(Ωℓ) diag
1≤ℓ≤D

(V−1
ℓ ) = σ2

u col′
1≤ℓ≤D

(δdℓaℓΩℓV
−1
ℓ ).
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It holds that

∂b′

∂σ2
u

= col′
1≤ℓ≤D

(δdℓa
′
ℓΩℓV

−1
ℓ ) − σ2

u col′
1≤ℓ≤D

(δdℓa
′
ℓΩℓV

−1
ℓ VℓuV

−1
ℓ ), Vℓu =

∂Vℓ

∂σ2
u

= Ωℓ,

∂b′

∂ρ
= σ2

u col′
1≤ℓ≤D

(δdℓa
′
ℓΩ̇ℓV

−1
ℓ ) − σ2

u col′
1≤ℓ≤D

(δdℓa
′
ℓΩℓV

−1
ℓ VℓρV

−1
ℓ ), Vℓρ =

∂Vℓ

∂ρ
= σ2

uΩ̇ℓ .

We define

q11 =
∂b′

∂σ2
u

diag
1≤ℓ≤D

(Vℓ)

(
∂b′

∂σ2
u

)′

= a′
dΩdV

−1
d Ωdad − 2σ2

ua
′
dΩdV

−1
d ΩdV

−1
d Ωdad

+ σ4
ua

′
dΩdV

−1
d ΩdV

−1
d ΩdV

−1
d Ωdad,

q12 =
∂b′

∂σ2
u

diag
1≤ℓ≤D

(Vℓ)

(
∂b′

∂ρ

)′

= σ2
ua

′
dΩdV

−1
d Ω̇dad − σ4

ua
′
dΩdV

−1
d Ω̇dV

−1
d Ωdad

− σ4
ua

′
dΩdV

−1
d ΩdV

−1
d Ω̇dad + σ6

ua
′
dΩdV

−1
d ΩdV

−1
d Ω̇dV

−1
d Ωdad,

q22 =
∂b′

∂ρ
diag

1≤ℓ≤D
(Vℓ)

(
∂b′

∂ρ

)′

= σ4
ua

′
dΩ̇dV

−1
d Ω̇dad − 2σ6

ua
′
dΩdV

−1
d Ω̇dV

−1
d Ω̇dad

+ σ8
ua

′
dΩdV

−1
d Ω̇dV

−1
d Ω̇dV

−1
d Ωdad.

Finally

g3(θ) = tr

{(
q11 q12
q21 q22

)(
F11 F12

F21 F22

)−1
}
,

where Fab is the element of the REML Fisher information matrix.

2.1.4 Simulations

Simulation 1

For d = 1, . . . ,D, t = 1, . . . ,md, the explanatory and target variables are

xdt = (bdt − adt)Udt + adt, Udt =
t

md + 1
, adt = 1, bdt = 1 +

1

D
(md(d− 1) + t) ,

ydt = β1 + β2xdt + udt + edt, β1 = 0, β2 = 1,

where edt ∼ N(0, σ2
dt) and

σ2
dt =

(α1 − α0) (md(d− 1) + t− 1)

M − 1
+ α0, α0 = 0.8, α1 = 1.2.

For d = 1, . . . ,D, the random effects udt are calculated as follows:

ud1 = (1 − ρ2)−1/2εd1, udt = ρudt−1 + εdt, t = 2, . . . ,md,

where εdt ∼ N(0, σ2
A) if d ≤ DA, εdt ∼ N(0, σ2

B) if d > DA, and ρ = 0.5. The first simulation

experiment has the following steps:
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1. Repeat K = 104 times (k = 1, . . . ,K)

1.1. Generate a sample of size m =
∑D

d=1md and calculate µ
(k)
dt = β

(k)
1 + β

(k)
2 xdt + u

(k)
dt .

1.2. Calculate τ̂ (k) ∈ {β̂(k)
1 , β̂

(k)
2 , σ̂

2(k)
u , ρ̂(k)} and µ̂

(k)
dt by using the REML estimation

method.

2. For each τ̂ ∈ {β1, β2, σ
2
u, ρ} and for µ̂dt, d = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS(τ̂) =
1

K

K∑

k=1

(τ̂ (k) − τ), BIASdt =
1

K

K∑

k=1

(µ̂
(k)
dt − µ

(k)
dt ), BIAS =

1

D

D∑

d=1

md∑

t=1

BIASdt,

MSE(τ̂ ) =
1

K

K∑

k=1

(τ̂ (k) − τ)2, MSEdt =
1

K

K∑

k=1

(µ̂
(k)
dt − µ

(k)
dt )2, MSE =

1

D

D∑

d=1

md∑

t=1

MSEdt.

The simulations are carried out for the 6 combinations of sample sizes appearing in Table 2.1.4.1.

D 50 100 200 300 400 500

md 5 5 5 5 5 5
m 250 500 1000 1500 2000 2500

Table 2.1.4.1: Sample sizes.

Table 2.1.4.2 presents the results of the simulation experiment.

D 50 100 200 300 400 500

BIAS(β̂1) 0.0020 0.0018 -0.0012 -0.0011 -0.0004 -0.0010

MSE(β̂1) 0.0784 0.0410 0.0208 0.0134 0.0100 0.0080

BIAS(β̂2) 0.0130 0.0067 0.0034 0.0022 0.0017 0.0013

MSE(β̂2) 0.0009 -0.0003 0.0004 0.0005 0.0003 0.0004

BIAS(σ̂2

u
) -0,0164 -0,0052 -0,0020 -0.0040 -0.0030 -0.0029

MSE(σ̂2

u
) 0.0414 0.0213 0.0107 0.0070 0.0053 0.0044

BIAS(ρ̂) -0.0018 -0.0009 -0.0002 0.0005 0.0009 0.0013

MSE(ρ̂) 0.0115 0.0056 0.0027 0.0018 0.0014 0.0011

BIAS 0.0005 -0.0003 0.0001 0.0002 0.0000 0.0004

MSE 0.5196 0.5149 0.5121 0.5117 0.5114 0.5113

Table 2.1.4.2. Results of simulation experiment 1.

Table 2.1.4.2 shows that bias is always close to zero and that MSE decreases when the

number of domains increases, so that the REML estimates are consistent.

Simulation 2

In the second simulation experiment we investigate the behavior of the estimator msedt of the

MSE of the EBLUP of µdt. For this task we compare the msedt with the empirical MSE of µ̂dt
obtained from experiment 1.
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1. For D = 50, 100, 200, 300, 400, 500,take the values of MSEd obtained in experiment 1 and

repeat I = 104 times (k = 1, . . . ,K)

1.1. Generate the sample (y
(k)
dt ,xdt), d = 1, . . . ,D, t = 1, . . . ,md.

1.2. Calculate β̂
(k)
1 , β̂

(k)
2 , σ̂

2(k)
u and mse

(k)
dt = msedt(σ̂

2(k)
u ).

2. Calculate the performance measure of estimator msedt

Bdt =
1

K

K∑

k=1

(mse
(k)
dt −MSEdt), Edt =

1

K

K∑

k=1

(mse
(k)
dt −MSEdt)

2, d = 1, . . . ,D,

B =
103

D

D∑

d=1

md∑

t=1

Bdt, E =
103

D

D∑

d=1

md∑

t=1

Edt.

Table 2.1.4.3 presents the obtained results.

D 50 100 200 300 400 500

B -1.4366 -0.5348 -0.0949 -1.1423 -1.0755 -1.2366

E 3.0978 2.1816 1.6443 1.4613 1.3800 1.3508

Table 2.1.4.3. Results of simulation experiment 2.

Tables 2.1.4.3 shows that BIAS and MSE tend to zero as D increases.

2.2 Area-level model with independent time effects

2.2.1 Introduction

This section presents a simplification of model (2.2) that is useful for those cases where survey

data is only available for a reduced number of time instants. The new model is defined in the

same way as model (2.2), but assuming that ρ = 0. Parameter estimates of model (2.4) can also

be used as seeds for an iterative fitting method in model (2.2). We assume that

ydt = xdtβ + udt + edt, d = 1, . . . ,D, t = 1, . . . ,md, (2.4)

where ydt is a direct estimator of the indicator of interest for area d and time instant t, and xdt

is a vector containing the aggregated (population) values of p auxiliary variables. The index

d is used for domains and the index t for time instants. We assume that the vectors udt’s are

N(0, σ2
u), the errors edt’s are independent N(0, σ2

dt), and the udt’s are independent of the edt’s.

Model (2.4) can be alternatively written in the form

y = Xβ + Zu + e, (2.5)

where y = col
1≤d≤D

(yd), yd = col
1≤t≤md

(ydt), u = col
1≤d≤D

(ud), ud = col
1≤t≤md

(udt), e = col
1≤d≤D

(ed),

ed = col
1≤t≤md

(edt), X = col
1≤d≤D

(Xd), Xd = col
1≤t≤md

(xdt), xdt = col′
1≤i≤p

(xdti), β = col
1≤i≤p

(βi), Z = IM ,
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M =
∑D

d=1md. We assume that u ∼ N(0,Vu) and e ∼ N(0,Ve) are independent with

covariance matrices

Vu = σ2
uIM , IM = diag

1≤d≤D
(Imd

), Ve = diag
1≤d≤D

(Ved), Ved = col
1≤t≤md

(σ2
dt),

and known variances σ2
dt.

The BLUE of β and the BLUP of u are

β̂ = (X′V−1X)−1X′V−1y and û = VuZ
′V−1(y − Xβ̂),

where

var(y) = V = σ2
u diag
1≤d≤D

(Imd
) + Ve = diag

1≤d≤D
(σ2
uImd

+ Ved) = diag
1≤d≤D

(Vd).

To calculate β̂ and û we apply the formulas

β̂ =

(
D∑

d=1

X′
dV

−1
d Xd

)−1( D∑

d=1

X′
dV

−1
d yd

)
, û = σ2

u col
1≤d≤D

(
V−1
d (yd − Xdβ̂)

)
.

2.2.2 The Henderson 3 method

For the linear mixed model

y = Xβ + Zu + e,

with u ∼ ND(0, σ2
uID) and e ∼ Nn(0, σ

2
eW

−1) independent, the Henderson 3 method gives

unbiased estimators of σ2
e and σ2

u by considering the expectations

E[SSE(β,u)] = σ2
e [n− rg(X,Z)],

E[SSE(u|β)] = tr
{
Z′W[W−1 − X(X′WX)−1X′]WZ

}
σ2
u + σ2

e [rg(X,Z) − rg(X)],

where SSE(u|β) = SSE(β) − SSE(β,u) y SSE(β), SSE(β,u) are the sum of squares of

residuals of the fixed effect models y = Xβ + e and y = Xβ +Zu + e respectively. It hold that

E[SSE(β)] = E[SSE(u|β)] + E[SSE(β,u)]

= tr
{
Z′W[W−1 − X(X′WX)−1X′]WZ

}
σ2
u + σ2

e [n− rg(X)].

The Henderson 3 estimators of σ2
u is

σ̂2
uH =

SSE(β) − σ2
e [n− rg(X)]

tr {Z′W[W−1 −X(X′WX)−1X′]WZ} ,

where SSE(β) = y′P2y and

P2 = [I − X(X′WX)−1X′W]′W[I − X(X′WX)−1X′W] = W − WX(X′WX)−1X′W.
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For the model (2.3) with ρ = 0 we have σ2
e = 1, W = V−1

e , Z = IM , n = M =
∑D

d=1md and

rg(X) = p. Therefore,

σ̂2
uH =

y′P2y − (M − p)

tr {P2}
,

where

Q2 = (X′V−1
e X)−1 =

(
D∑

d=1

(X′
dV

−1
ed Xd

)−1

,

P2 = V−1
e − V−1

e XQ2X
′V−1

e = diag
1≤d≤D

(V−1
ed ) − col

1≤d≤D
(V−1

ed Xd)Q2 col′
1≤d≤D

(X′
dV

−1
ed ),

tr{P2} =

D∑

d=1

md∑

t=1

σ−2
dt −

D∑

d=1

tr{X′
dV

−2
ed XdQ2},

y′P2y = col′
1≤d≤D

(yd)

[
diag

1≤d≤D
(V−1

ed ) − col
1≤d≤D

(V−1
ed Xd)Q2 col′

1≤d≤D
(X′

dV
−1
ed )

]
col

1≤d≤D
(yd)

=

D∑

d=1

md∑

t=1

σ−2
dt y

2
dt −

(
D∑

d=1

y′
dV

−1
ed Xd

)
Q2

(
D∑

d=1

y′
dV

−1
ed Xd

)′

.

2.2.3 The REML method

The REML log-likelihood is

lREML(σ2
u) = −M − p

2
log 2π +

1

2
log |X′X| − 1

2
log |V| − 1

2
log |X′V−1X| − 1

2
y′Py,

where P = V−1 − V−1X(X′V−1X)−1X′V−1, PVP = P and PX = 0. Let us define Vu =
∂V
∂σ2

u
= IM , Pu = ∂P

∂σ2
u

= −P ∂V
∂σ2

u
P = −PVuP = −P2. The derivative of lREML with respect to

θ = σ2
u is

S = S(θ) =
∂lREML

∂θ
= −1

2
tr(PVu) +

1

2
y′PVuPy = −1

2
tr(P) +

1

2
y′P2y.

The minus expectation of the second order derivative of lREML with respect to θ = σ2
u is

F = F (θ) =
1

2
tr(PVuPVu) =

1

2
tr(P2). (2.6)

The updating formula of the Fisher-scoring algorithm is

θk+1 = θk + F−1(θk)S(θk).

The Henderson 3 estimator σ̂2
uH can be used as seed of the Fisher-scoring algorithm. The REML

estimator of β is

β̂REML = (X′V̂−1X)−1X′V̂−1y.
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The asymptotic distributions of the REML estimators of σ2
u and β are

σ̂2
u ∼ N2(θ, F

−1(σ2
u)), β̂ ∼ Np(β, (X

′V−1X)−1).

Asymptotic confidence intervals at the level 1 − α for σ2
u and βi are

σ̂2
u ± zα/2 ν

1/2, β̂i ± zα/2 q
1/2
ii , i = 1, . . . , p,

where σ̂2
u = σ

2,(κ)
u , ν = F−1(σ

2,(κ)
u ), (X′V−1(σ

2,(κ)
u )X)−1 = (qij)i,j=1,...,p, κ is the final iteration

of the Fisher-scoring algorithm and zα is the α-quantile of the standard normal distribution

N(0, 1). Observed β̂i = β0, the p-value for testing the hypothesis H0 : βi = 0 is

p = 2PH0(β̂i > |β0|) = 2P (N(0, 1) > β0/
√
qii ).

In what follows we present some matrix calculation that are useful to implement the Fisher-

scoring algorithm. The target here is to avoid calculations of M ×M matrices.

Q = (X′V−1X)−1 =

(
D∑

d=1

X′
dV

−1
d Xd

)−1

,

P = diag
1≤d≤D

(V−1
d ) − col

1≤d≤D
(V−1

d Xd)Q col′
1≤d≤D

(X′
dV

−1
d ),

tr(P) =

D∑

d=1

tr(V−1
d ) −

D∑

d=1

tr(X′
dV

−2
d XdQ),

tr(P2) =
D∑

d=1

tr(V−2
d ) − 2

D∑

d=1

tr(X′
dV

−3
d XdQ)

+ tr

{(
D∑

d=1

X′
dV

−2
d Xd

)
Q

(
D∑

d=1

X′
dV

−2
d Xd

)
Q

}
.

y′P2y =
D∑

d=1

y′
dV

−2
d yd − 2

(
D∑

d=1

y′
dV

−1
d Xd

)
Q

(
D∑

d=1

X′
dV

−2
d yd

)

+

(
D∑

d=1

y′
dV

−1
d Xd

)
Q

(
D∑

d=1

X′
dV

−2
d Xd

)
Q

(
D∑

d=1

y′
dV

−1
d Xd

)′

.

2.2.4 Mean squared error of the EBLUP

We are interested in predicting µdt = xdtβ+udt with the EBLUP µ̂dt = xdtβ̂+ûdt. No taking into

account the error edt, this is equivalent to predict ydt = a′y, where a = col
1≤ℓ≤D

( col
1≤k≤mℓ

(δdℓδtk))
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is a vector having one “1” in the cell t +
∑d−1

ℓ=1 mℓ and ”0”’s in the remaining cells. The total

Y dt is estimated with Ŷ
eblup

dt = µ̂dt. The mean squared error of Ŷ
eblup

dt is

MSE(Ŷ
eblup

dt ) = g1(θ) + g2(θ) + g3(θ),

where θ = σ2
u and

g1(θ) = a′ZTZ′a,

g2(θ) = [a′X − a′ZTZ′V−1
e X]Q[X′a − X′V−1

e ZTZ′a] y

g3(θ) ≈ tr
{

(∇b′)V(∇b′)′E
[
(θ̂ − θ)(θ̂ − θ)′

]}

The estimator of MSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂) + g2(θ̂) + 2g3(θ̂).

Calculation of g1(σ
2
u)

We have that g1(σ
2
u) = a′ZTZ′a, where Z = IM×M and

T = Vu − VuZ
′V−1ZVu = σ2

uIM − σ4
u diag
1≤d≤D

(V−1
d ).

We define ad = col
1≤k≤md

(δtk). Then, we have

g1(σ
2
u) = σ2

ua
′
dad − σ4

ua
′
dV

−1
d ad =

σ2
uσ

2
dt

σ2
u + σ2

dt

.

Calculation of g2(σ
2
u)

We have that g2(σ
2
u) = [a′X − a′ZTZ′V−1

e X]Q[X′a − X′V−1
e ZTZ′a], where

ZTZ′V−1
e X =

[
σ2
uIM − σ4

u diag
1≤d≤D

(V−1
d )

]
diag

1≤d≤D
(V−1

ed ) col
1≤d≤D

(Xd)

= σ2
u col
1≤d≤D

(V−1
ed Xd) − σ4

u col
1≤d≤D

(V−1
d V−1

ed Xd).

Therefore,

g2(σ
2
u) =

[
a′
dXd − σ2

ua
′
dV

−1
ed Xd + σ4

ua
′
dV

−1
d V−1

ed Xd

]
Q

·
[
X′
dad − σ2

uX
′
dV

−1
ed ad + σ4

uX
′
dV

−1
ed V−1

d ad
]
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Calculation of g3(σ
2
u)

We have that

g3(σ
2
u) ≈ tr

{
(∇b′)V(∇b′)′E

[
(θ̂ − θ)(θ̂ − θ)′

]}
,

where

b′ = a′ZVuZ
′V−1 = σ2

ua
′ diag
1≤ℓ≤D

(V−1
ℓ ) = σ2

u col′
1≤ℓ≤D

(δdℓa
′
ℓV

−1
ℓ ).

It holds that

∂b′

∂σ2
u

= col′
1≤ℓ≤D

(δdℓa
′
ℓV

−1
ℓ ) − σ2

u col′
1≤ℓ≤D

(δdℓa
′
ℓV

−1
ℓ VℓuV

−1
ℓ ), Vℓu =

∂Vℓ

∂σ2
u

= Imℓ
.

We define

q =
∂b′

∂σ2
u

diag
1≤ℓ≤D

(Vℓ)

(
∂b′

∂σ2
u

)′

= a′
dV

−1
d ad − 2σ2

ua
′
dV

−2
d ad + σ4

ua
′
dV

−3
d ad

=
1

σ2
u + σ2

dt

− 2σ2
u(

σ2
u + σ2

dt

)2 +
σ4
u(

σ2
u + σ2

dt

)3 ,

Finally, we get

g3(σ
2
u) = qF−1(σ2

u),

where F is the REML Fisher amount of information calculated in the updating equation of the

Fisher-scoring algorithm (cf. (2.6)).

2.2.5 Simulations

Simulation 1

For d = 1, . . . ,D, t = 1, . . . ,md, The explanatory and target variables are

xdt = (bdt − adt)Udt + adt, Udt =
t

md + 1
, adt = 1, bdt = 1 +

1

D
(md(d− 1) + t) ,

ydt = β1 + β2xdt + udt + edt, β1 = 0, β2 = 1,

where udt ∼ N(0, σ2
u), edt ∼ N(0, σ2

dt), σ
2
u = 1 ands

σ2
dt =

(α1 − α0) (md(d− 1) + t− 1)

M − 1
+ α0, α0 = 0.8, α1 = 1.2.

The first simulation experiment has the following steps:

1. Repeat K = 104 times (k = 1, . . . ,K)

1.1. Generate a sample of size M and calculate µ
(k)
dt = β

(k)
1 + β

(k)
2 xdt + u

(k)
dt .

1.2. Calculate τ̂ (k) ∈ {β̂(k)
1 , β̂

(k)
2 , σ̂

2(k)
u } and µ̂

(k)
dt by using the REML method.
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2. For each τ̂ ∈ {β1, β2, σ
2
u} and for µ̂dt, d = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS(τ̂) =
1

K

K∑

k=1

(τ̂ (k) − τ), MSE(τ̂ ) =
1

K

K∑

k=1

(τ̂ (k) − τ)2.

BIASdt =
1

K

K∑

k=1

(µ̂
(k)
dt − µ

(k)
dt ), MSEdt =

1

K

K∑

k=1

(µ̂
(k)
dt − µ

(k)
dt )2,

BIAS =
1

M

D∑

d=1

md∑

t=1

BIASdt, MSE =
1

M

D∑

d=1

md∑

t=1

MSEdt.

The simulation experiment is carried out for the 6 combinations of sample sizes appearing in

Table 2.2.5.1.

D 50 100 200 300 400 500

md 5 5 5 5 5 5
M 250 500 1000 1500 2000 2500

Table 2.2.5.1: Sample sizes.

The Table 2.2.5.2 presents the results of the simulation experiment.

D 50 100 200 300 400 500

BIAS(β̂1) 0.0010 0.0020 -0.0008 -0.0008 -0.0005 -0.0007

MSE(β̂1) 0.0472 0.0245 0.0122 0.0080 0.0059 0.0047

BIAS(β̂2) 0.0007 -0.0006 0.0003 0.0004 0.0003 0.0004

MSE(β̂2) 0.0083 0.0043 0.0022 0.0014 0.0011 0.0008

BIAS(σ̂2

u) -0.0038 0.0010 0.0017 -0.0008 -0.0001 -0.0001

MSE(σ̂2

u
) 0.0319 0.0159 0.0081 0.0052 0.0040 0.0032

BIAS 0.0020 0.0010 -0.0002 -0.0001 0.0002 -0.0003

MSE 0.5064 0.5025 0.5000 0.4997 0.4994 0.4992

Table 2.2.5.2. Results of simulation experiment 1.

