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POOLED ESTIMATES OF INDICATORS 

1. Context and scope 

Reliable indicators of poverty and social exclusion are an essential monitoring tool. In 

the EU-wide context, these indicators are most useful when they are comparable across 

countries and over time for monitoring trends. Furthermore, policy research and 

application require statistics disaggregated to increasingly lower levels and smaller 

subpopulations. Direct, one-time estimates from surveys designed primarily to meet 

national needs tend to be insufficiently precise for meeting these new policy needs. This 

is particularly true in the domain of poverty and social exclusion, the monitoring of 

which requires complex distributional statistics – statistics necessarily based on 

intensive and relatively small-scale surveys of households and persons. 

This paper addresses some statistical aspects relating to improving the sampling 

precision of such indicators for subnational regions in EU countries (Verma et al., 

2006), in particular through the cumulation of data over rounds of regularly repeated 

national surveys (Verma, Gagliardi and Ferretti, 2009). The reference data for this 

purpose are based on EU Statistics on Income and Living Conditions (EU-SILC), which 

is the major source of comparative statistics on income and living conditions in Europe. 

EU-SILC covers data and data sources of various types: cross-sectional and 

longitudinal; household-level and person-level; on income and social conditions; and 

from registers and interview surveys depending on the country. A standard integrated 

design has been adopted by nearly all EU countries. It involves a rotational panel in 

which a new sample of households and persons is introduced each year to replace one 

quarter of the existing sample. Persons enumerated in each new sample are followed-up 

in the survey for four years. The design yields each year a cross-sectional sample, as 

well as longitudinal samples of various durations. Two types of measures can be so 

constructed at the regional level by aggregating information on individual elementary 

units: average measures such as totals, means, rates and proportions constructed by 

aggregating or averaging individual values; and distributional measures, such as 

measures of variation or dispersion among households and persons in the region. 

Average measures are often more easily constructed or are available from alternative 
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sources. Distributional measures tend to be more complex and are less readily available 

from sources other than complex surveys; at the same time, such measures are more 

pertinent to the analysis of poverty and social exclusion. An important point to note is 

that, more than at the national level, many measures of averages can also serve as 

indicators of disparity and deprivation when seen in the regional context: the dispersion 

of regional means is of direct relevance in the identification of geographical disparity. 

Survey data such as from EU-SILC can be used in different forms or manners to 

construct regional indicators. 

(1) Direct estimation from survey data – in the same way as done normally at the 

national level – provided that the regional sample sizes are adequate for the purpose. 

(2) Constructing alternative (but with a substantively similar meaning) indicators which 

utilise the available survey data more intensively. 

(3) Cumulation of data over survey waves to increase precision of the direct estimates. 

(4) Using survey data in conjunction with data from other (especially administrative) 

sources – which are larger in size but less detailed in content than survey data – in order 

to produce improved estimates using small area estimation (SAE) techniques. 

(5) Going altogether beyond the survey by exploiting administrative and other sources. 

2. Cumulation over waves in a rotational panel design 

The two most important regular social surveys in the EU are the Labour Force Survey 

(EU-LFS) and Statistics on Income and Living Conditions (EU-SILC). The EU-LFS 

was initiated at EU level in 1960, with a systematic common framework adopted from 

1983. It is a large sample survey, conducted in all EU countries on a continuous basis, 

providing quarterly and annual results on labour participation along with socio-

demographic and educational variables. Annually ad-hoc modules dedicated to specific 

topics supplement the core survey. The EU-SILC was launched starting from 2003 in 

some countries; it covered 27 EU and EFTA countries by 2005, and all 30 by 2008. In 

each country it involves an annual survey with a rotational panel design. Its content is 

comprehensive, focusing on income, poverty and living conditions.  