The Table 2.2.5.2 shows that the bias is always close to zero and that the MSE decreases as

the number of domains increases, so that the REML estimates are consistent.

Simulation 2

The second simulation experiment investigates the behavior of the estimator msedt of the MSE of

the EBLUP of µdt. We compare msedt with the empirical MSE of µ̂dt obtained from Experiment

1.

1. For D = 50, 100, 200, 300, 400, 500, take the values of MSEdt obtained in simulation 1 and

repeat I = 104 times (k = 1, . . . ,K)

1.1. Generate the sample (y
(k)
dt ,xdt), d = 1, . . . ,D, t = 1, . . . ,md.
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1.2. Calculate σ̂
2(k)
u and mse

(k)
dt = msedt(σ̂

2(k)
u ).

2. Calculate the performance measures of estimator msedt

Bdt =
1

K

K∑

k=1

(mse
(k)
dt −MSEdt), Edt =

1

K

K∑

k=1

(mse
(k)
dt −MSEdt)

2, d = 1, . . . ,D,

B =
103

D

D∑

d=1

md∑

t=1

Bdt, E =
103

D

D∑

d=1

md∑

t=1

Edt.

The Table 2.2.5.3 presents the obtained results.

D 50 100 200 300 400 500

B -0.8957 0.1581 0.7045 -0.1818 -0.0684 -0.1334

E 2.8852 1.8964 1.3884 1.1960 1.1179 1.0805

Table 2.2.5.3. Results of simulation experiment 2.

The Table 2.2.5.3 shows that the BIAS and the MSE tends to zero as D increases.

2.2.6 The impact of the correlation parameter

Two simulation experiments for analyzing the behavior of the EBLUP and its mean squared

error estimator are presented in this section. The scope of the simulations is to investigate

when it is worthwhile and what is gained when using the more complicated model (2.2) with

correlation parameter ρ instead of the simplified model (2.4) restricted to ρ = 0. For d =

1, . . . ,D, t = 1, . . . ,md, the explanatory and target variables are

xdt = (bdt − adt)Udt + adt, Udt =
t

md + 1
, adt = 1, bdt = 1 +

1

D
(md(d− 1) + t) ,

ydt = β1 + β2xdt + udt + edt, β1 = 0, β2 = 1,

where edt ∼ N(0, σ2
dt), σ

2
dt = α0 + (α1−α0)(md(d−1)+t−1)

M−1 , α0 = 0.8 and α1 = 1.2. For d = 1, . . . ,D,

the random vectors (ud1, . . . , udmd
) are generated as follows:

ud1 = (1 − ρ2)−1/2εd1, udt = ρudt−1 + εdt, t = 2, . . . ,md,

where εdt ∼ N(0, σ2
u), d = 1, . . . ,D, t = 1, . . . ,md, and σ2

u = 1.

The first simulation experiment is dedicated to investigated the gain of efficiency achieved by

the EBLUP based on model (2.2) as a function of the correlation parameter ρ. The experiment

has the following steps:

1. For ρ = 0, 1/4, 1/2, 3/4, repeat K = 104 times (k = 1, . . . ,K)

1.1. Generate a sample of size m =
∑D

d=1md. Calculate µ
(k)
dt = β1 + β2xdt + u

(k)
dt .
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1.2. Calculate β̂
(k,0)
1 , β̂

(k,0)
2 , σ̂

2(k,0)
u and EBLUP0 µ̂

(k,0)
dt by using REML method under (2.4)

restricted to ρ = 0.

1.3. Calculate β̂
(k,1)
1 , β̂

(k,1)
2 , σ̂

2(k,1)
u , ρ̂(k,1) and EBLUP1 µ̂

(k,1)
dt by using REML method under

model (2.2).

2 For d = 1, . . . ,D, t = 1, . . . ,md, calculate

BIAS
(a)
dt =

1

K

K∑

k=1

(
µ̂

(k,a)
dt − µ

(k)
dt

)
, MSE

(a)
dt =

1

K

K∑

k=1

(µ̂
(k,a)
dt − µ

(k)
dt )2, a = 0, 1,

BIAS(a) =
1

D

D∑

d=1

md∑

t=1

BIAS
(a)
dt , MSE(a) =

1

D

D∑

d=1

md∑

t=1

MSE
(a)
dt , a = 0, 1.

Mean squared errors MSE(0) and MSE(1) are presented in the Table 2.2.6.1 (left). Biases

BIAS(0) and BIAS(1) are presented in the Table 2.2.6.1 (right). In the Figure 2.2.6.1 the

MSEdmd
-values are plotted for D = 100, md = 5 and ρ = 0 (top-left), ρ = 0.25 (top-right),

ρ = 0.5 (bottom-left) and ρ = 0.75 (bottom-right). In the Figure 2.2.6.2 the BIASdmd
-values

are plotted for D = 100, md = 5 with the same configuration as in the Figure 2.2.6.1.

When the true model is model (2.4) restricted to ρ = 0, the best results in MSE are obtained

if we work all the time under the assumption that ρ = 0. However if we use the EBLUP

derived under the incorrect model (2.2) the increment of MSE is almost negligible. This can be

appreciated in the two first rows of the Table 2.2.6.1 (left) and on the Figure 2.2.6.1. If we look

at the bias, no increment is observed for incorrectly using model (2.2).

md md

ρ a 2 5 10 20 2 5 10 20

0 0 0.5086 0.5026 0.5003 0.4996 0.00078 -0.00011 0.00053 -0.00001

0 1 0.5138 0.5046 0.5014 0.5001 0.00078 -0.00011 0.00053 -0.00001

0.25 0 0.5263 0.5204 0.5185 0.5176 0.00079 -0.00011 0.00053 -0.00002

0.25 1 0.5214 0.5074 0.5026 0.5007 0.00078 -0.00011 0.00052 -0.00001

0.5 0 0.6263 0.6189 0.6183 0.6193 -0.00020 -0.00133 0.00196 0.00103

0.5 1 0.5457 0.5133 0.5052 0.5015 -0.00021 -0.00132 0.00193 0.00104

0.75 0 1.2021 1.1903 1.1930 1.1971 -0.00030 -0.00130 0.00197 0.00106

0.75 1 0.5953 0.5230 0.5029 0.4935 -0.00032 -0.00129 0.00192 0.00106

Table 2.2.6.1. MSE’s (left) and BIAS’s (right) of EBLUP0 and EBLUP1 for D = 100

When the true model is model (2.2) and the correlation parameter is small (ρ = 0.25), there

is almost no difference in MSE or BIAS by using the true model or the incorrect model (2.4).

If the correlation parameter is of medium size (ρ = 0.5) there is a clear increment of MSE and

BIAS by using the incorrect model. Finally if the correlation parameter is high (ρ = 0.75) the

use of the incorrect model produce sever increments of MSE and BIAS.
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Figure 2.2.6.1. MSEdmd
’s of EBLUP0 and EBLUP1 for D = 100, md = 5.

The second simulation experiment takes the MSEs obtained in the first experiment and

includes the following additional steps:

1.4 Calculate mse(µ̂
(k,0)
dt ) and mse(µ̂

(k,1)
dt ).

3 For d = 1, . . . ,D, t = 1, . . . ,md, calculate

B
(a)
dt =

1

K

K∑

k=1

(
mse(µ̂

(k,a)
dt −MSE

(a)
dt

)
, E

(a)
dt =

1

K

K∑

k=1

(
mse(µ̂

(k,a)
dt −MSE

(a)
dt

)2
, a = 0, 1,

B(a) =
1

D

D∑

d=1

md∑

t=1

B
(a)
dt , E(a) =

1

D

D∑

d=1

md∑

t=1

E
(a)
dt , a = 0, 1.

Mean squared errors E(0) and E(1) are presented in the Table 2.2.6.2 (left). Biases B(0) and

B(1) are presented in the Table 2.2.6.2 (right). For D = 100 and md = 5, in the Figure 2.2.6.3

the Bdmd
-values are plotted on the top for ρ = 0 and ρ = 0.75 and the Edmd

-values are plotted

in the bottom for the same values of ρ. We observe that in the case ρ = 0 there is no difference

between working under the true model (2.4) or under the incorrect model (2.2). On the other
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Figure 2.2.6.2. BIASdmd
’s of EBLUP0 and EBLUP1 for D = 100, md = 5.

hand, if ρ = 0.75 then we get higher bias and mean squared error in the estimation of the MSE

of the EBLUP by working under model (2.4). Again we conclude that if true model is model

(2.2), then there is a loss of efficiency by using model (2.4). The cases ρ = 0.25 and ρ = 0.5 has

been also analyzed, but not presented here as they represent a smooth transition between the

two extreme considered cases.

md md

ρ a 2 5 10 20 2 5 10 20

0 0 0.00347 0.00194 0.00140 0.00112 -0.00118 -0.00015 0.00014 -0.00038

0 1 0.00350 0.00194 0.00140 0.00112 -0.00086 -0.00018 0.00013 -0.00038

0.25 0 0.00350 0.00202 0.00150 0.00122 -0.00118 -0.00006 -0.00007 -0.00023

0.25 1 0.00352 0.00203 0.00146 0.00118 -0.00116 -0.00047 -0.00007 -0.00059

0.5 0 0.00365 0.00242 0.00195 0.00168 -0.00139 -0.00028 -0.00052 -0.00030

0.5 1 0.00398 0.00222 0.00161 0.00132 -0.00198 -0.00109 -0.00073 -0.00113

0.75 0 0.00465 0.00395 0.00361 0.00336 -0.00307 -0.00209 -0.00232 -0.00190

0.75 1 0.00513 0.00243 0.00173 0.00141 -0.00405 -0.00225 -0.00165 -0.00162

Table 2.2.6.2. E’s (left) and B’s (right) of EBLUP0 and EBLUP1 for D = 100
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Figure 2.2.6.3. Bdmd
’s (top) and Edmd

’s (bottom) of EBLUP0 and EBLUP1 for D = 100, md = 5.

2.3 An application to the Spanish Living Conditions Survey

2.3.1 Estimation of poverty indicators

Let us consider a finite population Pt partitioned into D domains Pdt at time period t, and

denote their sizes by Nt and Ndt, d = 1, . . . ,D. Let zdtj be an income variable measured in

all the units of the population and let zt be the poverty line, so that units with zdtj < zt are

considered as poor at time period t. The main goal of this section is to estimate the poverty

incidence (proportion of individuals under poverty) and the poverty gap in Spanish domains.

These two measures belongs to the FGT family proposed by Foster et al. (1984), given by

Yα;dt =
1

Ndt

Ndt∑

j=1

yα;dtj , where yα;dtj =

(
zt − zdtj

zt

)α
I(zdtj < zt), (2.7)

I(zdtj < zt) = 1 if zdtj < zt and I(zdtj < zt) = 0 otherwise. The proportion of units under

poverty in the domain d and period t is thus Y0;dt and the poverty gap is Y1;dt.

We use data from the Spanish Living Conditions Survey (SLCS) corresponding to years 2004-

2006 with sample sizes 44648, 37491, 34694 respectively. The SLCS is the Spanish version of the

European Statistics on Income and Living Conditions (EU-SILC), which is one of the statistical
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operations that have been harmonized for EU countries. The SLCS started in 2004 with an

annual periodicity. Its main goal is to provide a reference source on comparative statistics on

the distribution of income and social exclusion in the European environment.

The SLCS is an annual survey with a rotating panel design with a sample formed by four

independent subsamples, each of which is a four-year panel. Each year the sample is renewed

in one of the panels. In order to select each subsample, a two-stage design is implemented inde-

pendently in each Autonomous Community with first stage unit stratification. The first stage

is formed by census sections grouped into strata in agreement with the size of the municipality

to which they belong. The second stage is formed by main family dwellings. Within these

no sub-sampling is carried out, investigating all dwellings that are their usual residence. The

sample includes 16000 dwellings distributed in 2000 census sections.

We consider D = 104 domains obtained by crossing 52 provinces with 2 sexes. The quartiles

of the distribution of the domain sample sizes are q0 = 17, q1 = 170, q2 = 293, q3 = 640,

q4 = 2113 in 2004, 13, 149, 251, 530, 1494 in 2005 and 18, 129, 233, 481, 1494 in 2006, so

they are too small to employ direct estimators to estimate the parameters of interest in all the

domains.

The SLCS does not produce official estimates at the domain level (provinces × sex), but the

analogous direct estimator of the total Ydt =
∑Ndt

j=1 ydtj is

Ŷ dir
dt =

∑

j∈Sdt

wdtj ydtj .

where Sdt is the domain sample at time period t and the wdtj ’s are the official calibrated sampling

weights which take into account for non response. In the particular case ydtj = 1, for all j ∈ Pdt,

we get the estimated domain size

N̂dir
dt =

∑

j∈Sdt

wdtj .

Using this quantity, a direct estimator of the domain mean Ȳdt is ȳdt = Ŷ dir
dt /N̂

dir
dt . The direct

estimates of the domain means are used as responses in the area-level time model. The design-

based variances of these estimators can be approximated by

V̂π(Ŷ
dir
dt ) =

∑

j∈Sdt

wdtj(wdtj − 1) (ydtj − ȳdt)
2 and V̂π(ȳdt) = V̂

(
Ŷ dir
dt

)
/N̂2

dt. (2.8)

The last formulas are obtained from Särndal et al. (1992), pp. 43, 185 and 391, with the

simplifications wdtj = 1/πdtj , πdtj,dtj = πdtj and πdti,dtj = πdtiπdtj , i 6= j in the second order

inclusion probabilities.

As we are interested in the cases ydtj = yα;dtj , α = 0, 1, we select the direct estimates of the

poverty incidence and poverty gap at domain d and time period t (i.e. ȳ0;dt and ȳ1;dt respectively)

as target variables for the time dependent area-level models 0 and 1. The considered auxiliary

variables are the known domain means of the category indicators of the following variables:
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• INTERCEPT: X̄
(0)
dt = 1.

• AGE: Age groups are age1 -age5 for the intervals ≤ 15, 16−24, 25−49, 50−64 and ≥ 65.

The corresponding auxiliary variables (domain proportions) are denoted by X̄
(1)
dt,1, . . . , X̄

(1)
dt,5.

• EDUCATION: Highest level of education completed, with 4 categories denoted by edu0 for

Less than primary education level, edu1 for Primary education level, edu2 for Secondary

education level and edu3 for University level. Auxiliary variables are X̄
(2)
dt,0, X̄

(2)
dt,1, X̄

(2)
dt,2, X̄

(2)
dt,3.

• CITIZENSHIP: with 2 categories denoted by cit1 for Spanish and cit2 for Not Spanish.

Auxiliary variables are X̄
(3)
dt,1, X̄

(3)
dt,2.

• LABOR: Labor situation with 4 categories taking the values lab0 for Below 16 years,

lab1 for Employed, lab2 for Unemployed and lab3 for Inactive. Auxiliary variables are

X̄
(4)
dt,0, X̄

(4)
dt,1, X̄

(4)
dt,2, X̄

(4)
dt,3.

Following the standards of the Spanish Statistical Office, the Poverty Threshold is fixed as the

60% of the median of the normalized incomes in Spanish households. The aim of normalizing

the household income is to adjust for the varying size and composition of households. The

definition of the total number of normalized household members is the modified OECD scale

used by EUROSTAT. This scale gives a weight of 1.0 to the first adult, 0.5 to the second and

each subsequent person aged 14 and over and 0.3 to each child aged under 14 in the household.

The normalized size of a household is the sum of the weights assigned to each person. So the

total number of normalized household members is

Hdti = 1 + 0.5(Hdti≥14 − 1) + 0.3Hdti<14

where Hdti≥14 is the number of people aged 14 and over and Hdti<14 is the number of children

aged under 14. The normalized net annual income of a household is obtained by dividing its net

annual income by its normalized size. The Spanish poverty thresholds (in euros) in 2004-06 are

z2004 = 6098.57, z2005 = 6160.00 and z2006 = 6556.60 respectively. These are the zt-values used

in the calculation of the direct estimates of the poverty incidence and gap.

We first consider the linear model

ydt = X̄dtβ + udt + edt, d = 1, . . . ,D

where X̄d is the 1 × p vector containing the population (aggregated) mean values of all the

categories (except the last one) of the explanatory variables. The first position of X̄d contains

a “1”, so that p = 1 + 4 + 3 + 1 + 3 = 12. Random effects errors are assumed to follow the

distributional assumptions of model (2.2) either restricted to ρ = 0 (model 0) or without this

restriction (model 1). As some of the explanatory variables where not significative, the starting

models where simplified to include only the auxiliary variables appearing in the Table 2.3.1.1.

As the estimates of ρ are 0.8585 and 0.7124 for α = 0 and α = 1, we recommend model 1 and

present its regression parameters in the Table 2.3.1.1.
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α = 0 constant age3 age4 edu1 edu2 cit1 lab2
0.5439 -0.5823 -2.6071 0.0895 -0.0556 0.3308 0.2040

α = 1 constant edu0 edu1 edu2 cit1 lab1
-0.2613 0.7767 0.2184 0.1286 0.1165 -0.0538

Table 2.3.1.1. Auxiliary variables for selected type-1 models

By observing the signs of the regression parameters in model 1 for α = 0, we interpret that

poverty proportion tends to be smaller in those domains with larger proportion of population

in the subset defined by age in the interval 25-64 (age interval with greater incomes), education

in the category of secondary studies completed, and non Spanish citizenship (may be because

immigrants tends to go to regions with greater richness where it is easier to find job), and

with lower proportion of unemployed people. By doing the same exercise with the signs of the

regression parameter in model 1 for α = 1, we interpret that poverty gap tends to be smaller

in those domains with larger proportion of population characterized by university education

completed, non Spanish citizenship and employed.

Residuals êdt = ȳdt − X̄dtβ̂ − ûdt of model 1 are plotted against the observed values ȳdt in

the Figure 2.3.1.1 for α = 0 (top-right) and α = 1 (top-left). The dispersion graph shows that

EBLUP1 estimates are over and below direct estimates, so that the design unbiased property of

the direct estimator is not completely lost by using the model 1. On the right part of the figure

we observe that residuals tend to be positive, which means that the model is smoothing the

value of the direct estimator larger values. We find that this is an interesting property because

it protects us from the presence of outliers in the collection of direct domain estimates.
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Figure 2.3.1.1. Residuals versus direct estimates.

The three considered estimators of the poverty proportion and gap (direct, EBLUP0 and

EBLUP1) are plotted in the Figure 2.3.1.2 for α = 0 (top-left) and α = 1 (top-right). Their

root mean squared error estimates are plotted in the Figure 2.3.1.2 for α = 0 (bottom-left) and
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α = 1 (bottom-right). We observe that the EBLUP1 is the one presenting the best results and

it is thus the one we recommend. Finally full numerical information is presented in the Table

2.3.3.1 for the poverty proportion and in the Table 2.3.3.2 for the poverty gap. In these tables

direct, EBLUP0 and EBLUP1 estimates are labeled by dir, eb0 and eb1 respectively.

The Spanish provinces are 1 Álava, 2 Albacete, 3 Alicante, 4 Almeŕıa, 5 Ávila, 6 Badajoz,

7 Baleares, 8 Barcelona, 9 Burgos, 10 Cáceres, 11 Cádiz, 12 Castellón, 13 Ciudad Real, 14

Córdoba, 15 Coruña La, 16 Cuenca, 17 Gerona, 18 Granada, 19 Guadalajara, 20 Guipúzcoa,

21 Huelva, 22 Huesca, 23 Jaén, 24 León, 25 Lérida, 26 La Rioja, 27 Lugo, 28 Madrid, 29

Málaga, 30 Murcia, 31 Navarra, 32 Orense, 33 Asturias (Oviedo), 34 Palencia, 35 Palmas Las,

36 Pontevedra, 37 Salamanca, 38 Santa Cruz de Tenerife, 39 Cantabria (Santander), 40 Segovia,

41 Sevilla, 42 Soria, 43 Tarragona, 44 Teruel, 45 Toledo, 46 Valencia, 47 Valladolid, 48 Vizcaya,

49 Zamora, 50 Zaragoza, 51 Ceuta, 52 Melilla.
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Figure 2.3.1.2. Estimates of poverty proportions and gaps (top) and squared roots of their
estimated MSEs (bottom).

In the Table 2.3.1.2 the Spanish provinces are classified in 4 categories depending on the

values of the EBLUP1 estimates in % of the poverty proportions and the gaps, i.e. pd =

100 · Ŷ eblup1
0;d,2006 and gd = 100 · Ŷ eblup1

1;d,2006. The same results are plotted in Figure 2.3.1.3. We

observe that the Spanish regions where the proportion of the population under the poverty line
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is smallest are those situated in the north and east, like Cataluña, Aragón, Navarra, Páıs Vasco,

Cantabria and Baleares. On the other hand the Spanish regions with higher poverty proportion

are those situated in the center-south, like Andalućıa, Extremadura, Murcia, Castilla La Mancha,

Canarias, Canarias, Ceuta and Melilla. In an intermediate position we can find regions that

are in the center-north of Spain, like Galicia, La Rioja, Castilla León, Asturias, Comunidad

Valenciana and Madrid. If we investigate how far the annual net incomes of population under

the poverty line z2006 are from z2006, we observe that in the Spanish regions situated in the

center-north there exist a distance that is generally lower than the 6% of z2006. However, the

cited distance is in general greater than 6% of z2006 in the center-south.

It is somehow surprising how large is the amount of Spanish provinces having a proportion

greater than 30% of population with annual net incomes below z2006. So it would be desirable

that the Spanish Government implements policies to reduce poverty proportion in the center-

south of Spain. A criticisms to the use of employed FGT poverty indicators is that they are

defined by using only the income variable and do not consider the cost of living. In the case of

Spain the south is poorer than the north and this is visualized in the obtained results. On the

other hand to live in the south is in general cheaper than to live in the north. As the poverty

line is officially calculated for the whole Spain, it is smaller than it should be in the north and

greater than it should be in the south. Nevertheless, these comments may moderate but not

annul the validity of the given conclusions. The obtained results are valuable tools for taking

decisions as they show the basic poverty situation per provinces and sex in Spain.

men pd < 10 1, 17, 20, 8, 22, 31, 48, 39, 7
10 < pd < 20 19, 50, 33, 28, 44, 9, 46, 43, 12, 26, 3, 47, 36, 25, 24, 27, 34, 21, 32
20 < pd < 30 29, 41, 15, 30, 35, 42, 52, 45, 40, 38, 5, 2, 23, 11, 13, 10, 4, 18, 37, 49
pd > 30 14, 16, 51, 6

women pd < 10 17, 1, 31, 22, 48, 20
10 < pd < 20 8, 9, 7, 28, 33, 39, 50, 46, 19, 12, 43, 44, 3, 32, 36, 24
20 < pd < 30 26, 47, 25, 21, 41, 45, 27, 15, 29, 35, 34, 30, 52, 49, 38, 2, 37
pd > 30 11, 14, 23, 13, 5, 18, 4, 42, 10, 6, 40, 51, 16

men gd < 3 19, 17, 43, 1, 48, 39, 33, 20, 22
3 < gd < 6 31, 8, 36, 7, 28, 41, 44, 26, 50, 9, 12, 3, 46, 32, 34, 47, 27
6 < gd < 10 42, 24, 15, 35, 40, 30, 13, 45, 11, 29, 10, 25, 21, 38, 37, 2, 5, 23, 14, 4, 16
gd > 10 49, 18, 6, 52, 51

women gd < 3 1, 17, 48, 31, 19, 22
3 < gd < 6 39, 7, 43, 33, 9, 28, 8, 20, 32, 46, 26, 36, 41, 12, 50, 27, 3, 34, 44
6 < gd < 10 45, 25, 21, 24, 47, 42, 13, 15, 35, 37, 30, 14, 29, 5, 38, 40, 49, 10, 4
gd > 10 16, 23, 2, 11, 6, 18, 52, 51

Table 2.3.1.2. Spanish provinces classified by poverty proportion (up) and gap (bottom) in %.
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Figure 2.3.1.3. Estimates of Spanish poverty proportions (top) and gaps (bottom)
for men (left) and women (right).

2.3.2 Conclusions

As poverty indicators are nonlinear, unit-level model-based estimation approaches cannot al-

ways be used. Instead, area-level models provide an easy-to-apply solution. To reinforce the

predictability of the area-level models, we propose the use of temporal models that borrow

strength from time. Two models are introduced and simulation studies have been carried out

to investigate when it is worthwhile to introduce a time correlation parameter. Finally the

methodology has been applied to Spanish EU-SILC data and poverty mapping pre provinces

and sex has been given.
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2.3.3 Tables

men / poverty proportions / women men / sqrt.mse / women
d dir eb0 eb1 dir eb0 eb1 dir eb0 eb1 dir ebl0 eb1
1 0.083 0.068 0.062 0.079 0.088 0.083 0.034 0.028 0.025 0.032 0.027 0.024
2 0.237 0.249 0.255 0.285 0.279 0.284 0.035 0.029 0.026 0.037 0.030 0.026
3 0.160 0.160 0.164 0.189 0.187 0.186 0.017 0.016 0.015 0.018 0.017 0.016
4 0.318 0.286 0.275 0.354 0.320 0.326 0.035 0.029 0.026 0.037 0.030 0.027
5 0.335 0.236 0.254 0.453 0.346 0.321 0.069 0.041 0.037 0.074 0.042 0.038
6 0.366 0.346 0.328 0.393 0.374 0.359 0.025 0.022 0.020 0.025 0.022 0.020
7 0.094 0.096 0.100 0.115 0.117 0.123 0.014 0.013 0.013 0.014 0.014 0.013
8 0.083 0.084 0.083 0.108 0.109 0.108 0.008 0.007 0.007 0.008 0.008 0.008
9 0.127 0.130 0.119 0.124 0.141 0.118 0.029 0.025 0.022 0.028 0.024 0.022
10 0.252 0.242 0.272 0.332 0.317 0.350 0.030 0.026 0.023 0.031 0.026 0.024
11 0.267 0.263 0.268 0.303 0.298 0.301 0.025 0.022 0.020 0.025 0.022 0.020
12 0.122 0.133 0.160 0.122 0.137 0.168 0.034 0.029 0.026 0.036 0.029 0.026
13 0.269 0.268 0.270 0.324 0.313 0.319 0.030 0.026 0.023 0.035 0.029 0.025
14 0.312 0.301 0.313 0.307 0.308 0.305 0.034 0.028 0.025 0.033 0.028 0.025
15 0.216 0.206 0.205 0.237 0.228 0.232 0.020 0.019 0.017 0.020 0.019 0.017
16 0.362 0.315 0.314 0.472 0.374 0.401 0.057 0.038 0.034 0.059 0.039 0.035
17 0.050 0.059 0.064 0.067 0.076 0.083 0.018 0.017 0.016 0.023 0.021 0.019
18 0.301 0.281 0.284 0.342 0.307 0.322 0.036 0.029 0.026 0.034 0.029 0.025
19 0.077 0.108 0.104 0.165 0.200 0.164 0.027 0.024 0.022 0.041 0.032 0.028
20 0.064 0.065 0.070 0.100 0.098 0.097 0.018 0.017 0.016 0.020 0.019 0.018
21 0.192 0.213 0.200 0.253 0.255 0.223 0.036 0.030 0.026 0.040 0.031 0.027
22 0.078 0.096 0.086 0.089 0.105 0.095 0.028 0.024 0.022 0.032 0.027 0.024
23 0.283 0.286 0.266 0.339 0.340 0.316 0.031 0.027 0.024 0.034 0.028 0.025
24 0.192 0.188 0.181 0.193 0.205 0.200 0.032 0.027 0.024 0.029 0.025 0.023
25 0.177 0.175 0.169 0.239 0.234 0.222 0.037 0.030 0.027 0.043 0.033 0.029
26 0.166 0.161 0.163 0.212 0.205 0.202 0.020 0.019 0.017 0.022 0.020 0.018
27 0.207 0.186 0.188 0.225 0.225 0.231 0.037 0.030 0.026 0.034 0.028 0.026
28 0.110 0.109 0.110 0.126 0.124 0.123 0.014 0.013 0.013 0.013 0.013 0.012
29 0.222 0.213 0.203 0.258 0.247 0.241 0.025 0.022 0.020 0.023 0.021 0.019
30 0.219 0.218 0.215 0.256 0.253 0.251 0.017 0.016 0.015 0.018 0.017 0.016
31 0.090 0.091 0.089 0.094 0.096 0.094 0.014 0.014 0.013 0.014 0.013 0.013
32 0.282 0.213 0.200 0.213 0.215 0.191 0.053 0.037 0.031 0.043 0.033 0.028
33 0.108 0.108 0.108 0.122 0.124 0.124 0.014 0.013 0.013 0.013 0.013 0.012
34 0.228 0.183 0.196 0.280 0.267 0.244 0.054 0.037 0.033 0.058 0.038 0.033
35 0.224 0.223 0.216 0.246 0.239 0.243 0.026 0.023 0.021 0.025 0.022 0.020
36 0.174 0.169 0.168 0.214 0.210 0.197 0.021 0.019 0.018 0.022 0.021 0.019
37 0.308 0.278 0.287 0.329 0.286 0.295 0.042 0.032 0.029 0.042 0.033 0.029
38 0.263 0.246 0.251 0.286 0.271 0.278 0.027 0.024 0.022 0.026 0.023 0.021
39 0.095 0.098 0.096 0.128 0.133 0.132 0.017 0.016 0.015 0.020 0.018 0.017
40 0.234 0.186 0.238 0.438 0.312 0.359 0.061 0.039 0.036 0.071 0.041 0.038
41 0.209 0.213 0.204 0.228 0.230 0.224 0.020 0.019 0.017 0.020 0.019 0.017
42 0.247 0.183 0.216 0.604 0.294 0.342 0.107 0.046 0.046 0.126 0.047 0.050
43 0.125 0.133 0.144 0.174 0.177 0.170 0.029 0.025 0.023 0.033 0.028 0.025
44 0.083 0.110 0.119 0.151 0.170 0.178 0.033 0.028 0.026 0.045 0.034 0.031
45 0.250 0.238 0.234 0.220 0.236 0.230 0.029 0.025 0.023 0.028 0.025 0.022
46 0.137 0.136 0.138 0.139 0.138 0.142 0.017 0.016 0.015 0.014 0.014 0.013
47 0.165 0.152 0.168 0.210 0.193 0.214 0.024 0.022 0.020 0.027 0.024 0.021
48 0.092 0.092 0.092 0.099 0.100 0.096 0.014 0.013 0.013 0.014 0.014 0.013
49 0.332 0.270 0.296 0.268 0.271 0.277 0.048 0.035 0.032 0.046 0.035 0.031
50 0.101 0.101 0.105 0.136 0.137 0.138 0.014 0.014 0.013 0.017 0.016 0.015
Table 2.3.3.1. Estimated domain poverty proportions and their estimated sqrt MSE’s by sex.
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men / poverty gaps / women men / sqrt.mse / women
d dir eb0 eb1 dir eb0 eb1 dir eb0 eb1 dir ebl0 eb1
1 0.025 0.026 0.026 0.015 0.017 0.017 0.010 0.009 0.009 0.007 0.007 0.007
2 0.096 0.086 0.087 0.117 0.109 0.106 0.017 0.014 0.013 0.019 0.014 0.013
3 0.050 0.049 0.050 0.059 0.058 0.057 0.007 0.007 0.007 0.008 0.007 0.007
4 0.108 0.090 0.089 0.112 0.095 0.098 0.015 0.013 0.012 0.017 0.014 0.013
5 0.108 0.081 0.087 0.123 0.087 0.091 0.027 0.017 0.016 0.025 0.017 0.015
6 0.126 0.117 0.109 0.121 0.116 0.112 0.011 0.010 0.010 0.010 0.009 0.009
7 0.029 0.030 0.032 0.029 0.031 0.031 0.006 0.006 0.006 0.005 0.005 0.005
8 0.031 0.031 0.031 0.036 0.036 0.036 0.003 0.003 0.003 0.004 0.004 0.004
9 0.042 0.046 0.044 0.035 0.036 0.033 0.015 0.013 0.012 0.012 0.011 0.010
10 0.075 0.073 0.080 0.093 0.089 0.097 0.011 0.010 0.009 0.011 0.010 0.010
11 0.072 0.076 0.078 0.109 0.107 0.110 0.010 0.009 0.009 0.012 0.011 0.010
12 0.040 0.042 0.048 0.039 0.044 0.049 0.017 0.013 0.013 0.014 0.012 0.011
13 0.073 0.074 0.076 0.072 0.074 0.075 0.010 0.009 0.009 0.010 0.009 0.008
14 0.082 0.083 0.088 0.080 0.084 0.084 0.011 0.010 0.010 0.011 0.010 0.009
15 0.073 0.069 0.069 0.083 0.077 0.078 0.009 0.008 0.008 0.009 0.009 0.008
16 0.088 0.090 0.090 0.107 0.100 0.102 0.016 0.013 0.012 0.018 0.014 0.013
17 0.019 0.022 0.021 0.022 0.023 0.023 0.008 0.007 0.007 0.009 0.008 0.008
18 0.135 0.111 0.105 0.168 0.124 0.120 0.020 0.015 0.013 0.022 0.016 0.014
19 0.015 0.018 0.018 0.026 0.029 0.029 0.005 0.005 0.005 0.007 0.007 0.006
20 0.026 0.027 0.027 0.044 0.045 0.041 0.010 0.009 0.009 0.011 0.010 0.009
21 0.105 0.096 0.081 0.091 0.089 0.073 0.027 0.017 0.015 0.021 0.015 0.014
22 0.026 0.034 0.030 0.030 0.036 0.030 0.011 0.010 0.010 0.013 0.011 0.011
23 0.096 0.096 0.088 0.114 0.111 0.104 0.013 0.012 0.011 0.015 0.012 0.011
24 0.071 0.065 0.069 0.076 0.069 0.073 0.015 0.013 0.012 0.015 0.013 0.012
25 0.092 0.082 0.080 0.093 0.078 0.067 0.022 0.016 0.014 0.021 0.015 0.014
26 0.041 0.041 0.042 0.043 0.044 0.045 0.006 0.005 0.005 0.005 0.005 0.005
27 0.086 0.069 0.060 0.053 0.053 0.054 0.026 0.017 0.015 0.012 0.010 0.010
28 0.034 0.033 0.034 0.036 0.036 0.035 0.006 0.006 0.006 0.006 0.006 0.005
29 0.090 0.086 0.079 0.108 0.099 0.091 0.014 0.012 0.011 0.014 0.012 0.011
30 0.075 0.075 0.074 0.083 0.083 0.083 0.007 0.006 0.006 0.007 0.006 0.006
31 0.030 0.031 0.031 0.027 0.028 0.028 0.006 0.006 0.006 0.005 0.005 0.005
32 0.073 0.065 0.055 0.048 0.051 0.042 0.019 0.015 0.013 0.014 0.012 0.011
33 0.025 0.026 0.027 0.031 0.032 0.032 0.005 0.005 0.005 0.005 0.005 0.005
34 0.056 0.060 0.058 0.061 0.060 0.058 0.017 0.014 0.013 0.018 0.014 0.013
35 0.076 0.072 0.071 0.085 0.081 0.080 0.012 0.011 0.010 0.013 0.011 0.010
36 0.030 0.031 0.032 0.044 0.045 0.045 0.004 0.004 0.004 0.006 0.005 0.005
37 0.099 0.083 0.086 0.089 0.077 0.082 0.015 0.013 0.012 0.014 0.012 0.011
38 0.081 0.079 0.082 0.093 0.087 0.092 0.010 0.009 0.009 0.011 0.010 0.010
39 0.026 0.027 0.027 0.030 0.031 0.031 0.006 0.005 0.005 0.006 0.005 0.005
40 0.070 0.060 0.071 0.109 0.083 0.096 0.021 0.015 0.015 0.023 0.016 0.015
41 0.034 0.035 0.035 0.045 0.047 0.047 0.004 0.004 0.004 0.006 0.005 0.005
42 0.153 0.061 0.065 0.235 0.057 0.075 0.088 0.022 0.020 0.111 0.022 0.022
43 0.019 0.021 0.022 0.028 0.031 0.031 0.005 0.005 0.005 0.007 0.006 0.006
44 0.045 0.046 0.042 0.052 0.062 0.059 0.024 0.017 0.015 0.020 0.015 0.014
45 0.077 0.075 0.078 0.059 0.063 0.063 0.011 0.010 0.010 0.009 0.009 0.008
46 0.051 0.049 0.051 0.043 0.043 0.044 0.010 0.009 0.008 0.006 0.005 0.005
47 0.064 0.057 0.059 0.074 0.068 0.073 0.011 0.010 0.009 0.012 0.010 0.010
48 0.026 0.026 0.026 0.023 0.023 0.023 0.005 0.005 0.005 0.004 0.004 0.004
49 0.126 0.103 0.101 0.099 0.096 0.096 0.024 0.016 0.015 0.022 0.016 0.015
50 0.043 0.041 0.042 0.051 0.049 0.050 0.009 0.008 0.008 0.010 0.009 0.009
Table 2.3.3.2. Estimated domain poverty gaps and their estimated squared root MSE’s by sex.
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Chapter 3

EB prediction of non-linear domain
parameters with a unit-level model

This chapter describes a methodology for obtaining empirical best predictors of general, pos-

sibly non-linear, domain parameters using unit level linear regression models. The proposed

method is particularized to FGT poverty measures (Foster et al., 1984) as particular cases of

non-linear parameters. The mean squared error of the proposed estimators is obtained by a

parametric bootstrap for finite populations. The method is applied to the estimation of FGT

poverty measures in Spanish provinces by gender. Thus, Section 3.1 describes the empirical

best predictor of a non-linear population parameter. Section 3.2 is devoted to the estimation

of domain parameters. This is done under normality and using a Monte Carlo approximation

of the empirical best predictor. Section 3.3 introduces the nested-error model and gives a fast

way for generating multivariate normal vectors for the domains. This method makes feasible

the application of the proposed empirical best prediction method in real situations with large

domains. Section 3.4 describes the parametric bootstrap for mean squared error estimation.

Section 3.5 particularizes de proposed method to the estimation of domain FGT poverty mea-

sures. Section 3.6 describes the method of Elbers et al. (2003) for the estimation of domain

parameters, and it discusses its properties when estimating domain means in comparison with

the method proposed here. Section 3.7 describes the results of model-based and design-based

simulation experiments conducted to analyze and compare the performance of empirical best

predictors, direct estimators and estimators obtained by the method of Elbers et al. (2003) for

the FGT poverty measures. Finally, Section 3.8 summarizes the results of an application with

Spanish data from the SILC, with full figures included in Appendix.

3.1 Empirical best predictor under a finite population

Let y be a random vector containing the values of a random variable in the units of a finite

population. Let ys be the sub-vector of y corresponding to sample elements and yr the sub-

vector of out-of-sample elements and consider without loss of generality that the elements of y

59
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are sorted as y = (y′
s,y

′
r)

′. Now consider a real measurable function δ = h(y) of the random

vector y. The target is to predict δ = h(y) using the sample data ys. Let δ̂ denote a predictor

of δ. The mean squared error (MSE) of δ̂ is defined as

MSE(δ̂) = Ey[(δ̂ − δ)2], (3.1)

where Ey denotes expectation with respect to the joint distribution of the population vector y.

The BP of δ is the function of ys that minimizes (3.1). Consider the conditional expectation

δ0 = Eyr(δ|ys), where the expectation is taken with respect to the joint distribution of yr given

ys and the result is a function of sample data ys. Subtracting and adding δ0 in the MSE, we

obtain

MSE(δ̂) = Ey[(δ̂ − δ0 + δ0 − δ)2]

= Ey[(δ̂ − δ0)2] + 2Ey[(δ̂ − δ0)(δ0 − δ)] + Ey[δ0 − δ)2]

In this expression, the last term does not depend on δ̂. For the second term, observe that

Ey[(δ̂ − δ0)(δ0 − δ)] = Eys

{
Eyr

[
(δ̂ − δ0)(δ0 − δ)|ys

]}

= Eys

{
(δ̂ − δ0)

[
δ0 − Eyr(δ|ys)

]}

= 0.

Thus, the BP of δ is the predictor δ̂ that minimizes Ey[(δ̂ − δ0)2]. Since this quantity is non-

negative and its minimum value is zero, the BP of δ is

δ̂B = δ0 = Eyr(δ|ys). (3.2)

Note that the BP is unbiased in the sense that Ey(δ̂B − δ) = 0 because

Eys(δ̂
B) = Eys{Eyr(δ|ys)} = Ey(δ).

Typically, y follows a distribution depending on an unknown parameter vector θ. This

parameter is previously estimated using the sample data ys. Then, the empirical best predictor

(EBP) of δ, denoted δ̂EB , is equal to (3.2), with the expectation taken with respect to the

distribution of yr|ys with θ replaced by an estimator θ̂. The EBP is not exactly unbiased, but

the bias coming from the estimation of the parameter θ is typically negligible.

Observation 3.1.1. Assume that y = (y′
s,y

′
r)

′ follows a Normal distribution with mean vector

µ = Xβ, for a known matrix X, with sample and out-of-sample decomposition X = (X′
s,X

′
r)

′,

and positive definite covariance matrix V decomposed accordingly as

V =

(
Vss Vsr

Vrs Vrr

)
.
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Assume also that the target parameter δ is a linear function of y, that is, δ = a′y, where

a = (a′
s,a

′
r)

′. Then, the BP of δ = a′
sys + a′

ryr is given by

δ̂B = a′
sys + a′

r

[
Xrβ + VrsV

−1
ss (ys − Xsβ)

]
. (3.3)

Replacing β by the weighted least squares estimator β̂ = (X′
sV

−1
ss Xs)

−1X′
sV

−1
ss ys in in (3.3),

we obtain the best linear unbiased predictor (BLUP) of δ = a′y as defined by Royall (1976).

3.2 Empirical best predictors of small domain non-linear pa-

rameters

The BP of a non-linear measurable function δ = h(y) can be obtained as soon as the population

vector y follows a distribution such that the distribution of yr|ys is known. Under this condition,

the EB method allows the estimation of practically any characteristic of a finite population. Here

we concentrate on the estimation of domain characteristics. For this, let yd = (y′
ds,y

′
dr)

′ be the

subvector of y for d-th domain and let δd = h(yd) be the target parameter, for a real measurable

function h. Then the BP of δ is given by

δ̂Bd = Eydr
(δd|yds). (3.4)

When the domain vectors yd, d = 1, . . . ,D, are independent following a Normal distribution,

the distribution of ydr|yds is also Normal and then the expectation in (3.4) can be easily derived.

Thus, we consider that

yd ∼ ind N(µd,Vd), d = 1, . . . ,D, (3.5)

where the mean vector µd and the covariance matrix Vd can be partitioned in submatrices

corresponding to sample and out-of-sample elements

µd =

(
µds
µdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
. (3.6)

Then, the distribution of ydr|yds is

ydr|yds ∼ N(µdr|s,Vdr|s), (3.7)

where

µdr|s = µdr − VdrsV
−1
ds (yds − µds) and Vdr|s = Vdr − VdrsV

−1
ds Vdsr.

For complex non-linear domain parameters δd = h(yd), the expectation in (3.19) cannot be

calculated analytically, but an empirical Monte Carlo approximation is easy to obtain. For this,

generate a large number L of vectors ydr from (3.7). Let y
(ℓ)
dr be the vector generated in the ℓ-th

replication. Attach this vector to the sample vector yds to obtain the population vector for d-th

domain, y
(ℓ)
d = (y′

ds, (y
(ℓ)
dr )′)′. Let δ

(ℓ)
d = h(y

(ℓ)
d ) be the target parameter for the corresponding
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domain obtained from y
(ℓ)
d . A Monte Carlo approximation to the BP of δd is simply the average

of δ
(ℓ)
d = h(y

(ℓ)
d ), ℓ = 1, . . . , L, that is,

δ̂Bd = Eyr [h(yd)|yds] ≈
1

L

L∑

ℓ=1

h(y
(ℓ)
d ). (3.8)

Typically, the mean vectors and covariance matrices in (3.5) involve an unknown parameter

vector θ, that is, µd = µd(θ) and Vd = Vd(θ). An estimator θ̂ of θ is replaced in (3.7).

Then the EBP of δd, denoted δ̂EBd , is obtained by generating out-of-sample vectors y
(ℓ)
dr from the

distribution of ydr|yds, with θ replaced by θ̂, and applying (3.8).

3.3 Empirical best predictor under a nested error model

A possible model for the elements of the population vector y that can be used to evaluate the

EBP is the nested error regression model, introduced by Battese, Harter and Fuller (1988).