Both EU-LFS and EU-SILC involve comprehensiveness in the substantive dimension 

(coverage of different topics), in space (coverage of different countries), and in time 
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(regular waves or rounds). EU-LFS involves diverse types of rotational designs; a 

simple and common one is illustrated below on the left hand side. In this example, a 

sample address stays in the survey for 5 consecutive quarters before being dropped. The 

subsamples contributing to a particular year have been identified in the central part of 

the diagram. By contrast, for EU-SILC most countries use the standard rotational 

household panel design shown below on the right. Here the survey is annual, and each 

panel stays in the survey for four consecutive years. 

� � � �

� � �

� �

�

�

� �

� � �

� � � �

  

 

3. Pooling of data versus pooling of estimates 
 

When two or more data sources contain – for the same type of units such as households 

or persons – a set of variables measured in a comparable way, then the information may 

be pooled either (a) by combining estimates from the different sources, or (b) by 

pooling data at the micro level. Technical details and relative efficiencies of the 

procedures depend on the situation. The two approaches may give numerically identical 

results, or the one or the other may provide more accurate estimates; in certain cases, 

only one of the two approaches may be appropriate or feasible in any case. 

Consider for instance the common case of pooling results across countries in a multi-

country survey programme such as EU-SILC or EU-LFS. For linear statistics such as 

totals, pooling individual country estimates say iφ  with some appropriate weights iP  

gives the same result as pooling data at the micro level with unit weights ijw  rescaled as 

( )ijiijij wP.ww Σ=′ . For ratios of the form ijijijiji u.wv.w ΣΣ=φ , the two forms give very similar 

but not identical results, corresponding respectively to the ‘separate’ and ‘combined’ 

types of ratio estimate. 

This paper is concerned with a different but equally common type of problem, namely 

pooling of different sources pertaining to the same population or largely overlapping 

and similar populations. In particular, the interest is in pooling over survey waves in a 
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national survey in order to increase the precision of regional estimates. Estimates from 

samples from the same population are most efficiently pooled with weights in 

proportion to their variances (meaning, with similar designs, in direct proportion to their 

sample sizes). Alternatively, the samples may be pooled at the micro level, with unit 

weights inversely proportion to their probabilities of appearing in any of the samples. 

This latter procedure may be more efficient (e. g., O’Muircheataigh and Pedlow, 2002), 

but be impossible to apply as it requires information, for every unit in the pooled 

sample, on its probability of selection into each of the samples irrespective of whether 

or not the unit appears in the particular sample (Wells, 1998). Another serious difficulty 

in pooling samples is that, in the presence of complex sampling designs, the structure of 

the resulting pooled sample can become too complex or even unknown to permit proper 

variance estimation. In any case, different waves of a survey like EU-SILC or EU-LFS 

do not correspond to exactly the same population. The problem is akin to that of 

combining samples selected from multiple frames, for which it has been noted that 

micro level pooling is generally not the most efficient method (Lohr and Rao, 1996). 

For the above reasons, pooling of wave-specific estimates rather than of micro data sets 

is generally the appropriate approach to aggregation over time from surveys such as 

EU-SILC. 

4. Gain in precision from cumulation over survey waves 

Consider that for each wave, a person’s poverty status (poor or non-poor) is determined 

based on the income distribution of that wave separately, and the proportion poor at 

each wave is computed. These proportions are then averaged over a number of 

consecutive waves. The issue is to quantify the gain in sampling precision from such 

pooling, given that data from different waves of a rotational panel are highly correlated. 

For this purpose, the JRR variance estimation methodology can be easily extended on 

the following lines. The total sample of interest is formed by the union of all the cross-

sectional samples being compared or aggregated. Using as basis the common structure 

of this total sample, a set of JRR replications is defined in the usual way. Each 

replication is formed such that when a unit is to be excluded in its construction, it is 

excluded simultaneously from every wave where the unit appears. For each replication, 
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the required measure is constructed for each of the cross-sectional samples involved, 

and these measures are used to obtain the required averaged measure for the replication, 

from which variance is then estimated in the usual way (Betti et al., 2007). 