This model relates the population variables Ydj (e.g., log-earnings) to a vector of p explanatory

variables xdj for all domains, and includes random domain-specific effects ud along with the

usual individual errors edj :

Ydj = xdjβ + ud + edj , j = 1, . . . , Nd, d = 1, . . . ,D,

ud ∼ iid N(0, σ2
u), edj ∼ iid N(0, σ2

e ). (3.9)

where the domain effects ud and the errors edj are independent. Let us define vectors and

matrices obtained by stacking the elements for domain d

yd = col
1≤j≤Nd

(Ydj), Xd = col
1≤j≤Nd

(xdj), ed = col
1≤j≤Nd

(edj).

Then, the domain vectors yd are independent and follow the model

yd = Xdβ + ud1Nd
+ ed, ed ∼ ind N(0, σ2

eINd
), d = 1, . . . ,D,

where ud is independent of ed. Under this model, the mean vector and the covariance matrix of

yd are given by

µd = Xdβ and Vd = σ2
u1Nd

1′
Nd

+ σ2
eIN .

Consider the decomposition of yd into sample and out-of-sample elements yd = (y′
dr,y

′
ds)

′,

and the corresponding decomposition of µd = E(yd) and Vd = Var(yd) as in (3.6). The

distribution of the out-of-sample vector ydr given the sample data yds is given by (3.7) where,

for this particular model, the conditional mean vector and covariance matrix are given by

µdr|s = Xdrβ + σ2
u1Nd−nd

1′
nd

V−1
ds (yds − Xdsβ), (3.10)

Vdr|s = σ2
u(1 − γd)1Nd−nd

1′
Nd−nd

+ σ2
eINd−nd

, (3.11)
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with γd = σ2
u(σ

2
u + σ2

e/nd)
−1. Observe that the application of the Monte Carlo approximation

(3.8) involves simulation of D multivariate Normal vectors of sizes Nd − nd, d = 1, . . . ,D, from

(3.7). Then this process has to be repeated L times, something computationally unfeasible.

This can be avoided by noting that the conditional covariance matrix Vdr|s, given by (3.7),

corresponds to the covariance matrix of a vector ydr generated by the model

ydr = µdr|s + vd1Nd−nd
+ ǫdr, (3.12)

with new random effects vd and errors ǫdr that are independent and satisfy

vd ∼ N(0, σ2
u(1 − γd)) and ǫdr ∼ N(0Nd−nd

, σ2
ǫ INd−nd

).

Using model (3.12), instead of generating a multivariate normal vector of size Nd − nd, we

need to generate only univariate normal variables vd ∼ N(0, σ2
u(1 − γd)) and ǫdj ∼ N(0, σ2

ǫ )

independently, for j ∈ rd, and then obtain the corresponding out-of-sample elements Ydj from

(3.12) using as means the corresponding elements of µdr|s given by (3.10). As mentioned before,

in practice the model parameters θ = (β′, σ2
u, σ

2
e)

′ are replaced by suitable estimators θ̂ =

(β̂
′
, σ̂2
u, σ̂

2
e)

′, and then the variables Ydj are generated from (3.12) with θ replaced by θ̂.

3.4 Parametric bootstrap for MSE estimation

The MSE of the EB estimator δ̂EBd with respect to the model is given by

MSE(δ̂EBd ) = E
[
(δ̂EBd − δd)

2
]
, (3.13)

Note that here the target parameter δd is a random variable, so the usual decomposition of

the MSE in terms of squared bias and variance of δ̂EBd does not hold. However, (3.13) can be

decomposed as

MSE(δ̂EBd ) =
[
E(δ̂EBd − δd)

]2
+ V (δ̂EBd − δd). (3.14)

Thus, the MSE is equal to the sum of the squared model bias and the variance of the prediction

error. Since the model bias of the “best” estimator δ̂Bd is exactly zero, the squared bias of the

“empirical best” estimator δ̂EBd in (3.14) is typically very small relative to the variance of the

prediction error δ̂EBd − δd when m is large. In this case, the MSE is dominated by the variance

term in (3.14).

Analytical approximations to the MSE are difficult to derive in the case of complex param-

eters such as the FGT poverty measures. We therefore obtain a parametric bootstrap MSE

estimator by following the bootstrap method for finite populations of González-Manteiga et

al. (2008). This bootstrap method can be readily applied to other complex parameters. This

parametric bootstrap method works as follows:

1. Fit model (3.9) to sample data ys and obtain model parameter estimates β̂, σ̂2
u and σ̂2

e .
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2. Generate bootstrap random domain effects as u∗d ∼ iid N(0, σ̂2
u), d = 1, . . . ,D.

3. Generate, independently of the random effects u∗d, bootstrap random errors e∗dj ∼ iidN(0, σ̂2
e),

j = 1, . . . , Nd, d = 1, . . . ,D. ,

4. Construct a bootstrap population vector y∗ = ((y∗
1)

′, . . . , (y∗
D)′)′ using the estimated

model,

Y ∗
dj = xdjβ̂ + u∗d + e∗dj , j = 1, . . . , Nd, d = 1, . . . ,D, (3.15)

and calculate the true domain quantities for this bootstrap population, δ∗d = h(y∗
d), d =

1, . . . ,D.

5. Take the elements Y ∗
dj of the population vector y∗ with indices contained in the sample s,

denoted y∗
s . Fit model (3.9) again to bootstrap data y∗

s , obtaining new model parameter

estimates β̂
∗
, σ̂2∗

u and σ̂2∗
e .

6. Using the bootstrap sample data y∗
s and the known matrix X, apply the EB method as

described in Section 3.2 and calculate bootstrap EBPs, δ̂EB∗
d , d = 1, . . . ,D.

Observe that the bootstrap elements Y ∗
dj , given the original sample data ys, preserve prop-

erties of the original population model. Let E∗ and V ar∗ denote expectation and variance with

respect to the distribution defined by the bootstrap model (3.15) given sample data ys. Then

bootstrap random effects u∗d and errors e∗dj are iid with

E∗(u
∗
d) = 0, V ar∗(u

∗
d) = σ̂2

u, E∗(e
∗
dj) = 0, V ar∗(e

∗
dj) = σ̂2

e . (3.16)

Observe also that the mean vectors and covariance matrices of the bootstrap domain vectors y∗
d

are given by

E∗(y
∗
d) = Xdβ̂ and V ar∗(y

∗
d) = σ̂2

u1Nd
1′
Nd

+ σ̂2
eIN .

Thus, the distribution of the bootstrap population y∗ (given the sample data ys) imitates that

of the original population y. Then an estimator of MSE(δ̂EBd ) is the bootstrap MSE of the

bootstrap EBP, that is

MSE∗(δ̂
EB∗
d ) = E∗

[
(δ̂EB∗
d − δ∗d)

2
]
.

In practice, this quantity is approximated through a Monte Carlo procedure. For this, repeat

steps 2–6 a large number of times, B. Then we have generated B bootstrap populations with

their corresponding true values of parameters and EBPs. An approximation for the bootstrap

MSE is obtained then by averaging the squared errors over the B replicates. More specifically,

let δ
∗(b)
d and δ̂

EB∗(b)
d be the true domain parameter and its corresponding EBP for the bootstrap

replicate b, for b = 1, . . . , B. Then the final bootstrap estimator of the MSE is

mse(δ̂EBd ) =
1

B

B∑

b=1

(
δ̂
EB∗(b)
d − δ

∗(b)
d

)2
. (3.17)
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It is possible to obtain a better MSE estimator, in terms of relative bias, by using a dou-

ble bootstrap method (Hall and Maiti, 2006). However, under the finite population setup, in

which full populations are generated in each bootstrap replication, the double bootstrap may

be computationally infeasible.

3.5 Empirical best estimators of small domain FGT poverty

measures

Consider the FGT family of poverty measures for domain d

Fαd =
1

Nd

Nd∑

j=1

(
z − Edj

z

)α
I(Edj < z), α = 0, 1, 2, (3.18)

where Edj is the value of a quantitative welfare measure for j-th individual within d-th domain

and z is the given poverty line. For α = 0 we obtain the proportion of individuals under the

poverty line, which is called poverty incidence. For α = 1 we obtain the domain mean of relative

distances to the poverty line, which is called poverty gap. While the poverty incidence accounts

for the quantity of people under the poverty line, the poverty gap measures the degree of poverty

of the people under the poverty line.

The BP of the FGT poverty measure δd = Fαd is given by

F̂Bαd = Eydr
(Fαd|yds).

Thus, in order to obtain the BP of Fαd, we need to express Fαd in terms of a domain vector yd,

for which the conditional distribution of the out-of-sample vector ydr given sample data yds is

known. The distribution of the welfare variables Edj is seldom Normal due to the typical strong

right-skewness of these kind of economical variables. However, many times it is possible to find

a transformation of the Edj ’s whose distribution is approximately Normal. This transformation

can be chosen from a suitable family such that the Box-Cox power family of transformations.

Thus, here we suppose that there exists a one-to-one transformation Ydj = T (Edj) of the

welfare variables Edj , which follows a Normal distribution. In particular, we will assume that

the Ydj ’s follow the nested error model (3.9). Let yd = (y′
ds,y

′
dr)

′ be the vector containing the

values of the transformed variables Ydj for the sample and out-of-sample units within domain d.

Then Fαd is function of yd, that is

Fαd =
1

Nd

Nd∑

j=1

(
z − T−1(Ydj)

z

)α
I(T−1(Ydj) < z) =: hα(yd), α = 0, 1, 2.

Thus, the FGT poverty measure of order α is a non-linear function hα(yd) of yd. Then the BP

of Fαd is given by

F̂Bdj = Eydr
[hα(yd)|yds] =

∫

IR
hα(yd)f(ydr|yds) dydr, (3.19)
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where f(ydr|yds) is the joint density of ydr given the observed data vector yds obtained from

(3.7). Due to the complexity of the function hα(·), there is not explicit expression for the

expectation in (3.19), but this expectation can be approximated by Monte Carlo as explained

in Section 3.2. Then, an approximation to the best predictor of Fαd is

F̂Bαd ≈
1

L

L∑

ℓ=1

hα(y
(ℓ)
d ).

Typically, the mean vector µd and the covariance matrix Vd depend on an unknown vector of

parameters θ. Then the conditional density f(ydr|yds) depends on θ, and we make this explicit

by writing f(ydr|yds,θ). We take an estimator θ̂ of θ such as the maximum likelihood (ML)

or restricted ML (REML)estimator. Then the expectation can be approximated by generating

values from the estimated density f(ydr|yds, θ̂). The result is the EBP, denoted F̂EBαd .

3.6 ELL estimators of small domain non-linear parameters

The method of Elbers et al. (2003), called ELL or World Bank (WB) method, assumes a nested

error model on the transformed population values, Ydj , similar to (3.9) but using random cluster

effects, where the clusters may be different from the small areas. In fact, the small areas are not

specified in advance. They compute estimators of domain parameters δd by applying a method

similar to the bootstrap procedure described in Section 3.4. More concretely, the ELL method

follows the steps below:

1. With the original sample data ys, fit a linear model with cluster random effects,

Ydj = xdjβ + uc + edj , j = 1, . . . , Nd, d = 1, . . . ,D, c = 1, . . . , C,

uc ∼ iid N(0, σ2
c ), edj ∼ iid N(0, σ2

e ). (3.20)

where uc is the random effect of cluster c. Let β̂, σ̂2
c and σ̂2

e be the estimators of β, σ2
c

and σ2
e in this model.

2. Generate bootstrap cluster effects u∗c ∼ iid N(0, σ̂2
c ), c = 1, . . . , C.

3. Independently of the cluster effects, generate bootstrap model errors

e∗dj ∼ iid N(0, σ̂2
e ), j = 1, . . . , Nd, d = 1, . . . ,D.

4. Construct a population vector y∗ from the bootstrap model

Y ∗
dj = xdjβ + u∗c + e∗dj , j = 1, . . . , Nd, d = 1, . . . ,D, c = 1, . . . , C. (3.21)

5. Calculate the true bootstrap domain parameters δ∗d = h(y∗
d), d = 1, . . . ,D.
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6. The ELL estimator of δd is then the bootstrap mean

δ̂ELLd = E∗(δ
∗
d),

and the bootstrap variance is used as an estimator of the MSE of the ELL estimator δ̂ELLd ,

that is, the ELL method uses

mse(δ̂ELLd ) = V ar∗(δ
∗
d) = E∗[δ

∗
d − E∗(δ

∗
d)]

2,

Note that E∗(δ
∗
d) is tracking E(δd) and V ar∗(δ

∗
d) is tracking V (δd) = E[δd − E(δd)]

2. In

practice, ELL estimators are obtained from a Monte Carlo approximation by generating a large

number, A, of population vectors y∗(a) = ((y
∗(a)
1 )′, . . . , (y

∗(a)
D )′)′, a = 1, . . . , A, calculating the

bootstrap domain parameters for each population a in the form δ
∗(a)
d = h(y

∗(a)
d ), d = 1, . . . ,D,

and later averaging over the A populations; that is, taking

δ̂ELLd ≈ 1

A

A∑

a=1

δ
∗(a)
d =: δ

∗(·)
d and mse(δ̂ELLd ) ≈ 1

A

A∑

a=1

(
δ
∗(a)
d − δ

∗(·)
d

)2
.

Note that ELL population vectors y∗(a) do not contain the observed sample data in contrast to

the EB method described in Section 3.2.

To illustrate the ELL method and compare it with the EB method, consider the special case

of estimating the domain means, that is, δd = Ȳd, where

Ȳd = N−1
d

Nd∑

d=1

Ydj , d = 1, . . . ,D.

The ELL estimator of the domain mean Ȳd is the bootstrap mean

ˆ̄Y ELL
d = E∗(Ȳ

∗
d ), (3.22)

and the ELL estimator of the MSE of ˆ̄Y ELL
d is the bootstrap variance

mse( ˆ̄Y ELL
d ) = V ar∗(Ȳ

∗
d ).

In many cases, as in some establishment surveys, there are no clusters. Then, the ELL

method fits the linear model

Ydj = xdjβ + edj , edj ∼ iid N(0, σ2
e ), j = 1, . . . , Nd, d = 1, . . . ,D, (3.23)

and uses this model to construct bootstrap populations. Let us consider, for simplicity of

exposition, that all the parameters involved in the model are known. The bootstrap mean for

d-th domain is given by

Ȳ ∗
d = N−1

d

Nd∑

j=1

Y ∗
dj =

1

Nd

Nd∑

j=1

(xdjβ + e∗dj) = ˆ̄Y SY N
d + Ē∗

d ,
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where Ē∗
d = N−1

d

∑Nd

j=1 e
∗
dj and ˆ̄Y SY N

d is used to denote the synthetic estimator X̄dβ, where

X̄d = N−1
d

∑Nd

j=1 xdj . The synthetic estimator is obtained by predicting all population elements

Ydj through the linear model (3.23) by Ŷdj = xdjβ and then taking the mean over the d-th

domain, that is,

ˆ̄Y SY N
d =

1

Nd

Nd∑

j=1

Ŷdj .

By (3.22), the ELL estimator is given by

ˆ̄Y ELL
d = E∗(Ȳ

∗
d ) = E∗(

ˆ̄Y SY N
d + Ē∗

d) = ˆ̄Y SY N
d + E∗(Ē

∗
d) = ˆ̄Y SY N

d ,

due to property (3.16) of the bootstrap method. On the other hand, the EB estimator of Ȳd
under the linear model (3.23) is obtained by predicting only the out-of-sample observations and

keeping the sample data, that is,

ˆ̄Y EB
d =

1

Nd




∑

j∈sd

Ydj +
∑

j∈rd

Ŷdj



 .

Let us compare the MSEs of ELL and EB estimators. Taking the average of (3.23) over the

elements in d-th domain, we can express the true mean as

Ȳd = X̄dβ + Ēd,

where X̄d = N−1
d

∑Nd

j=1 xdj and Ēd = N−1
d

∑Nd

j=1 edj . Now let us express the ELL estimator as
ˆ̄Y ELL
d = X̄dβ. Then, it holds that

ˆ̄Y ELL
d − Ȳd = X̄dβ −

(
X̄dβ + Ēd

)
= Ēd,

and then the MSE of ELL estimator is

MSE( ˆ̄Y ELL
d ) = E{( ˆ̄Y ELL

d − Ȳd)
2} = E(Ē2

d) =
V ar(edj)

Nd
=
σ2
e

Nd
.

On the other hand, for the MSE of ˆ̄Y EB
d , observe that the difference between the EB estimator

and the true mean is equal to
ˆ̄Y EB
d − Ȳd =

1

Nd

∑

j∈rd

edj ,

which implies that the MSE of ˆ̄Y EB
d is given by

MSE( ˆ̄Y EB
d ) = E[( ˆ̄Y EB

d − Ȳd)
2] =

σ2
e

Nd

(
1 − nd

Nd

)
<
σ2
e

Nd
= MSE( ˆ̄Y ELL

d ).

Thus, under model (3.23) with known model parameters, if nd ≥ 1, the EB estimator has always

smaller MSE than the ELL estimator due to the more efficient use of the available information,
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namely the sample data. When the sampling fraction nd/Nd is negligible, both estimators have

a similar MSE.

Moreover, the ELL estimator of the MSE is

mse( ˆ̄Y ELL
d ) = E∗[(Ȳ

∗
d − E∗(Ȳ

∗
d ))2] = E∗[(Ē

∗
d)

2] =
V ar∗(e

∗
dj)

Nd
=
σ2
e

Nd
, (3.24)

which is the true MSE of the ELL estimator under model (3.23). Thus, when fitting a linear

model without cluster effects, the ELL estimator of a small area mean is essentially the synthetic

estimator, which is a good estimator when there are not domain effects and the true model is

(3.23). In this case, the ELL estimator of the MSE tracks the true MSE.

However, many times there is extra domain variation that is not fully explained by the

auxiliary variables; that is, the true model is (3.9). However, when there are no clusters, the

ELL method fits model (3.23). In this case, the true mean for d-th domain is given by

Ȳd = X̄dβ + ud + Ēd.

This means that the MSE of the ELL estimator under the true model is

MSE( ˆ̄Y ELL
d ) = E[(ud + Ēd)

2] = σ2
u +

σ2
e

Nd
. (3.25)

Summarizing, when the true model is (3.9), the ELL estimator, equal to the synthetic estimator,

is not accounting for the domain effects, and the ELL estimator of the MSE has a bias equal to

σ2
u, compare (3.24) with (3.25). Thus, this MSE estimator can lead to serious underestimation

when the domain effects have a substantial variance σ2
u.

Now, if we take the clusters in the ELL method equal to the small domains, then due to

(3.16), the ELL estimator under the correct model is again the synthetic estimator, that is,

ˆ̄Y ELL
d = E∗(

ˆ̄Y SY N
d + u∗d + Ē∗

d) = ˆ̄Y SY N
d .

Moreover, the ELL estimator of the MSE is

mse( ˆ̄Y ELL
d ) = V ar∗(Ȳ

∗
d ) = E∗[(Ȳ

∗
d − E∗(Ȳ

∗
d ))2] = E∗[(u

∗
d + Ē∗

d)
2] = σ2

u +
σ2
e

Nd
,

which is equal to the true MSE given in (3.25). This indicates that when the clusters are equal to

the small areas, the ELL estimator remains essentially equal to a synthetic estimator, but in this

case the ELL variance estimator is unbiased. Actually, when the true model is the nested-error

model (3.9), the difference between ELL and EB methods is that the target quantities are not

the same. The EB method tries to estimate (or better predict) the actual domain means Ȳd,

while the ELL method is estimating instead the marginal expectations E(Ȳd) along with the

marginal variances V ar(Ȳd).
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3.7 Simulation experiments

3.7.1 Model-based simulation experiment

A model-based simulation study has been carried out to study the performance of the proposed

EBPs of small domain FGT poverty measures (3.18) with α = 0 (poverty incidence) and α = 1

(poverty gap). For this, we simulated populations of size N = 20000, composed of D = 80

areas with Nd = 250 elements in each area d = 1, . . . ,D. The response variables for the

population units Ydj were generated from the model (3.9) taking as auxiliary variables two

dummies X1 ∈ {0, 1} and X2 ∈ {0, 1} plus an intercept. The values of these two dummies

for the population units were generated from Bernouilli distributions with success probabilities

increasing with the area index for X1 and constant for X2; that is, with probabilities

p1d = 0.3 + 0.5 d/80; p2d = 0.2, d = 1, . . . ,D,

respectively. Here the welfare variables Edj are the exponential of the model responses Ydj ; that

is, the transformation T (·) defined in Section 3.5 is T (x) = log(x). A set of sample indices sd
with nd = 50 was drawn independently in each area d using simple random sampling without

replacement. The values of the auxiliary variables for the population units and the sample

indices were kept fixed over all Monte Carlo simulations.

The intercept and the regression coefficients associated with the two auxiliary variables used

to generate populations were β = (3, 0.03,−0.04)′ . In this way, the mean welfare increases when

moving from the case (X1 = 0,X2 = 0) to (X1 = 1,X2 = 0), but decreases when moving from

(X1 = 0,X2 = 0) to (X1 = 0,X2 = 1). This implies that the “richest” individuals are those

with values X1 = 1 and X2 = 0. Since the probability p1d of X1 = 1 increases with the area

index but that of X2 = 1 is constant, then the last areas will have more individuals with larger

Ydj and then the FGT poverty measures will decrease with the area index. The random area

effects variance was taken as σ2
u = (0.15)2 and the error variance as σ2

e = (0.5)2. The poverty

line z was fixed as z = 12, which is roughly equal to 0.6 times the median of the welfare variables

Edj for a population generated as mentioned above. In this way, the poverty incidence for the

simulated populations is approximately 16%.

Under this setup, I = 104 population vectors y(i) were generated from the true model. For

each population i, we carried out the following steps:

(a) The true area poverty incidences and gaps (FGT measures for α = 0 and α = 1 respec-

tively) were obtained for each area d = 1, . . . ,D and each population i as

F
(i)
αd =

1

Nd

Nd∑

j=1


z − E

(i)
dj

z



α

I(E
(i)
dj < z), E

(i)
dj = exp(Y

(i)
dj ).

(b) Using the sample part of the i-th population vector, y
(i)
s , direct estimators of F

(i)
αd were
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calculated as

F̂
(i)
αd =

1

nd

∑

j∈sd


z − E

(i)
dj

z



α

I(E
(i)
dj < z).

(c) The nested-error model given in (3.9) was fitted to sample data (y
(i)
s ,Xs). Then, substi-

tuting the estimated model parameters in (3.10) and (3.11), L = 50 out-of-sample vectors

y
(iℓ)
r , ℓ = 1, . . . , L were generated from the conditional distribution (3.7) using (3.12) for

d = 1, . . . ,D. The sample data y
(i)
s was attached to the generated out-of-sample data

y
(iℓ)
r to form a population vector y(iℓ). The domain poverty measures for α = 0, 1 and

d = 1, . . . ,D were obtained for each population vector y(iℓ) as

F
(iℓ)
αd =

1

Nd

Nd∑

j=1


z −E

(iℓ)
dj

z



α

I(E
(iℓ)
dj < z), E

(iℓ)
dj = exp(Y

(iℓ)
dj ), d = 1, . . . ,D.

Then the Monte Carlo approximations to the EBPs of poverty measures for α = 0, 1 and

d = 1, . . . ,D were calculated as

F̂
EB(i)
αd =

1

L

L∑

ℓ=1

F
(iℓ)
αd .

(d) ELL estimators of the poverty measures were also calculated. For this, first model (3.9)

was fitted to sample data ys and then A = 50 populations or censuses were generated

using the parametric bootstrap described in Section 3.4. For each population, the poverty

measures were calculated and finally, the results were averaged over the A = 50 populations

to calculate the ELL estimator F̂
ELL(i)
αd for each i, as described in Section 3.6.

Observation 3.7.1. Note that we used L = A = 50 for the EB and ELL methods in the

simulation studies. A limited comparison of EB estimators for L = 50 with the corresponding

values for L = 1000 showed that the choice L = 50 gives fairly accurate results. In practice,

however, when dealing with a given sample data set, it is advisable to use larger values of L such

as L ≥ 200.

Means over Monte Carlo populations i = 1, . . . , I of the true values of the FGT measures of

order α = 0, 1 were computed as

E(Fαd) =
1

I

I∑

i=1

F
(i)
αd , d = 1, . . . ,D.

Similarly, biases E(F̂EBαd ) − E(Fαd), E(F̂αd) − E(Fαd) and E(F̂ELLαd ) − E(Fαd), and MSEs over

Monte Carlo populations E(F̂EBαd − Fαd)
2, E(F̂αd − Fαd)

2 and E(F̂ELLαd − Fαd)
2 of the three

estimators were computed.
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Figures 3.1 a) and b) report respectively the biases and the MSEs of the estimators for the

poverty gap (α = 1). Figure 3.1 a) shows that the EB estimator has the smallest absolute

bias followed by ELL estimator, but compared to the corresponding values of MSE (Figure 3.1

b)), the square of the model bias is negligible for all the three estimators. Hence, the MSE of

these estimators is dominated by the model variance of the prediction error, as explained at the

beginning of Section 3.4. It is clear from Figure 3.1 b) that the EB estimator is significantly

more efficient than ELL and direct estimators. Surprisingly, Figure 3.1 b) also reveals that, in

these simulations, the ELL estimator is less efficient than the direct estimator, showing that

the prediction error variance is larger for the ELL method. Results for the poverty incidence

(α = 0) were similar and are not reported here.
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Figure 3.1: a) Bias (×100) and b) MSE (×104) over simulated populations of EB, direct and
ELL estimators of the poverty gap F1d for each area d.

Turning to MSE estimation, the parametric bootstrap procedure described in Section 3.4 was

implemented with B = 500 replicates and the results are plotted in Figure 3.2 for the poverty

gap (α = 1). The number of Monte Carlo simulations was I = 500 and the true values of the

MSE were independently computed with I = 50000 Monte Carlo simulations. Figure 3.4 shows

that the bootstrap MSE estimator tracks the pattern of the true MSE values. Similar results

were obtained for the poverty incidence (α = 0).

3.7.2 Design-based simulation experiment

A design-based simulation experiment was also carried out to study the performance of estima-

tors over repeated samples drawn from a fixed population. Only one population was generated

with the same population and sample sizes, and using the same values of model parameters as

described in Section 3.7.1. Then, in each replication out of I = 1000, a new sample was drawn

from this fixed population according to SRS without replacement within each area. From each
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Figure 3.2: True MSE (×104) of EB predictor of poverty gap (α = 1) and bootstrap MSE
estimate with B = 500 for each area d.

sample, the three types of estimators of poverty measures, namely EBP, direct and ELL were

obtained.

Results on the design bias and design MSE of the estimators for poverty gap (α = 1) are

reported in Figures 3.3 a) and b) respectively. As expected, Figure 3.3 shows that the Monte

Carlo design bias of the direct estimator is practically zero, followed by EB estimator.

In terms of MSE, Figure 3.3 b) shows that ELL estimators have small MSEs for some of the

areas and large for the other areas, while the MSE of EB and direct estimators remain small for

all areas. For most areas, the MSE of EB estimator is smaller than that of the direct estimator.

3.8 Application with Spanish SILC data

The EB method was applied to estimate poverty incidences and poverty gaps by gender in

Spanish provinces. For this, data from the Spanish Survey on Income and Living Conditions

(SILC) from the year 2006 was used. The welfare variable for the individuals is the equiv-

alised annual net income calculated following the standard procedure of the Spanish Statistical

Institute (INE). This variable has been transformed by adding a fixed quantity to make it al-

ways positive and then taking logarithm. This transformed variable acts as the response in the

nested-error regression model. As auxiliary variables, we have considered the indicators of the

5 quinquennial groupings of the variable age, the indicator of having Spanish nationality, the

indicators of the 3 levels of the variable education level, and the indicators of the 3 categories

of the variable employment, with categories “unemployed”, “employed” and “inactive”. For
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Figure 3.3: a) Bias (×100) and b) MSE (×104) of EB, direct and ELL estimators of the poverty
gap F1d for each area d under the design-based setup.

each auxiliary variable, one of the categories was considered as base reference, omitting the

corresponding indicator and then including an intercept in the model.

The values of the dummy indicators are not known for the out-of-sample units, but the EB

method requires only the knowledge of the total number of people with the same x-values. These

totals were estimated using the sampling weights attached to the sample units in the SILC.

The MSEs of the poverty measures were estimated by using the parametric bootstrap es-

timator mse(F̂EBαd ), given by (3.17), with B = 500 replicates. Values of EB estimators, F̂EBαd ,

and associated coefficients of variation (CVs) for the poverty incidence (α = 0) and the poverty

gap (α = 1) are listed respectively in Tables 3.3 and 3.4 for a few representative small domains

(provinces × gender), where cv(F̂EBαd ) = {mse(F̂EBαd )}1/2/F̂EBαd . Direct estimators and their esti-

mated variances were also calculated following standard formulas in sampling theory but taking

as observations the quantities

Fαdj =


z −E

(iℓ)
dj

z



α

I(E
(iℓ)
dj < z), j ∈ sd

and using the SILC sampling weights attached to the units wdj , namely

F̂wαd =
1

Nd

∑

j∈sd

wdjFαdj and var(F̂wαd) =
1

N2
d

wdj(wdj − 1)F 2
αdj ,

Direct estimators along with their estimated variances are also shown in Tables 3.3 and 3.4. Full

results for all domains are included in Molina and Rao (2009).

The CVs of EB estimators are much smaller than those of direct estimators for all except

few domains, in which the CVs are similar for both estimators. This improvement in efficiency
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is larger for the poverty gap than for the poverty incidence for most domains. Moreover, the

reduction in CV tends to be greater for domains with smaller sample sizes. National statistical

offices usually establish a maximum publishable CV. For these data, the estimated CVs of direct

estimators of poverty incidences exceeded the level of 10% for 78 (out of the 104) domains while

those of the EB estimators exceeded this level for only 28 domains. If we increase the level to

20%, then the direct estimators have greater CV for 17 domains but the CV of EB estimators

exceeded 20% only for one domain.

Prov:Gender nd F̂w0d F̂EB0d var(F̂w0d) mse(F̂EB0d ) cv(F̂w0d) cv(F̂EB0d )

Soria:F 17 60.41 12.84 15.8671 0.6805 20.85 16.52
Tarragona:M 129 12.46 12.50 0.8570 0.5761 23.50 16.15
Crdoba:F 230 30.66 29.22 1.0760 0.5025 10.70 6.73
Badajoz:M 472 36.58 33.74 0.6185 0.1703 6.80 3.57
Barcelona:F 1483 10.82 19.45 0.0661 0.0494 7.51 5.37

Table 3.1: Sample sizes, direct and EB estimates of poverty incidences (× 100), estimated MSEs
of direct and EB estimators and CVs of direct and EB estimators (× 100) for the Spanish domains
with sample size closest to minimum, first quartile, median, third quartile and maximum.

Prov:Gender nd F̂w1d F̂EB1d var(F̂w1d) mse(F̂EB1d ) cv(F̂w1d) cv(F̂EB1d )

Soria:F 17 2.49 3.75 122.9756 5.598 47.27 19.99
Tarragona:M 129 1.53 3.65 0.2800 1.0977 27.15 23.14
Crdoba:F 230 9.63 10.53 1.1694 1.1819 13.50 8.87
Badajoz:M 472 11.72 12.68 1.2979 0.3086 9.05 3.94
Barcelona:F 1483 5.00 6.29 0.1297 0.1027 10.00 8.17

Table 3.2: Sample sizes, direct and EB estimates of poverty gaps (× 100), estimated MSEs of
direct and EB estimators and CVs of direct and EB estimators (× 100) for the Spanish domains
with sample size closest to minimum, first quartile, median, third quartile and maximum.

Cartograms of the estimated poverty incidences and the poverty gaps in Spanish provinces

for males and females have been constructed using the EB estimates, see Figures 3.4 and 3.5.

In these maps we can see that the poorer provinces concentrate mainly in the south and west

parts of Spain. Provinces with critical poverty incidences (over 30%) for men are, in the south:

Almera and Crdoba; west: Badajoz, vila, Salamanza and Zamora and then Cuenca, situated

east of Madrid. For women the poverty incidences increase in most provinces, becoming critical

also, in the south: Granada, Jan, Albacete and Ciudad Real, and in the north: Palencia and

Soria. The poverty level for Lrida (north-east) seems unexpected considering that this province

belongs to the region of Catalonia, which is commonly considered as a rich region.

The poverty gap measures the degree of poverty instead of the quantity of people under

poverty. For a region with many people whose income is under the poverty line but very close

to it, the poverty gap will be close to zero. Observe that the provinces with an income of over

12.5% under the poverty line are also among those provinces with critical values of poverty
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incidence, except for the northern provinces such as Lrida, which do not have significant gaps

in comparison with the rest of the provinces.



3.8. Application with Spanish SILC data 77

Poverty incidence - Men

under 15
15 − 20
20 − 25
25 − 30
over 30

Poverty incidence - Women

under 15
15 − 20
20 − 25
25 − 30
over 30

Figure 3.4: Cartograms of estimated percent poverty incidences in Spanish provinces for Men
and Women.
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Figure 3.5: Cartograms of estimated percent poverty gaps in Spanish provinces for Men and
Women.
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Appendix: Application results

Table 1. Results on poverty incidence: Spanish SILC data.

Province Sex Nd nd F̂
w
0d F̂

EB
0d var(F̂ w

0d) mse(F̂ EB
0d ) CV(F̂ w

0d) CV(F̂ EB
0d ) Ratio

lava M 99354 95 8,27 12,84 1,1548 0,6805 36,60 20,32 1,80
lava F 108422 96 7,87 12,50 1,0438 0,6000 27,08 19,60 1,38
Albacete M 184058 163 23,74 29,22 1,2529 0,4617 10,92 7,35 1,48
Albacete F 186503 183 28,52 33,74 1,3896 0,4618 11,12 6,37 1,75
Alicante M 929288 526 16,00 19,45 0,2886 0,1466 9,31 6,23 1,49
Alicante F 931405 552 18,85 22,59 0,3267 0,1601 8,78 5,60 1,57
Almera M 341228 204 31,78 32,88 1,2489 0,3642 10,47 5,80 1,80
Almera F 318857 193 35,39 35,72 1,3979 0,5020 10,04 6,27 1,60
vila M 56601 56 33,50 31,48 4,8234 1,2061 24,03 11,03 2,18
vila F 61708 60 45,29 38,51 5,4750 1,3285 24,19 9,46 2,56
Badajoz M 351985 472 36,58 36,56 0,6185 0,1703 7,12 3,57 1,99
Badajoz F 346810 515 39,33 39,13 0,6026 0,1947 6,38 3,57 1,79
Baleares M 477561 609 9,36 11,55 0,1833 0,1042 11,88 8,84 1,34
Baleares F 472843 660 11,52 14,05 0,2038 0,1130 9,59 7,57 1,27
Barcelona M 2617681 1358 8,35 10,49 0,0568 0,0524 7,68 6,90 1,11
Barcelona F 2752431 1483 10,82 13,10 0,0661 0,0494 6,67 5,37 1,24
Burgos M 215155 168 12,73 16,72 0,8495 0,3736 18,16 11,56 1,57
Burgos F 211240 167 12,43 18,33 0,7637 0,4097 16,28 11,04 1,47
Cceres M 169833 261 25,15 24,69 0,8812 0,2099 9,04 5,87 1,54
Cceres F 184785 302 33,23 28,24 0,9493 0,2689 7,32 5,81 1,26
Cdiz M 642053 373 26,69 26,88 0,6100 0,2013 6,83 5,28 1,29
Cdiz F 681522 422 30,34 31,63 0,6061 0,2316 6,62 4,81 1,38
Castelln M 201428 113 12,19 14,79 1,1895 0,6489 18,73 17,22 1,09
Castelln F 197726 123 12,18 17,35 1,2876 0,6008 20,21 14,13 1,43
Ciudad Real M 265393 260 26,88 28,39 0,8722 0,3060 10,60 6,16 1,72
Ciudad Real F 254508 239 32,37 30,18 1,1960 0,3598 9,34 6,29 1,49
Crdoba M 356218 217 31,21 30,16 1,1389 0,3636 8,55 6,32 1,35
Crdoba F 364583 230 30,66 33,32 1,0760 0,5025 7,52 6,73 1,12
La Corua M 509141 457 21,57 24,66 0,4097 0,1549 8,67 5,05 1,72
La Corua F 563190 533 23,70 25,36 0,4027 0,1789 8,78 5,27 1,66
Cuenca M 92275 96 36,16 35,26 3,2476 0,6676 15,82 7,33 2,16
Cuenca F 86760 87 47,17 35,35 3,5398 0,9183 12,57 8,57 1,47
Gerona M 307975 145 5,05 13,29 0,3261 0,4512 21,83 15,98 1,37
Gerona F 245519 138 6,72 15,38 0,5171 0,5672 21,25 15,48 1,37
Granada M 371735 188 30,10 29,16 1,3077 0,3423 8,99 6,35 1,42
Granada F 424598 229 34,17 36,34 1,1875 0,3340 8,09 5,03 1,61
Guadalajara M 87591 92 7,73 12,74 0,7280 0,6339 22,55 19,76 1,14
Guadalajara F 79560 86 16,46 15,83 1,7161 0,9055 20,43 19,01 1,08
Guipzcoa M 323719 279 6,39 11,30 0,3138 0,2488 17,79 13,96 1,27
Guipzcoa F 348524 291 9,95 14,56 0,4182 0,2250 15,52 10,30 1,51
Huelva M 223158 121 19,24 29,06 1,3104 0,4976 12,03 7,68 1,57
Huelva F 214587 123 25,31 29,13 1,5971 0,5606 12,85 8,13 1,58
Huesca M 96617 125 7,79 17,11 0,7790 0,6126 25,64 14,47 1,77
Huesca F 91147 105 8,92 18,99 1,0412 0,8048 23,76 14,94 1,59
Jan M 380752 233 28,34 28,60 0,9750 0,2878 12,22 5,93 2,06
Jan F 356344 230 33,86 32,31 1,1490 0,4010 11,79 6,20 1,90
Len M 204462 209 19,15 22,60 1,0197 0,3772 14,51 8,59 1,69
Len F 225753 228 19,28 24,17 0,8360 0,3639 13,62 7,89 1,72
Lrida M 214123 127 17,67 25,74 1,3918 0,6116 20,87 9,61 2,17
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Lrida F 218051 133 23,86 27,36 1,8547 0,5777 20,98 8,79 2,39
La Rioja M 149238 519 16,57 18,57 0,3980 0,1383 11,36 6,33 1,79
La Rioja F 147554 500 21,25 21,45 0,4890 0,1557 10,27 5,82 1,77
Lugo M 175462 169 20,66 24,51 1,3365 0,3914 11,74 8,07 1,45
Lugo F 167892 177 22,47 26,87 1,1597 0,4034 12,32 7,47 1,65
Madrid M 2816184 893 10,98 12,06 0,1843 0,0619 9,01 6,52 1,38
Madrid F 3011923 996 12,57 13,91 0,1718 0,0704 7,76 6,04 1,29
Mlaga M 693871 361 22,22 27,95 0,6008 0,2031 12,73 5,10 2,50
Mlaga F 702667 397 25,76 32,45 0,5328 0,2190 10,13 4,56 2,22
Murcia M 668714 868 21,87 25,35 0,2774 0,1027 6,60 4,00 1,65
Murcia F 660107 902 25,55 28,70 0,3128 0,1087 6,50 3,63 1,79
Navarra M 286947 525 8,98 9,13 0,2038 0,1405 12,21 12,98 0,94
Navarra F 289947 603 9,40 11,40 0,1920 0,1211 11,39 9,66 1,18
Orense M 120257 118 28,23 25,07 2,7728 0,5993 14,92 9,77 1,53
Orense F 137587 140 21,27 22,12 1,8244 0,4809 15,57 9,92 1,57
Oviedo M 511169 742 10,82 16,01 0,1885 0,0824 11,01 5,67 1,94
Oviedo F 546817 864 12,20 16,59 0,1755 0,0893 9,63 5,70 1,69
Palencia M 75638 71 22,82 26,16 2,9000 1,0455 17,72 12,36 1,43
Palencia F 72558 72 28,00 30,13 3,3849 1,0907 16,46 10,96 1,50
Las Palmas M 592262 458 22,39 24,65 0,6853 0,1615 9,45 5,16 1,83
Las Palmas F 580265 485 24,57 25,40 0,6090 0,1520 7,75 4,85 1,60
Pontevedra M 494161 434 17,36 19,15 0,4301 0,1620 11,97 6,64 1,80
Pontevedra F 525627 462 21,37 22,66 0,5031 0,1865 10,67 6,03 1,77
Salamanca M 151335 166 30,83 31,46 1,7522 0,3862 12,88 6,25 2,06
Salamanca F 152234 162 32,90 33,56 1,7820 0,4030 11,59 5,98 1,94
Tenerife M 366253 370 26,29 24,14 0,7483 0,1590 11,34 5,22 2,17
Tenerife F 376690 392 28,64 26,36 0,6643 0,2006 10,28 5,37 1,91
Santander M 267290 424 9,49 16,00 0,2762 0,1398 14,33 7,39 1,94
Santander F 279191 443 12,82 16,93 0,3877 0,1678 12,09 7,65 1,58
Segovia M 62518 57 23,43 19,24 3,7742 1,0910 15,63 17,17 0,91
Segovia F 63217 58 43,80 26,74 5,1026 1,2032 12,97 12,97 1,00
Sevilla M 816795 472 20,90 19,61 0,3971 0,1575 7,50 6,40 1,17
Sevilla F 853057 491 22,80 24,04 0,4111 0,1493 6,35 5,08 1,25
Soria M 26431 24 24,67 26,33 11,4108 2,0666 37,89 17,26 2,19
Soria F 17211 17 60,41 31,48 15,8671 2,7052 40,37 16,52 2,44
Tarragona M 264627 129 12,46 14,86 0,8570 0,5761 19,85 16,15 1,23
Tarragona F 255490 139 17,36 19,28 1,0995 0,5197 15,75 11,82 1,33
Teruel M 53380 66 8,30 17,13 1,1117 0,8420 25,53 16,94 1,51
Teruel F 65002 78 15,09 22,26 2,0390 1,0112 22,48 14,29 1,57
Toledo M 288335 278 24,96 26,22 0,8392 0,1871 10,40 5,22 1,99
Toledo F 305241 272 21,99 22,50 0,7889 0,2784 11,08 7,42 1,49
Valencia M 1169258 686 13,70 17,89 0,3019 0,0940 8,06 5,42 1,49
Valencia F 1197478 742 13,88 20,78 0,1978 0,1162 7,16 5,19 1,38
Valladolid M 305496 292 16,51 15,34 0,5649 0,2216 14,52 9,70 1,50
Valladolid F 322530 306 21,02 18,29 0,7031 0,2352 11,75 8,38 1,40
Vizcaya M 576042 515 9,18 10,01 0,1901 0,1267 13,30 11,24 1,18
Vizcaya F 590094 532 9,86 11,57 0,2077 0,1175 12,91 9,37 1,38
Zamora M 101433 109 33,19 34,67 2,3298 0,7388 14,30 7,84 1,82
Zamora F 98337 100 26,82 32,84 2,1544 0,7964 13,29 8,59 1,55
Zaragoza M 466651 555 10,07 15,42 0,2089 0,1232 13,55 7,20 1,88
Zaragoza F 462937 574 13,57 15,34 0,2920 0,0989 11,72 6,48 1,81
Ceuta M 35705 223 33,41 30,26 1,2221 0,3482 9,63 6,17 1,56
Ceuta F 40426 247 38,79 33,15 1,2324 0,3804 8,92 5,88 1,52
Melilla M 30595 179 23,61 19,27 1,3732 0,3783 10,50 10,09 1,04
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Melilla F 27498 180 25,10 25,45 1,1551 0,5579 11,09 9,28 1,19

Columns respectively denote province, gender, population size, sample size, direct estimate of poverty incidence,
EB estimate, estimated variance of direct estimator, estimated MSE of EB estimator, CV of direct estimator, CV
of EB estimator and ratio of CVs of direct estimators over EB estimators. Estimated poverty incidences and CVs
in percentage.

Table 2. Results on poverty gap: Spanish SILC data.

Province Sex Nd nd F̂
w
1d F̂

EB
1d var(F̂ w

1d) mse(F̂ EB
1d ) CV(F̂ w

1d) CV(F̂ EB
1d ) Ratio

lava M 99354 95 2.49 3.75 1.0904 1.1907 41.94 29.09 1.44
lava F 108422 96 1.53 3.65 0.4942 1.1315 45.97 29.12 1.58
Albacete M 184058 163 9.63 10.53 2.9626 0.9286 17.87 9.15 1.95
Albacete F 186503 183 11.72 12.68 3.5333 0.9250 16.03 7.59 2.11
Alicante M 929288 526 5.00 6.29 0.5269 0.2937 14.53 8.62 1.68
Alicante F 931405 552 5.89 7.55 0.6127 0.3407 13.28 7.73 1.72
Almera M 341228 204 10.81 12.30 2.3507 0.6839 14.19 6.73 2.11
Almera F 318857 193 11.18 13.64 2.8714 1.0880 15.16 7.65 1.98
vila M 56601 56 10.82 11.64 7.0443 2.3237 24.54 13.09 1.87
vila F 61708 60 12.30 15.40 6.1424 2.8775 20.15 11.01 1.83
Badajoz M 351985 472 12.59 14.11 1.2979 0.3086 9.05 3.94 2.30
Badajoz F 346810 515 12.15 15.46 1.0543 0.4007 8.45 4.09 2.06
Baleares M 477561 609 2.88 3.34 0.4130 0.1955 22.28 13.24 1.68
Baleares F 472843 660 2.94 4.23 0.2716 0.2227 17.72 11.17 1.59
Barcelona M 2617681 1358 3.07 3.00 0.1224 0.0997 11.38 10.53 1.08
Barcelona F 2752431 1483 3.60 3.92 0.1297 0.1027 10.00 8.17 1.22
Burgos M 215155 168 4.22 5.21 2.2735 0.6704 35.72 15.70 2.27
Burgos F 211240 167 3.50 5.81 1.4983 0.8377 34.93 15.75 2.22
Cceres M 169833 261 7.54 8.52 1.2188 0.3704 14.65 7.14 2.05
Cceres F 184785 302 9.33 10.13 1.2620 0.5620 12.03 7.40 1.63
Cdiz M 642053 373 7.24 9.38 0.9284 0.4024 13.31 6.76 1.97
Cdiz F 681522 422 10.95 11.65 1.4154 0.5101 10.87 6.13 1.77
Castelln M 201428 113 3.97 4.48 2.8120 1.2242 42.19 24.68 1.71
Castelln F 197726 123 3.86 5.51 2.0386 1.3159 36.97 20.83 1.77
Ciudad Real M 265393 260 7.30 10.07 0.9995 0.6338 13.70 7.91 1.73
Ciudad Real F 254508 239 7.15 10.86 0.9134 0.7758 13.36 8.11 1.65
Crdoba M 356218 217 8.22 10.82 1.2822 0.6983 13.77 7.72 1.78
Crdoba F 364583 230 8.01 12.26 1.1694 1.1819 13.50 8.87 1.52
La Corua M 509141 457 7.34 8.47 0.7480 0.2867 11.78 6.32 1.86
La Corua F 563190 533 8.33 8.72 0.8716 0.3791 11.20 7.06 1.59
Cuenca M 92275 96 8.83 13.41 2.4195 1.4071 17.62 8.84 1.99
Cuenca F 86760 87 10.73 13.36 3.0724 2.0791 16.33 10.80 1.51
Gerona M 307975 145 1.87 3.95 0.5700 0.7954 40.35 22.56 1.79
Gerona F 245519 138 2.15 4.67 0.7537 1.0857 40.30 22.29 1.81
Granada M 371735 188 13.55 10.56 4.0423 0.6923 14.84 7.88 1.88
Granada F 424598 229 16.81 14.02 4.8343 0.7568 13.08 6.20 2.11
Guadalajara M 87591 92 1.52 3.80 0.2823 1.2206 34.88 29.10 1.20
Guadalajara F 79560 86 2.55 4.90 0.4615 1.7868 26.63 27.28 0.98
Guipzcoa M 323719 279 2.60 3.25 0.9591 0.4277 37.69 20.09 1.88
Guipzcoa F 348524 291 4.42 4.38 1.3093 0.4294 25.90 14.95 1.73
Huelva M 223158 121 10.46 10.37 7.2743 0.9412 25.78 9.36 2.75
Huelva F 214587 123 9.13 10.40 4.2187 1.0980 22.49 10.07 2.23
Huesca M 96617 125 2.56 5.39 1.2775 1.2615 44.18 20.86 2.12
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Huesca F 91147 105 3.04 6.06 1.7064 1.5781 42.92 20.72 2.07
Jan M 380752 233 9.63 10.28 1.8186 0.5968 14.01 7.51 1.86
Jan F 356344 230 11.41 11.94 2.1644 0.8385 12.89 7.67 1.68
Len M 204462 209 7.14 7.58 2.2850 0.7474 21.16 11.41 1.85
Len F 225753 228 7.56 8.31 2.2879 0.8014 20.00 10.77 1.86
Lrida M 214123 127 9.22 9.08 4.8531 1.2797 23.88 12.46 1.92
Lrida F 218051 133 9.34 9.77 4.5156 1.2979 22.75 11.66 1.95
La Rioja M 149238 519 4.05 5.97 0.3139 0.2546 13.83 8.46 1.64
La Rioja F 147554 500 4.34 7.14 0.2958 0.3245 12.52 7.98 1.57
Lugo M 175462 169 8.64 8.40 6.9390 0.7199 30.50 10.10 3.02
Lugo F 167892 177 5.26 9.40 1.3626 0.8026 22.20 9.54 2.33
Madrid M 2816184 893 3.37 3.58 0.3812 0.1145 18.33 9.45 1.94
Madrid F 3011923 996 3.59 4.26 0.3350 0.1442 16.14 8.92 1.81
Mlaga M 693871 361 8.95 9.90 1.9024 0.4162 15.41 6.52 2.37
Mlaga F 702667 397 10.80 12.04 1.9554 0.4561 12.95 5.61 2.31
Murcia M 668714 868 7.54 8.74 0.4296 0.2175 8.69 5.34 1.63
Murcia F 660107 902 8.30 10.31 0.4393 0.2373 7.99 4.73 1.69
Navarra M 286947 525 2.99 2.53 0.3732 0.2389 20.45 19.28 1.06
Navarra F 289947 603 2.73 3.31 0.2752 0.2450 19.23 14.96 1.29
Orense M 120257 118 7.28 8.66 3.6924 1.1440 26.41 12.36 2.14
Orense F 137587 140 4.77 7.44 2.0973 0.9954 30.34 13.41 2.26
Oviedo M 511169 742 2.54 4.95 0.2335 0.1618 19.02 8.12 2.34
Oviedo F 546817 864 3.11 5.14 0.2300 0.1857 15.41 8.38 1.84
Palencia M 75638 71 5.65 9.10 2.9335 2.1179 30.32 15.99 1.90
Palencia F 72558 72 6.08 10.92 3.1612 2.5262 29.27 14.56 2.01
Las Palmas M 592262 458 7.63 8.40 1.5179 0.3192 16.15 6.73 2.40
Las Palmas F 580265 485 8.46 8.78 1.6326 0.3139 15.11 6.38 2.37
Pontevedra M 494161 434 3.00 6.09 0.1949 0.3100 14.73 9.14 1.61
Pontevedra F 525627 462 4.40 7.57 0.3114 0.3888 12.68 8.24 1.54
Salamanca M 151335 166 9.87 11.50 2.3273 0.7451 15.46 7.51 2.06
Salamanca F 152234 162 8.85 12.74 2.0322 0.8510 16.11 7.24 2.22
Tenerife M 366253 370 8.07 8.20 1.0073 0.2909 12.44 6.58 1.89
Tenerife F 376690 392 9.35 9.18 1.2484 0.4136 11.95 7.00 1.71
Santander M 267290 424 2.59 4.94 0.3045 0.2634 21.30 10.38 2.05
Santander F 279191 443 2.95 5.29 0.3210 0.3526 19.20 11.22 1.71
Segovia M 62518 57 7.01 6.30 4.5293 2.1717 30.36 23.41 1.30
Segovia F 63217 58 10.90 9.64 5.5058 2.9114 21.52 17.71 1.22
Sevilla M 816795 472 3.42 6.34 0.1609 0.2819 11.72 8.38 1.40
Sevilla F 853057 491 4.53 8.14 0.3045 0.3112 12.19 6.85 1.78
Soria M 26431 24 15.28 9.13 76.9805 3.9189 57.42 21.68 2.65
Soria F 17211 17 23.46 11.84 122.9756 5.5980 47.27 19.99 2.37
Tarragona M 264627 129 1.95 4.53 0.2800 1.0997 27.15 23.14 1.17
Tarragona F 255490 139 2.79 6.16 0.4304 1.1317 23.52 17.26 1.36
Teruel M 53380 66 4.48 5.49 5.9649 1.6368 54.54 23.29 2.34
Teruel F 65002 78 5.16 7.38 3.8559 1.9972 38.09 19.15 1.99
Toledo M 288335 278 7.69 9.18 1.3151 0.3438 14.92 6.39 2.33
Toledo F 305241 272 5.85 7.58 0.8997 0.6082 16.21 10.28 1.58
Valencia M 1169258 686 5.08 5.70 0.9538 0.1722 19.24 7.28 2.64
Valencia F 1197478 742 4.26 6.78 0.3187 0.2456 13.25 7.31 1.81
Valladolid M 305496 292 6.38 4.71 1.1430 0.4269 16.75 13.87 1.21
Valladolid F 322530 306 7.45 5.82 1.3767 0.4782 15.76 11.89 1.33
Vizcaya M 576042 515 2.57 2.80 0.2783 0.2338 20.49 17.27 1.19
Vizcaya F 590094 532 2.26 3.35 0.1756 0.2177 18.56 13.92 1.33
Zamora M 101433 109 12.58 13.10 5.5333 1.5147 18.71 9.40 1.99
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Zamora F 98337 100 9.86 12.18 4.7252 1.7185 22.04 10.76 2.05
Zaragoza M 466651 555 4.29 4.77 0.7891 0.2377 20.69 10.23 2.02
Zaragoza F 462937 574 5.08 4.72 0.9837 0.1956 19.53 9.38 2.08
Ceuta M 35705 223 14.79 11.09 3.3694 0.7296 12.41 7.70 1.61
Ceuta F 40426 247 20.68 12.52 5.5107 0.8832 11.35 7.50 1.51
Melilla M 30595 179 11.87 6.22 7.3207 0.7442 22.80 13.86 1.64
Melilla F 27498 180 12.47 8.82 3.5770 1.1392 15.16 12.10 1.25

Columns respectively denote province, gender, population size, sample size, direct estimate of poverty gap, EB
estimate, estimated variance of direct estimator, estimated MSE of EB estimator, CV of direct estimator, CV
of EB estimator and ratio of CVs of direct estimators over EB estimators. Estimated poverty gaps and CVs in
percentage.



Chapter 4

Estimation of the cumulative
distribution function of income at
small area level

4.1 Introduction

The structure of this chapter is as follows. In section 4.2 we present M-quantile regression,
nonparametric M-quantile regression and M-quantile Geographically Weighted regression. In
section 4.3 we describe how quantile or M-quantile models can be employed for measuring area
effects and estimators of cumulative distribution function. Its estimation is often an important
objective in survey practice. The distribution function allows to identify subgroups in the
population whose values for a particular variable lie below or above a given limit. In sections
4.4 and 4.5 we discuss mean squared error estimation for M-quantile small area predictors. In
section 4.6 we report a first empirical evaluation for the estimation of the mean squared error for
the mean and quantile estimates. In section 4.7 we describe the EU-SILC data and the Census
data which are used to produce the small area estimates and we present the first results.

4.2 Parametric and nonparametric M-quantile regression mod-

els

In recent years there have been significant developments in model-based small area estimation.
The most popular approach to small area estimation employs random effects models for estimat-
ing domain specific parameters (Rao, 2003). An alternative approach to small area estimation
that relaxes the parametric assumptions of random effects models by employing M-quantile
models was recently proposed by Chambers and Tzavidis (2006). This model is presented in
section 4.2.1.

When the functional form of the relationship between the response variable and the covariates
is unknown or has a complicated functional form, an approach based on use of a nonparametric
regression model using penalized splines can offer significant advantages compared with one

83
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based on a linear model. Pratesi et al. (2008, 2009) have extended the p-spline regression model
to the M-quantile method for the estimation of the small area parameters using a nonparametric
specification of the conditional M-quantile of the response variable given the covariates. The
model is discussed in section 4.2.2.

M-quantile models assume independence of the small area effects. In some applications,
however, observations that are spatially close may be more related than observations that are
further apart. This spatial correlation can be accounted for by assuming that the regression
coefficients vary spatially across the geography of interest. In a recent paper Salvati et al. (2008)
proposed an M-quantile Geographically Weighted Regression (GWR) small area model extending
the traditional M-quantile regression model by allowing local rather than global parameters to
be estimated. The model is shown in section 4.2.3.

4.2.1 Linear M-quantile regression models

A recently proposed approach to small area estimation is based on the use of M-quantile models
(Chambers and Tzavidis, 2006). M-quantile regression provides a “quantile-like” generalization
of regression based on influence functions (Breckling and Chambers, 1988). M-quantile models
do not depend on strong distributional assumptions nor on a predefined hierarchical structure,
and outlier robust inference is automatically performed when these models are fitted. The M-
quantile of order q for the conditional density of y given X is defined as the solution Qq(x;ψ)
of the estimating equation

∫
ψq(y − Q)f(y|X)dy = 0, where ψ denotes the influence function

associated with the M-quantile. In a linear M-quantile regression model the q-th M-quantile
Qq(x, ψ) of the conditional distribution of y given X is such that

Qq(x;ψ) = Xβψ(q) (4.1)

where ψq(riqψ) = 2ψ{s−1riqψ} {qI(rjqψ > 0) + (1 − q)I(rjqψ ≤ 0)} and s is a suitable robust
estimate of scale, e.g. the MAD estimate s = median |rjqψ| /0.6745. A popular choice for the
influence function is the Huber Proposal 2, ψ(u) = uI(−c ≤ u ≤ c) + csgn(u). However, other
influence functions are also possible. For specified q and continuous ψ, an estimate β̂ψ(q) of
βψ(q) is obtained via iterative weighted least squares. Note that there is a different set of
regression parameters for each q.

4.2.2 Nonparametric M-quantile regression models

M-quantile models do not depend on strong distributional assumptions, but they assume that
the quantiles of the distribution are some known parametric function of the covariates. When
the functional form of the relationship between the q-th M-quantile and the covariates deviates
from the assumed one, the traditional M-quantile regression can lead to biased estimates of the β

coefficients. Pratesi et al. (2008) have extended this approach to the M-quantile method for the
estimation of the small area parameters using a nonparametric specification of the conditional
M-quantile of the response variable given the covariates. When the functional form of the
relationship between the q-th M-quantile and the covariates deviates from the assumed one, the
traditional M-quantile regression can lead to biased estimators of the small area parameters.
Using p-splines for M-quantile regression, beyond having the properties of M-quantile models,
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allows for dealing with an undefined functional relationship that can be estimated from the data.
When the relationship between the q-th M-quantile and the covariates is not linear, a p-splines
M-quantile regression model may have significant advantages compared to the linear M-quantile
model.

Let us consider only smoothing with one covariate x1, a nonparametric model for the qth
quantile can be written as Qq(x1, ψ) = m̃ψ,q(x1), where the function m̃ψ,q(·) is unknown and,
in the smoothing context, usually assumed to be continuous and differentiable. Here, we will
assume that it can be approximated sufficiently well by the following function

mψ,q[x1;βψ(q),βγψ(q)] = β0ψ(q) + β1ψ(q)x1 + . . .+ βpψ(q)xp1 +

K∑

k=1

γkψ(q)(x1 − κk)
p
+, (4.2)

where p is the degree of the spline, (t)p+ = tp if t > 0 and 0 otherwise, κk for k = 1, . . . ,K is a set
of fixed knots, βψ(q) = (β0ψ(q), β1ψ(q), . . . , βpψ(q))t is the coefficient vector of the parametric
portion of the model and βγψ(q) = (γ1ψ(q), . . . , γKψ(q))t is the coefficient vector for the spline
one. The latter portion of the model allows for handling nonlinearities in the structure of the
relationship. The spline model (4.2) uses a truncated polynomial spline basis to approximate
the function m̃ψ,q(·). Other bases can be used; in particular radial basis functions can be used
to handle bivariate smoothing. More details on bases and knots choice can be found in Ruppert
et al. (2003).

An algorithm based on iteratively reweighted penalized least squares is proposed in Pratesi
et al. (2008) to effectively compute the parameter estimates. Once those estimates are obtained,
m̂ψ,q[x1] = mψ,q[x1; β̂ψ(q), γ̂ψ(q)] can be computed as an estimate for Qq(x1, ψ).

Extension to bivariate smoothing can be handled by assuming Qq(x1, x2, ψ) = m̃ψ,q(x1, x2).
This is of central interest in a number of application areas as environment, economic and public
health. It has particular relevance when referenced responses need to be converted to maps.
The use of bivariate p-spline approximations to fit nonparametric unit level nested error and
M-quantile regression models allows for reflecting spatial variation in the data and then uses
these nonparametric models for small area estimation.

4.2.3 M-quantile GWR models

Typically, random effects models assume independence of the random area effects. This inde-
pendence assumption is also implicit in M-quantile small area models. In economic applications,
however, observations that are spatially close may be more related than observations that are
further apart. This spatial correlation can be accounted for by extending the random effects
model to allow for spatially correlated area effects using, for example, a Simultaneous Autore-
gressive (SAR) model (Petrucci and Salvati, 2006; Pratesi and Salvati, 2008; Pratesi and Salvati,
2009). An alternative approach to incorporate the spatial information in the regression model
is by assuming that the regression coefficients vary spatially across the geography of interest.
Geographically Weighted Regression (GWR) (Brundson et al. 1996) extends the traditional
regression model by allowing local rather than global parameters to be estimated. In a recent
paper Salvati et al. (2008) proposed an M-quantile GWR small area model. The authors pro-
posed an extension to the GWR model, the M-quantile GWR model, i.e. a locally robust model
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for the M-quantiles of the conditional distribution of the outcome variable given the covariates.
Here we report a brief description of the M-quantile GWR model.

The GWR model is a model for the conditional expectation of y given X at location u. This
is easily generalised to a model for the M-quantile of order q of the conditional distribution of
y given X at u. That is, we write

Qq(X;ψ, u) = Xβψ(u; q) (4.3)

where βψ(u; q) varies with u as well as with q. That is, model (4.3) allows the entire conditional
distribution (not just the mean) of y given X to vary from location to location. The parameter
βψ(u; q) in (4.3) can be estimated by solving normal equations by an iteratively re-weighted
least squares algorithm that combines the iteratively re-weighted least squares algorithm used
to fit a “spatially stationary” M-quantile model and the weighted least squares algorithm used
to fit a GWR model.

The model (4.3) was then used to define a predictor of the small area characteristic of interest
that accounts for spatial structure of the data. The M-quantile GWR small area model integrates
the concepts of robust small area estimation and borrowing strength over space within a unified
modeling framework. Extending further the M-quantile GWR for poverty measures will enable
the comparison of alternative robust models for borrowing strength over space in small area
estimation and will signicantly improve the collection of small area estimation tools.

4.3 Estimating the small area CDF and poverty indicators using

M-quantile models

In this section we describe approaches to estimating the small area distribution function using the
different models described in section 4.2. In doing so, we follow a unified estimation framework
for estimating any small area target parameter that was defined by Tzavidis et al. (2009).

Let Ωd = {1, . . . , Nd} be the population of area d. Let yd = (y1, . . . , yNd
)′ denote the variable

values for the Nd small area population elements. We consider a sample sd ⊂ Ωd, of nd ≤ Nd

units, and we denote with rd = Ωd − sd the set of non sampled units. For each population unit
j, let xj = (x1j , . . . , xpj) denote a vector of p known auxiliary variables. The small area specific
empirical distribution function of y for area d is

Fd = N−1
d

[∑

j∈sd

I(yj 6 t) +
∑

j∈rd

I(yj 6 t)
]
. (4.4)

The problem of estimating Fd(t) given the sample data essentially reduces to predicting the
values yj for the non-sampled units in small area d. One straightforward way of achieving this
is to simply replace the unknown non-sample values of y (4.4) by their predicted values ŷj under
an appropriate model, leading to a plug-in estimator of (4.4) of the form

F̂d = N−1
d

[∑

j∈sd

I(yj 6 t) +
∑

j∈rd

I(ŷj 6 t)
]
. (4.5)

An estimator of the mean Y d of y in area d is then defined by the value of the mean functional
defined by (4.5). This leads to the usual plug-in estimator of the mean,
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Ŷ d =

∫ ∞

−∞
tdF̂d(t) = N−1

d


∑

j∈sd

yj +
∑

j∈rd

ŷj


 .

The predicted value of a non-sample unit j in area d corresponds to an estimate µ̂j of its expected
value given that it is located in area d.

Following Chambers and Tzavidis (2006), an alternative to random effects for characterizing
the variability across the population is to use the M-quantile coefficients of the population units.
For unit j with values yj and xj , this coefficient is the value θj such that Qθj

(xj ;ψ) = yj.
These authors observed that if a hierarchical structure does explain part of the variability in
the population data, units within clusters (areas) defined by this hierarchy are expected to
have similar M-quantile coefficients. When the conditional M-quantiles are assumed to follow a
linear model, with βψ(q) a sufficiently smooth function of q, this suggests an estimator of the
distribution function

F̂MQ
d (t) = N−1

d




∑

j∈sd

I(yj ≤ t) +
∑

j∈rd

I(xjβ̂ψ(θ̂d) ≤ t)



 (4.6)

where xjβψ(θd) is used to predict the unobserved value yj for population unit j ∈ rd. When

there are no sampled observations in area d then θ̂d = 0.5.
An nonparametric extension of the M-quantile small area model was proposed proposed by

Pratesi et al. (2008). Under the nonparametric M-quantile small area model,

F̂NPMQ
d (t) = N−1

d




∑

j∈sd

I(yj ≤ t) +
∑

j∈rd

I(xjβ̂ψ(θ̂d) + zj γ̂ψ(θ̂d) ≤ t)



 (4.7)

where β̂ψ(θ̂d) and γ̂ψ(θ̂d) are the coefficient vectors of the parametric and spline proportion

of the fitted p-splines M-quantile regression function at θ̂d. Using the empirical distribution
function and the linear or nonparametric M-quantile small area models one can defined two
estimators of the small area mean

Ŷ
MQ

d (t) =

∫ ∞

−∞
tdF̂MQ

d (t) = N−1
d




∑

j∈sd

yj +
∑

j∈rd

xjβ̂ψ(θ̂d)



 (4.8)

and

Ŷ
NPMQ

d (t) =

∫ ∞

−∞
tdF̂NPMQ

d (t) = N−1
d




∑

j∈sd

yj +
∑

j∈rd

(
xjβ̂ψ(θ̂d) + zj γ̂ψ(θ̂d)

)


 . (4.9)

We refer to small area estimators that can be expressed as functionals of (4.5), with non-
sample predictions derived as estimates of expected values.

Chambers and Tzavidis (2006) observed that the naive M-quantile mean estimator (4.8) can
be biased. The distribution function estimator (4.5) underlying (4.6) and (4.7) is not consistent
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in general. Thus, when the non-sample predicted values in (4.5) are estimated expectations that
converge in probability to the actual expected values, we see that

∑

j∈rd

I(ŷj 6 t) =
∑

j∈rd

I(yj − (yj − ŷj) 6 t) =
∑

j∈rd

I(yj 6 t+ ǫj) 6=
∑

j∈rd

I(yj 6 t),

where ǫj are the actual regression errors. If these errors are independently and identically
distributed symmetrically about zero we expect that the summation on the left hand side above
will closely approximate the summation on the right for values of t near the median of the
non-sampled area d values of y but not anywhere else. More generally, for heteroskedastic
and/or asymmetric errors this correspondence will typically occur elsewhere in the support of y,
although one would expect that in most reasonable situations it will be “close” to the median of
y. In other words, it is not advisable to use (4.5) to predict a quantile of the area d distribution
of y other than the median.

By combining a smearing argument (Duan, 1983) with a model for the finite population
distribution of y, Chambers and Dunstan (1986, hereafter referred to as CD) developed a model-
consistent estimator for a finite population distribution function. In the context of the small
area distribution function (4.4), and assuming that the residuals are homoskedastic within the
small area of interest, this is of the form

F̂CDd (t) = N−1
d




∑

j∈sd

I(yj ≤ t) +
∑

k∈rd

n−1
d

∑

j∈sd

I(ŷk + (yj − ŷj) ≤ t)



 . (4.10)

It can be shown that under the CD estimator of the small area distribution function the mean
functional defined by (4.10) takes the value

Ŷ
CD

d =

∫ ∞

−∞
tdF̂CDd (t) = N−1

d




∑

j∈sd

yj +
∑

j∈rd

ŷj + (f−1
d − 1)

∑

j∈sd

(yj − ŷj)



 (4.11)

where fd = ndN
−1
d is the sampling fraction in area d, ŷj = xjβ̂ψ(θ̂d), where ŷj can be obtained

either under the linear or the nonparametric M-quantile small area models. We refer to (4.11) as
the bias adjusted M-quantile mean predictor. Due to the bias correction in (4.11), this predictor
will have higher variability than (4.8) or (4.9) and so it should only be used when (4.6) or
(4.7) are expected to have substantial bias, e.g. when there are large outlying data points. An
alternative approach for dealing with this bias-variance trade off is to limit the variability of the
bias correction term in (4.11) by using robust (huberized) residuals instead of raw residuals. In
particular,

F̂CDRobd (t) = N−1
d




∑

j∈sd

I(yj ≤ t) +
∑

k∈rd

n−1
d

∑

j∈sd

I (ŷk + νjψ{yj − ŷj} 6 t)



 (4.12)

where νj is a robust estimate of scale for area individual j in area d.
Wang and Dorfman (1996) pointed out that the CD estimator (4.10) is model-consistent but

design-inconsistent. An alternative to this estimator that is both design-consistent and model-
consistent has been proposed by Rao et al. (1990, hereafter referred to as RKM). Under simple
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random sampling within the small areas the RKM estimator of the finite population distribution
function is

F̂RKMd (t) = n−1
d




∑

j∈sd

I(yj ≤ t) +N−1
d

∑

k∈rd

n−1
∑

j∈sd

I(yj − ŷj ≤ t− ŷk)

−(n−1
d −N−1

d )
∑

k∈sd

n−1
d

∑

j∈sd

I(yj − ŷj ≤ t− ŷk)



 . (4.13)

Chambers et al. (1992) compared the large-sample mean squared errors of (4.10) and (4.13)
and concluded that neither dominates the other. When the model is correctly specified we expect
(4.10) to outperform (4.13). However RKM demonstrated that (4.10) can be substantially biased
when model assumptions fail, while (4.13) is much less sensitive. Here we just note that the
RKM estimator can be used to define an estimator of a small area characteristic that can be
represented as a functional of the small area distribution function in exactly the same way as
the CD-type estimator (4.11) can be used for this purpose. In general, the resulting estimators
will not be the same. An exception is the RKM-based estimator of the area d mean, which is
the same as the CD-based estimator of this mean under simple random sampling.

Turning now to the small area quantiles we note that an estimator of the qth quantile of the
distribution of y in area d is straightforwardly defined as the solution to the estimating equation

∫ µ̂qd

−∞
dF̂d(t) = q, (4.14)

where F̂d(t) is suitable estimator of the area d distribution of y such as the CD or the RKM
estimators. As the preceding discussion makes clear, we anticipate that a better approach
for quantiles other than the median is to use either the CD-type specifications or the RKM
specification for F̂d(t), with ŷj defined either by an M-quantile linear or nonparametric small
area model.

In the final part of this section we would like to discuss the estimation of poverty indicators
at the small area level. As a starting point, in this report we discuss only the incidence of
poverty or Head Count Ratio (HCR) F0 as defined by Foster et al. (1984). Denoting by t the
poverty line, the incidence of poverty is defined as

F0d = N−1
d

Nd∑

j=1

I(yjd 6 t). (4.15)

Using the decomposition for sample and out of sample units we have that

F0d = N−1
d

[∑

j∈sd

F0d +
∑

j∈rd

F0d

]
.

The aim then is to estimate the conditional expectation of F0d for out of sample units given the
sample data under the M-quantile model. An estimator of F0d under the M-quantile model is
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given by

F̂MQ
0j = N−1

j

[∑

i∈sj

F0j +
∑

i∈rj

F̂MQ
0j

]
, (4.16)

where F̂MQ
0j = Eyr(F0dj |ys). Under the M-quantile model an empirical estimator of this expec-

tation can be obtained using the following Monte-Carlo approximation.

• Fit the M-quantile small area model using the raw y sample values and obtain estimates
of β and qd.

• Draw a vector of Nd − nd errors, ǫ∗jd, from the Empirical Distribution Function (EDF) of
the estimated M-quantile regression residuals.

• Draw a vector of Nd − nd out of sample units using

y∗dr = xjdβ̂(q̂d) + ǫ∗jd.

• Repeat the process H times and each time combine the sample data y with y∗dr for esti-
mating the target

F̂MQ
0d = N−1

d

[∑

j∈sd

I(yj 6 t) +
∑

j∈rd

I(xjdβ̂(q̂d) + ǫ∗jd 6 t)
]
.

• Average the results over H simulations.

Before closing this section we should elaborate on some aspects of the approach used for
estimating the incidence of poverty under the M-quantile small area model, described above. To
start we note that one can use different approaches for drawing ǫ∗jd. One can draw conditional
(upon the small area) or unconditional residuals from the EDF or from a smoothed version
of the EDF. These alternatives will be studied in future work of this project. The outlined
approach for estimating the incidence of poverty, although nonparametric, is similar in spirit
to the EBP approach proposed by Molina and Rao (2009, see also Chapter 3 of this Report).
Note for example that y∗dr is drawn using xjdβ̂(q̂d) i.e. from the conditional M-quantile model,
where q̂d play the role of random effects in the M-quantile small area model. Of course, when the
assumptions of the random area effects model hold, the EBP approach of Molina and Rao (2009)
offers the best predictor. However, when the assumptions of the random area effects model are
not met, the M-quantile approach for estimating the incidence of poverty may offer a competitive
alternative. A comparative analysis of the different approaches to poverty estimation will be
performed as part of the work for this project.

4.4 Mean Squared Error (MSE) estimation for estimators of

small area means

A robust mean squared error estimation method for the naive M-quantile estimator (4.8) was
described in Chambers and Tzavidis (2006). Here we extend this argument to define an estimator
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that is a first order approximation to the mean squared error of the estimator (4.10) of the small
area mean when this is based on an M-quantile regression fit. A more detailed discussion of
this approach to mean squared error estimation is set out in Chambers et al. (2008). To start,
we note that since an iteratively reweighted least squares algorithm is used to calculate the
M-quantile regression fit at θ̂d, we have

β̂ψ(θ̂d) = (X′
sWsd

Xs)
−1X′

sWsd
ys

where Xs and ys denote the matrix of sample x values and the vector of sample y values
respectively, and Wsd

denotes the diagonal weight matrix of order n that defines the estimator
of the M-quantile regression coefficient with q = θ̂d. It immediately follows that (4.8) can be
written

Ŷ
MQ/CD

d = w′
sd

ys, (4.17)

where wsd
= (wjd) = n−1

d ∆sd
+ (1−N−1

d nd)WdXs(X
′
sWdXs)

−1 {xrd − xsd
} with ∆sd denoting

the n-vector that ’picks out’ the sample units from area d. Here xsd
and xrd denote the sample

and non-sample means of x in area d. Also, these weights are ’locally calibrated’ on x since

∑

j∈s

wjdxj = x̄sd
+ (1 − fd)(x̄rd − x̄sd

) = x̄d.

A first order approximation to the mean squared error of (4.17) then treats the weights as
fixed and applies standard methods of robust mean squared error estimation for linear estimators
of population quantities (Royall and Cumberland, 1978). With this approach, the prediction

variance of Ŷ
CD

d is estimated by

V̂ ar(Ŷ
CD

d ) =

d∑

g=1

∑

j∈sg

λjdg

(
yj − xj β̂ψ(θ̂g)

)2
, (4.18)

where λjdg = {(wjd−1)2 +(nd−1)−1(Nd−nd)}I(g = d)+w2
jgI(g 6= d). This prediction variance

estimator implicitly assumes a model where the regression of y on x varies between areas, and
that this variation is consistently estimated by the fit of the M-quantile regression model in each

area. Furthermore, since the weights defining Ŷ
CD

d are locally calibrated on x, it immediately
follows that (4.10) is unbiased under the same model and hence no correction for its bias is
necessary when estimating its mean squared error. This can be compared with the estimator

of the mean squared error of the naive M-quantile estimator Ŷ
MQ

d described in Chambers and
Tzavidis (2006), which includes a squared bias term.

Following the approach described in Chambers et al. (2008), for fixed q and λ, the Ŷ
NPMQ

d

in (4.9) can be written as linear combination of the observed yj like expression (4.17) where the
weights can be written as

wsd
= (wjd) = n−1

d ∆sd
+ (1 −N−1

d nd)W(θ̂d) [X Z]
(
[X Z]′ W(θ̂d) [X Z] + λG

)−1
{xrd − xsd

}
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with W(θ̂d) a diagonal n×n matrix that contains the final set of weights produced by the iter-
atively reweighted penalized least squares algorithm used to estimate the regression coefficients,
G = diag{0P ,1K} with P the number of columns of X and K the number of columns of Z.
The derived weights are treated as fixed and a plug-in estimator of the mean squared error of
estimator (4.9) given by

V̂ ar(Ŷ
NPMQ

d ) =

d∑

g=1

∑

j∈sg

λjdg

(
yj − xj β̂ψ(θ̂g) − zj γ̂ψ(θ̂g)

)2
(4.19)

where λjdg = {(wjd − 1)2 + (nd − 1)−1(Nd − nd)}I(g = d) + w2
jgI(g 6= d).

4.5 Mean Squared Error (MSE) estimation for estimators of
small area quantiles

The linearization-based prediction variance estimator (4.18) is defined only when the estimator
of interest can be written as a weighted sum of sample values. Consequently, it cannot be used
with quantile estimators defined by solving (4.14). In this section we describe a nonparametric
bootstrap approach to MSE estimation of small area quantiles that was described in Tzavidis
et al. (2009) and is based on the approach of Lombardia et al. (2003).

We define two bootstrap schemes that resample residuals from an M-quantile model fit. The
first scheme draws samples from the empirical distribution of suitably recentered residuals. The
second scheme draws samples from a smoothed version of this empirical distribution. Using these
two schemes, we generate a bootstrap population, from which we then draw bootstrap small
area samples. In order to define the bootstrap population, we first calculate the M-quantile
small area model residuals ǫjd = yjd − β̂ψ(θ̂d).

A bootstrap finite population U∗ = (y∗jd,xjd), j ∈ U, d = 1, · · · ,D with

y∗jd = x∗
jdβ̂ψ(θ̂d) + ǫ∗jd

is then generated, where the bootstrap residuals ǫ∗jd are obtained by sampling from an estimator

of the distribution function Ĝ(u) of the model residuals ǫjd. In order to define Ĝ(u) we consider
two approaches: (i) sampling from the empirical distribution function of the model residuals and
(ii) sampling from a smoothed distribution function of these residuals. In each case sampling
of the residuals can be done in two ways, (i) by sampling from the distribution of all residuals
without conditioning on the small area - we refer to this as the unconditional approach; (ii) by
sampling from the conditional distribution of residuals within small area d - we refer to this as
the conditional approach. The empirical unconditional distribution of the residuals is

Ĝ(u) = n−1
D∑

d=1

∑

j∈sd

I(ǫjd − ǭs ≤ u)

where ǭs is the sample mean of the ǫjd. Similarly, the empirical conditional distribution of
these residuals in area d is

Ĝd(u) = n−1
d

∑

j∈sd

I(ǫj − ǭsd ≤ u)



4.5. Mean Squared Error (MSE) estimation for estimators of small area quantiles 93

where ǭsd is the sample mean of the ǫjd in area d. A smoothed estimator of the unconditional
distribution is

Ĝ(u) = n−1
D∑

d=1

∑

j∈sd

K
(u− (ǫjd − ǭs)

h

)

where h > 0 is a smoothing parameter and K is the distribution function corresponding to
a bounded symmetric kernel density k,

K(u) =

∫ u

−∞
k(z) dz.

Similarly a smoothed estimator of the conditional distribution in area d is

Ĝd(u) = n−1
d

∑

j∈sd

K
(u− (ǫjd − ǭs)

hd

)

where hd > 0 and K are the same as above and K is defined by the Epanechnikov kernel,

k(u) =
3

4
(1 − u2)I(|u| < 1),

while the smoothing parameters h and hd are chosen so that they minimize the cross-validation
criterion suggested by Bowman et al. (1998). That is, in the unconditional case h is chosen in
order to minimize

CV (h) = n−1
D∑

d=1

∑

j∈sd

∫ (
I
(
(ǫjd − ǭs) ≤ u

)
− Ĝ−j(u)

)2
du,

where Ĝ−j(u) is the version ofG(u) that omits sample unit j with the extension to the conditional
case being obvious. It can be shown (Lee and Racine, 2007, section 1.5) that choosing h and hd
in this way is asymptotically equivalent to using the MSE optimal values of these parameters.
In the simulation studies reported in the next section, we compute both the conditional and
unconditional smoothed distribution functions of residuals using the np package in the R software
environment (R Development Core Team, 2008) that implements the above approach. In either
case, bootstrap samples s∗d are then drawn using simple random sampling within the small areas
and without replacement. In what follows we denote by FN,d(t) the unknown true distribution

function of the finite population values in area d, by F̂CDd (t) the CD estimator of FN,d(t) based
on sample sd, by F ∗

N,d(t) the known true distribution function of the bootstrap population U∗
d

in area d, and by F̂ ∗,CD
d (t) the CD estimator of F ∗

N,d(t) based on bootstrap sample s∗d. We
then estimate the mean squared error of the CD estimator (4.10) as follows. Starting from
sample s, selected from a finite population U without replacement, we generate B bootstrap
populations, U∗b, using one of the four above mentioned methods for estimating the distribution
of the residuals. From each bootstrap population, U∗b, we select L samples using simple random
sampling within the small areas and without replacement in a way such that n∗d = nd. Finally,
bootstrap estimators of the bias and variance of the CD estimator of the distribution function
in area j are defined respectively by
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B̂iasd = B−1L−1
B∑

b=1

L∑

l=1

(
F̂ bl,CDd (t) − F ∗b

N,d(t)
)

and

V̂ ard = B−1L−1
B∑

b=1

L∑

l=1

(
F̂ ∗bl,CD
d (t) − ˆ̄F ∗bl,CD

d (t)
)2
,

where
ˆ̄F ∗bl,CD
d (t) = L−1

∑
F̂ ∗bl,CD
d (t)

is the distribution function of the bth bootstrap population and F̂ ∗bl,CD
d (t) is the CD estimator

of F ∗,b
N,d(t) computed from the lth sample of the bth bootstrap population, (b = 1, · · · , B, l =

1, · · · , L). The bootstrap estimator of the mean squared error of the CD-based small area
estimate is finally calculated as

M̂SEd

(
F̂CDd (t)

)
= V̂ ard + B̂ias

2

d. (4.20)

Note that the above bootstrap procedure can also be used to construct confidence intervals
for the value of FN,d(t) by “reading off” appropriate quantiles of the bootstrap distribution of
FCDd (t). Clearly, the procedure can be used with any small area estimator, and so can be used
to compute bootstrap estimates of the mean squared errors of the M-quantile estimates of the
small area means as well as associated confidence intervals, which can be contrasted with the
estimates derived using the analytic mean squared error estimator. Finally, this bootstrap MSE
estimator can be used for MSE estimation of the estimates of the incidence of poverty/HCR.
However, this will be considered in future work of this project.

4.6 First Empirical Evaluations

In this section we present some first results from simulation studies that were used to compare
the performance of the different small area estimators discussed in the preceding sections. In
particular, we have designed a model-based simulation in which small area population and
sample data were simulated based on a two level linear mixed model with different parametric
assumptions for the area and unit level random effects. Two methods were used to simulate
population data. In both, N = 232,500 population values of x and y in 30 small areas were
generated with Nd = 500 in area d. For each area d we selected a simple random sample (without
replacement) of size nd = 30, leading to an overall sample size of n = 900. The sample values of
y and the population values of x were then used to estimate the small area target parameters,
which were taken to be the small area means and selected quantiles of y. This process was
repeated 1000 times.

The first method of population simulation (scenario 1) generated population values of x in

small area h as xjd = N(µd,
µ2

d

36 ), where γd = N(0, 1), ǫjd = N(0, 64), and with µd = U(40, 120)
held fixed over the simulations. The second (scenario 2) generated these values as xjd = χ2(Zd),
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ǫjd = χ2(3) − 3, γd = χ2(1) − 1, with Zd = U(1, 200) held fixed over the simulations. The
purpose of scenario 2 was to examine the effect of misspecification of the Gaussian assumptions
of a mixed model. Population values of y in small area d in both scenarios were then generated
from yjd = 5 + xjd + γd + ǫjd.

A linear M-quantile regression model was fitted to the sample data obtained in the simu-
lations. The M-quantile linear regression fit was obtained using a modified version of the rlm
function (Venables and Ripley, 2002, section 8.3) in np package of the R software environment.
Estimated model coefficients obtained from these fits were then used to compute naive, CD and
RKM-based versions of the M-quantile-based estimators of means and quantiles in the different
areas. Biases and mean squared errors over these simulations, averaged over the 30 areas, are
set out in Table 4.1 (scenario 1) and in Table 4.2 (scenario 2). Under scenario 1 all approaches
perform reasonably well. The differences between the naive, CD and RKM versions of the M-
quantile regression-based estimators are much more pronounced under scenario 2 (area effects
distributed as Chi-square). Here we see that use of naive estimators leads to substantial biases
as far as quantiles are concerned. In contrast, the CD and RKM-based estimators are essentially
unbiased, even for extreme quantiles, with the CD-based estimators somewhat more efficient.
On the basis of these results it would appear that estimators that are defined as functionals of
either the CD or the RKM distribution function estimators are preferable if there is concern
about misspecification of the distribution of area effects.

In order to evaluate the performance of the analytic mean squared error (4.18) and of the
bootstrap mean squared estimator (4.20), we carried out a further model based simulation study.
For the purposes of this simulation study we focus on mean squared error estimation for the
25th, 50th and 75th percentiles using the bootstrap mean squared error estimator (4.20) and
for the mean using either the analytic mean squared error (4.18) or the bootstrap mean squared
error estimator (4.20). A total of 200 Monte-Carlo simulations were carried out for the percentile
and 100 Monte-Carlo simulations for the mean, with bootstrap mean squared error estimation
implemented by generating a single bootstrap population at each Monte Carlo simulation with L
= 500 bootstrap samples taken from this population. The bootstrap population was generated
unconditionally, with bootstrap population values then obtained by sampling from the smoothed
residual distribution generated by the Monte Carlo sample data. We note that although it would
have been theoretically preferable to have generated multiple bootstrap populations from each
Monte Carlo sample, computing limitations restricted our investigation to B = 1. Also, since
the estimates generated by the bootstrap procedure are then averaged over the 200 Monte Carlo
simulations in our evaluation, this limitation is not as severe as it might appear to be at first,
since the Monte Carlo simulations then proxy for the bootstrap populations. Simulation results
for evaluating the mean squared error estimators are set out in Tables 4.3 and 4.4. Table 4.3
reports the across areas distribution of true (i.e. Monte Carlo) mean squared error and average
over Monte Carlo simulations of estimated mean squared error and coverage rates of nominal
95% confidence intervals for the M-quantile/CD estimator (4.10). It also includes the estimated
mean squared errors based on (4.20) using the smoothed unconditional approach (Estimated
Bootstrap) or (4.18) (Estimated Analytic). Intervals were defined as the M-quantile/CD esti-
mator (4.10) plus or minus twice its estimated standard error, calculated as the square root of
(4.18) or (4.20). Table 4.4 reports the across areas distribution of the true (i.e. Monte Carlo)
mean squared error and average over Monte Carlo simulations of estimated mean squared error
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for the CD estimates of 0.25, 0.50 and 0.75 quantiles from (4.14). The estimated mean squared
error for quantiles is based on (4.20) using the smoothed unconditional approach. Focusing first
on Table 4.3 we note that under both parametric scenarios, the analytic and the bootstrap mean
squared error estimators track the true mean squared error of the small area mean estimators
very well and provide coverage rates that are close to the nominal 95%. Focusing next on Table
4.4 we also note that the bootstrap mean squared error estimator offers a good approximation
to the true mean squared error of the small area quantile estimators and also provides coverage
rates that are close to the nominal 95%.

Table 4.1: Model-based simulation results for Scenario 1 (Gaussian area effects) averaged over
30 small areas.

Method Target

10th 25th 50th Mean 75th 90th

Relative Bias (%)

M-quantile/Naive 0.090 0.044 0.003 0.003 -0.030 -0.055
M-quantile/CD 0.058 0.003 -0.003 -0.002 0.008 0.064
M-quantile/RKM -0.011 0.002 0.008 -0.002 0.009 0.014

Relative MSE (%)

M-quantile/Naive 0.46 0.38 0.33 0.32 0.31 0.30
M-quantile/CD 0.34 0.25 0.21 0.24 0.21 0.24
M-quantile/RKM 0.32 0.25 0.22 0.24 0.21 0.22

Table 4.2: Model-based simulation results for Scenario 2 (Chi-square area effects) averaged over
30 small areas.

Method Target

10th 25th 50th Mean 75th 90th

Relative Bias (%)

M-quantile/Naive 17.24 5.653 -2.641 -1.794 -7.021 -8.787
M-quantile/CD 0.373 0.176 0.028 -0.018 -0.086 -0.188
M-quantile/RKM 0.211 0.596 0.124 -0.018 -0.348 0.003

Relative MSE (%)

M-quantile/Naive 17.60 6.70 3.30 2.49 7.04 8.80
M-quantile/CD 3.23 3.09 3.11 2.01 3.48 3.89
M-quantile/RKM 4.11 3.56 3.36 2.01 3.46 4.12
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Table 4.3: Evaluation of MSE estimators (4.18) and (4.20).

MSE Percentiles of across areas distribution

Min 25th 50th Mean 75th Max

Gaussian area effects

True 0.27 0.331 0.411 0.419 0.481 0.783
Estimated Analytic MSE 0.289 0.317 0.400 0.416 0.500 0.680
Estimated Bootstrap MSE 0.282 0.319 0.401 0.418 0.504 0.715
Coverage Analytic MSE 0.88 0.93 0.95 0.94 0.97 0.99
Coverage Bootstrap MSE 0.88 0.94 0.96 0.96 0.97 0.99

Chi square area effects

True 0.344 0.453 0.549 0.589 0.736 1.051
Estimated Analytic 0.411 0.453 0.552 0.592 0.689 0.980
Estimated Bootstrap 0.398 0.444 0.559 0.589 0.706 1.003
Coverage Analytic MSE 0.87 0.89 0.92 0.93 0.96 0.98
Coverage Bootstrap MSE 0.92 0.95 0.96 0.96 0.97 1.00

Table 4.4: Evaluation of MSE estimator of 0.25, 0.50 and 0.75 quantiles using (4.20).

MSE Percentiles of across areas distribution

Min 25th 50th Mean 75th Max

Gaussian area effects

0.25 quantile True 0.354 0.391 0.491 0.514 0.595 0.887
Estimated 0.345 0.383 0.475 0.500 0.598 0.857

0.50 quantile True 0.311 0.353 0.444 0.469 0.547 0.761
Estimated 0.314 0.348 0.433 0.455 0.543 0.774

0.75 quantile True 0.339 0.386 0.495 0.516 0.611 0.909
Estimated 0.338 0.375 0.471 0.495 0.592 0.867

Chi square area effects

0.25 quantile True 0.289 0.357 0.454 0.471 0.569 0.919
Estimated 0.314 0.346 0.437 0.458 0.554 0.795

0.50 quantile True 0.376 0.454 0.575 0.594 0.735 1.087
Estimated 0.395 0.439 0.554 0.578 0.696 1.001

0.75 quantile T rue 0.594 0.678 0.848 0.893 1.035 1.727
Estimated 0.592 0.666 0.843 0.877 1.058 1.579

4.7 Applications to the Italian Survey on Income and Living

Conditions

In Italy, the European Survey on Income and Living Conditions (EU-SILC) is conducted yearly
by ISTAT to produce estimates on the living conditions of the population at national and regional
(NUTS-2) levels.

Regions are planned domains for which EU-SILC estimates are published, while the Provinces
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are unplanned domains. These are the administrative areas (LAU-1 level) constituted by a
different number of Municipalities (LAU-2 level) and whose boundaries do not cut across the
Municipalities themselves. The regional samples are based on a stratified two stage sample
design: in each Province the Municipalities are the Primary Sampling Units (PSUs), while
the households are the Secondary Sampling Units (SSUs). The PSUs are divided into strata
according to their dimension in terms of population size; the SSUs are selected by means of
systematic sampling in each PSU. All the members of each sampled household are interviewed
through an individual questionnaire, and one individual in each household (usually, the head of
the household) is interviewed through an household questionnaire. It is useful to note that some
Provinces - generally the smaller ones - may have very few sampled Municipalities; furthermore,
many Municipalities are not even included in the sample at all. Direct estimates may therefore
have large errors at provincial level or they may not even be computable at municipality level,
thereby requiring resort to small area estimation techniques.

In this section we present two different applications using data sources from the 2006 and
2007 EU-SILC surveys. These datasets, with data coming from the 2001 Population Census of
Italy, represent a complete and valuable source of information to produce poverty and living
condition estimates in Italy.

It is useful to underline that the two case studies presented here are different in many aspects,
and thus the results are not directly comparable, at least at this stage of the work. First of all,
the survey data sources differ: in the first application, based on 2007 EU-SILC, we use income
data referring to year 2006, in the second application to year 2005. Second, while in the first
case study the small areas of interest are represented by the Provinces of three Italian Regions
(Lombardia, Toscana and Campania, for a total of 29 areas), in the second case we focus only
on the Provinces of the Toscana Region (with 11 areas). The more restrictive prospective of the
second case study is motivated by the different small area model we specified to produce the
poverty measures. Indeed, the preliminary study on the covariates to be used as predictors in the
small area models suggested the selection of different covariates in the two studies; moreover, in
the second application we found out a non linear relationship between one continuous covariate
and the response variable, the equivalised household income. This suggested the specification
of a nonparametric small area model, which is more computational intensive with respect to
the models we specified in the first case study. Thus, the results of the second application we
present in this section are only a starting point for further analyses, but they are useful for
understanding the potential uses of nonparametric small area models.

4.7.1 First case study

In the first application our target is the estimation of the mean income, of the Head Count
Ratio (HCR) or incidence of poverty and of some income quantiles for the Provinces of three
Italian Regions: Lombardia (Northern Italy), Toscana (Central Italy) and Campania (Southern
Italy). Data on the household equivalised income, on some household characteristics and on
individual characteristics of the head of the household in the three Regions are available from
the EU-SILC survey 2007. The same covariate information is available from the Census 2001 for
all the households living in Lombardia, Toscana and Campania. The aim is not only to evaluate
the distribution of the income inside the three Regions, but also to get a picture of the poverty
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and living conditions inequalities characterizing the Italian territory.

In this application we use an M-quantile CD estimator (4.11) with the following covariates:
the marital status of the head of the family (six levels), the working position of the head of the
household (four levels), the education of the head of the household (ten levels), the gender of the
head of the household (male/female) and the mean house surface at area level (in square meters).
The small areas are the 12 in Lombardia (11 Provinces plus the Municipality of Milano), 11 in
Toscana (10 Provinces plus the Municipality of Firenze) and six in Campania (5 Provinces plus
the Municipality of Napoli), for a total of 29 small areas. Log-transformation of household
income has not yet been considered at this stage of the work, to avoid the possible bias and the
complications of the back-transformation on the MSE estimation of the small area estimators
(Chambers and Dorfman, 2003).

The estimates of the HCR and of the mean household equivalised income for Lombardia,
Toscana and Campania are represented in Figures 4.1 and 4.2, 4.3 and 4.4, 4.5 and 4.6 respec-
tively. In all these figures the darker color of an area always correspond to a worst situation of
poverty, that is to an higher HCR or to a lower mean income.

Figure 4.1: Estimate of the Head Count Ratio (% of individuals below the poverty line) -
M-quantile CD Estimator, Lombardia Region.

The first evident results of our analyses is the higher incidence of poverty in the areas of
Campania, a Region in Southern Italy: for this Region the estimates of the HCR, the percentage
of households below the poverty line (9504 Euros, corresponding to the 60% of the median
income), are in the range 26-44%, while for Lombardia (Northern Italy) and Toscana (Central
Italy) the ranges of the HCR are 5-19% and 9-27% respectively. Also the estimated values for
the mean income suggest a gap between these three Italian Regions.

Nevertheless, for both the estimates of interest we can notice a certain variability inside
the three Regions. For example (Figure 4.1), several areas in Lombardia have an estimated
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Figure 4.2: Estimate of the mean equivalised household income - M-quantile CD Estimator,
Lombardia Region.

Figure 4.3: Estimate of the Head Count Ratio (% of individuals below the poverty line) -
M-quantile CD Estimator, Toscana Region.
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Figure 4.4: Estimate of the mean equivalised household income - M-quantile CD Estimator,
Toscana Region.

Figure 4.5: Estimate of the Head Count Ratio (% of individuals below the poverty line) -
M-quantile CD Estimator, Campania Region.
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Figure 4.6: Estimate of the mean equivalised household income - M-quantile CD Estimator,
Campania Region.

HCR in the class 0.14-0.19, and also the value for the Municipality of Milano is not in the
lower class, which characterize the Province of Varese. In Campania we can notice a gap in the
income estimates referring to the Northern areas (Caserta, Benevento and Napoli Provinces),
with lower income estimates with respect to the Southern areas of the Region; however the
same gap characterize only the HCR estimate referring to the Province of Benevento. For the
Toscana Region we can notice that the higher incidence of poverty as well as the lower mean
income estimate refer to the Province of Massa-Carrara, in the North of the Region. For this
area the value of the HCR is comparable to the lower HCR values we observe in the Campania
Region.

The Municipality of Milano, though characterized by a relative high HCR in the Lombardia
Region, is in the class of higher estimated mean income, and it also has the median and the
upper quantile estimates in Lombardia (see Tables 4.5 and 4.6). This suggest that for income
values over the poverty line the cumulative distribution function of this area is above all the other
estimated cumulative distribution functions in Lombardia. A similar behaviour characterized the
other two big Municipalities, Firenze in Toscana and Napoli in Campania, though in these cases
the estimated HCRs are always in the lower class of the corresponding Region. If we compare the
cumulative distribution functions estimated for the three Municipalities (Figure 4.7 and Table
4.5) we can appreciate the gap between the Municipality of Napoli and the other two areas,
and we can see that the quantiles of the Munipality of Milano are slightly higher than those
of the Municipality of Firenze for income values above the poverty line. The direct estimates
computed through the Horvitz-Thompson estimator (dashed lines in Figure 4.7) are not always
consistent with the model based ones, especially in the centre of the income distributions.

Note that in the present application the estimates of interest (Table 4.5) are all accompanied
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by a measure of variability. In particular, the standard error of the mean income estimates was
computed using formula (4.18), while the lower and upper limits of the HCR estimates were
computed using a bootstrap estimator.

Table 4.5: Small areas estimates using the M-quantile CD model: population and small area
sizes, Head Count Ratio, HCR lower and upper limits, mean household equivalent income with
s.e.

Areas Nd nd HCR HCR HCR Mean income Mean s.e.
lower limit upper limit

Massa-Carrara / Toscana 80810 96 0.26 0.21 0.32 14842.84 676.21
Lucca / Toscana 146117 131 0.21 0.16 0.26 16690.43 799.59
Pistoia / Toscana 104466 129 0.14 0.11 0.18 19255.50 1134.13
Firenze Province / Toscana 216531 326 0.11 0.09 0.13 18644.50 454.15
Livorno / Toscana 133729 115 0.15 0.11 0.20 18738.69 940.46
Pisa / Toscana 150259 136 0.15 0.10 0.19 19167.14 878.97
Arezzo / Toscana 123880 145 0.13 0.10 0.16 19414.74 1056.74
Siena / Toscana 101399 116 0.12 0.09 0.16 20928.79 1078.15
Grosseto / Toscana 87720 59 0.17 0.12 0.23 17874.16 1138.76
Prato / Toscana 83617 117 0.12 0.08 0.16 18097.09 691.09
Firenze Municipality / Toscana 159724 119 0.12 0.09 0.16 22203.33 1320.28
Varese / Lombardia 320899 253 0.10 0.08 0.13 21928.52 1297.09
Como / Lombardia 205963 153 0.16 0.13 0.22 19361.44 1130.66
Sondrio / Lombardia 69817 41 0.19 0.12 0.28 16894.17 1625.11
Milano Province / Lombardia 957305 543 0.12 0.10 0.14 20265.20 510.59
Bergamo / Lombardia 375778 219 0.17 0.13 0.20 19212.59 829.83
Brescia / Lombardia 437706 216 0.18 0.14 0.21 16921.99 572.86
Pavia / Lombardia 211786 60 0.15 0.10 0.23 22053.49 4053.48
Cremona / Lombardia 135321 75 0.16 0.10 0.21 17222.00 882.97
Mantova/ Lombardia 146249 234 0.13 0.10 0.16 18546.50 656.01
Lecco / Lombardia 121321 103 0.11 0.07 0.16 20281.30 1127.10
Lodi / Lombardia 77978 62 0.11 0.07 0.17 17986.44 995.64
Milano Municipality / Lombardia 588197 255 0.12 0.09 0.14 23876.47 1113.60
Caserta / Campania 279684 155 0.38 0.33 0.43 12056.16 611.14
Benevento / Campania 102441 70 0.43 0.35 0.52 12109.72 1003.61
Napoli Province / Campania 631523 596 0.40 0.38 0.43 12104.09 351.01
Avellino / Campania 152340 84 0.36 0.29 0.43 13609.70 990.96
Salerno/ Campania 359080 191 0.32 0.28 0.37 13534.64 522.29
Napoli Municipality / Campania 337787 221 0.26 0.22 0.30 16399.39 626.67

4.7.2 Second case study

In the second application our target is again the estimation of the mean household equivalised
income, as well as the estimation of the quantiles of the income distribution and of the HCR for
the Provinces of the Toscana Region. In this case however data come from a different year respect
to the previous application, the EU-SILC survey 2006. The preliminary analysis suggested the



104 Chapter 4. Estimation of the cumulative distribution function of income at small area level

Table 4.6: Small areas estimates using the M-quantile CD model: quantiles of the household
equivalised income.

Areas 10th 25th 50th 75th 90th

Massa-Carrara / Toscana 5927.56 9302.67 13897.29 19656.76 25352.02
Lucca / Toscana 6698.79 10341.86 15518.95 21849.49 28174.46
Pistoia / Toscana 8100.64 11771.77 16466.57 22676.13 35314.37
Firenze Province / Toscana 9081.97 12815.30 17265.50 23021.86 30129.86
Livorno / Toscana 7637.14 11932.00 17169.57 24035.98 31825.37
Pisa / Toscana 7715.23 12310.66 17651.00 25020.65 31989.20
Arezzo / Toscana 8526.24 12627.70 17321.35 22980.46 31214.38
Siena / Toscana 8616.74 13122.44 19234.35 26341.03 34390.34
Grosseto / Toscana 7369.55 11342.94 16950.41 24261.85 30086.36
Prato / Toscana 8735.63 12888.64 17351.54 22823.14 28960.56
Firenze Municipality / Toscana 8685.82 13104.39 19497.05 27816.45 40169.88
Varese / Lombardia 9386.46 13148.25 17646.15 24105.93 33694.71
Como / Lombardia 7823.42 11592.31 16501.40 22992.27 33327.84
Sondrio / Lombardia 7466.26 10656.90 15113.02 20461.93 26047.79
Milano Province / Lombardia 8731.20 13192.02 18269.21 24382.96 33250.05
Bergamo / Lombardia 7407.39 11490.67 16682.27 23879.87 35312.04
Brescia / Lombardia 7463.28 10973.61 15567.05 21559.37 28221.11
Pavia / Lombardia 7727.44 11662.38 16815.47 24158.36 30846.34
Cremona / Lombardia 8014.57 11612.81 15944.49 21565.67 29013.89
Mantova/ Lombardia 8703.20 12167.10 16950.97 22972.99 29916.88
Lecco / Lombardia 8926.71 13201.13 18592.04 25331.02 34951.54
Lodi / Lombardia 8851.35 12909.56 17385.32 22686.72 28789.72
Milano Municipality / Lombardia 8921.27 13658.16 20336.33 28928.33 43009.34
Caserta / Campania 3955.83 6966.30 11865.18 17680.72 24114.55
Benevento / Campania 4047.04 7013.11 10658.07 15280.13 21469.55
Napoli Province / Campania 3764.81 6709.65 11190.69 16569.87 22664.62
Avellino / Campania 4163.12 7469.51 12163.71 18480.82 24591.62
Salerno/ Campania 4650.65 8145.19 13018.57 18407.38 24263.83
Napoli Municipality / Campania 5360.07 9301.79 15256.73 22367.41 30363.27

selection of the following covariates: the household size (integer value), the ownership of the
dwelling (owner/tenant), the age of the head of the household (integer value), the years of
education of the head of the household (integer value) and the working position of the head
of the household (employed/unemployed in the previous week). Furthemore, a more in-depth
analysis of the relationship of the household equivalised income with the continuous selected
covariates showed a non linearity of the relationship with the age of the head of the household
(Figure 4.8). Thus, the small area model we specify to estimate the mean and the quantiles
of the income is in this case a nonparametric CD M-quantile model of the form (4.11), with a
nonparametric part for one covariate as in (4.9).

The small areas of interest are the 10 Provinces of Toscana, plus the Municipality of Firenze,
considered as a stand alone area with 125 units out of 457 in the Province (see Table 4.7).
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Figure 4.7: Estimated cumulative distribution functions of household equivalised income - M-
quantile CD Estimator, Municipalities of Milano, Firenze and Napoli.
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Figure 4.8: Estimation of the relationship between the household equivalised income and the
age of the head of the household, for some quantiles of the income.



106 Chapter 4. Estimation of the cumulative distribution function of income at small area level

Figure 4.9: Estimate of the Head Count Ratio (% of individuals below the poverty line) -
Nonparametric M-quantile CD Estimator, Toscana Region.
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Figure 4.10: Estimate of the mean of the household equivalised income - Nonparametric M-
quantile CD Estimator, Toscana Region.

Figure 4.11: Estimate of the median of the household equivalised income - Nonparametric M-
quantile CD Estimator, Toscana Region.
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Figure 4.12: Estimated cumulative distribution functions of household equivalised income - Non-
parametric M-quantile CD Estimator, Province of Massa-Carrara and Municipality of Florence.

Figure 4.9 report the results for the estimation of the HCR using a poverty line equal to 9667
Euros (60% of the median of household equivalised income): the darkest Provinces in Figure
4.9 are characterized by an higher HCR and thus by an higher incidence of poverty. Thus, we
see that the Massa-Carrara Province (MC) has the highest percentage of poor individuals (more
than 30%), while the Provinces of Firenze (FI), Arezzo (AR), Pisa (PI) and Prato (PO) have
the lowest percentage of poor individuals (15-16%). The mean income estimates (Figure 4.10)
indicate that the richest areas are the Provinces of Pistoia (PT), Prato (PO), Pisa (PI) and
the Municipality of Firenze (FI); the poorest are the Provinces of Massa-Carrara (MC), Livorno
(LI) and Grosseto (GR). Note that in this case the darkest is the color in Figure 4.10, the richest
is the Province. Similar results emerge from the estimates of the median income on the small
areas (Figure 4.11). These results are consistent with estimates referring to income in 2003,
computed using data form the EU-SILC survey 2004 and a similar small area model (Giusti et
al., 2009a and 2009b).

We can can get a more complete picture looking at the estimated cumulative distribution
function in the richest (Municipality of Firenze) and poorest (Province of Massa-Carrara) areas
(Figure 4.12 and Table 4.8). In particular, the cumulative distribution function of Massa-Carrara
rapidly approaches the value 1, and it is steeper than the cumulative distribution function of
the Municipality of Firenze. The amount of people immediately below the poverty line (blue
vertical line) is bigger under the black line than under the red one. The direct estimates (dashed
lines) computed through the Horvitz-Thompson estimator are not always consistent with the
model based ones, especially for the first quantiles. This is reasonably due to the small number
of observations in these areas: 110 in the Province of Massa-Carrara, 125 in the Municipality of
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Firenze.
Note that in this application a measure of variability has been computed only for the mean

estimates, using (4.18). The estimation of the variability also for the estimated HCRs and income
quantiles will be considered in the next steps of the analysis, using nonparametric bootstrap.

Table 4.7: Small areas estimates using the Nonparametric M-quantile CD model: population
and small area sizes, Head Count Ratio, mean household equivalent income with s.e., median
household equivalent income.

Area Nd nd HCR Mean Income Mean s.e. Median Income

Massa-Carrara 80810 110 0.32 13189.69 1059.54 11519.7
Lucca 146117 109 0.20 16017.27 833.54 16134.0
Pistoia 104466 124 0.19 19458.15 1052.04 16600.6
Province of Firenze 216531 332 0.15 17483.12 536.02 16908.6
Livorno 133729 105 0.21 15704.88 977.93 14318.8
Pisa 150259 143 0.16 18565.54 767.93 17289.7
Arezzo 123880 159 0.16 18326.21 953.89 16988.2
Siena 101399 119 0.18 18376.39 1273.40 16810.5
Grosseto 87720 71 0.25 15760.54 1441.02 13513.9
Prato 83617 128 0.16 18484.34 682.11 17223.5
Municipality of Firenze 159724 125 0.17 19136.84 709.90 17331.2

The applications presented in this section suggest that small area methods play a crucial
role in providing poverty measures at local level. In particular, M-quantile small area models
avoid unduly restrictive constraints on the distribution of the error terms and of the area effects,
and allows to handle outlying observations, a common feature when dealing with income data.
Moreover, nonparametric M-quantile models avoid unduly restrictive constraints on the shape
of the relationship between the response variable and the covariates.

These applications are only a starting point for further developments. Next applications
will focus on obtaining the estimates for all the Municipalities in the three Italian Regions
using M-quantile, nonparametric M-quantile and M-quantile GWR models, including also non-
monetary measures of poverty (Cheli and Lemmi, 1995). Moreover, a measure of variability
will be provided for all the estimates of interest, including those deriving from a nonparametric
small area model.
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Table 4.8: Small areas estimates using the Nonparametric M-quantile CD model: quantiles of
the household equivalised income.

Province of Municipality of
Quantile Massa-Carrara Firenze

0.05 2411.9 4731.4
0.10 4047.8 6664.4
0.15 5232.6 8203.0
0.20 6999.5 10216.1
0.25 7803.2 10970.4
0.30 9057.4 12442.7
0.35 9466.6 13751.6
0.40 10649.0 14320.1
0.45 11106.6 16805.6
0.50 11519.7 17331.2
0.55 12944.4 18847.3
0.60 13349.2 19344.4
0.65 15774.1 20859.4
0.70 16227.9 22448.4
0.75 17722.6 24169.3
0.80 19309.6 25950.0
0.85 21074.6 27732.7
0.90 23086.7 31053.8
0.95 26920.8 40282.2
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