Table 1: Gain from cumulation over two waves: cross-sectional and persistent 
poverty rates. Poland EU-SILC 2005-2006 
Sample  Poverty rate Est n %se*   mean  HCR: poverty line 
 base     persons actual    income national regional 
CS-2006 HCR 2006 19.1 45,122 0.51  (1) 0.42 0.34 0.40 
CS-2005 HCR 2005 20.6 49,044 0.45  (2) 1.31 1.18 1.18 
LG 05-06 HCR 2006 18.5 32,820   (3) 0.55 0.40 0.47 
LG 05-06 HCR 2005 20.2 32,820   (4) 0.60 0.48 0.56 
LG 05-06 Persistent ‘05-06 12.5 32,820    (5) 14% 30% 30% 
 

In terms of the quantities defined above, rows (1)-(5) of Table 1 are as follows. 
 
Standard error of average HCR over two years  
(assuming independent samples) ( ) 2/1

21.21)1( VV +=  

Factor by which standard error is increased due to 
positive correlation between waves 

( )( ) 2/1.1.)2( Hnnb+=  

Standard error of average HCR over two years 
(given correlated samples) 

( ) 2/1V.)2(.)1()3( ==  
Average standard error over a single year ( ) ( )

2
)4(

2/1
2

2/1
1 VV +=  

Average gain in precision (variance reduction, or 
increase in effective sample size, over a single year 
sample) 

( )2)4()3(1)5( −=  

 

Gain from cumulation over two waves. Results for Italy, Poland and Czech 
Republic.  

 Italy  
EU-SILC 2007-2008 

Poland  
EU-SILC 2005-2006 

Czech Republic  
EU-SILC 2005-2006 

( )
2

)1(
2/1

21 VV +=  0.36 0.34 0.43 

( )( ) 2/11)2( Hnnb ⋅+=  1.20 1.18 1.18 

)2()1()3( ⋅=  0.43 0.40 0.51 

( ) ( )
2

)4(
2/1

2
2/1

1 VV +=  0.50 0.48 0.61 

( )2)4()3(1)5( −=  26% 30% 30% 

 

In place of the full JRR application, it is more illuminating to provide here the following 

simplified procedure for quantifying the gain in precision from averaging over waves of 

the rotational panel. It illustrates the statistical mechanism of how the gain is achieved. 

Indicating by pj and p'j the (1, 0) indicators of poverty of individual j over the two 

adjacent waves, we have the following for the population variances: 
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( ) ( ) ( ) vppppp jj =−=−Σ= 1.var 2

; similarly, ( ) ( ) vppp j ′=′−′= 1.var '

 

( ) ( )( ) 1
' ..,cov cppapppppp jjjj =′−=′−′−Σ= , say,  

where ‘a’ is the persistent poverty rate over the two years. For the simple case where the 

two waves completely overlap and pp =′ , variance vA for the averaged measure is: 

( )b
v

vA += 1.
2 , with correlation 










−
−=







=
2

2
1

pp

pa

v

c
b

. The correlation between two periods is 

expected to decline as the two become more widely separated. Consider, for example, 

the case when the correlation between two points k waves apart can be approximated as 

( ) ( )k
1k vcvc = . In a set of K periods there are (K-k) pairs exactly k periods apart, k=1 to 

(K-1). It follows that variance vK of an average over K periods relates to variance v of 

the estimate from a single wave as: 





























 −+=






= ∑ −
=

k

K
k

k
c v

c

K

kK

Kv

v
f 11

1 ..21.
1

 

where a, the persistent poverty between pairs of adjacent waves, and p, the cross-

sectional poverty rate, are averages over the waves involved. For application to pairs of 

waves in EU-SILC, it is necessary to allow for variations in cross-sectional sample sizes 

and partial overlaps. The result is:  

( ) ( )( )HnnbVVV .1.421 ++=  

where V1 and V2 are the sampling variances, b the correlation coefficient over the two 

cross-sections, n is the overlap between the cross-sectional samples, and nH is the 

harmonic mean of their sample sizes n1 and n2. 

The methodology described above was applied to the 2005-2006 cross-sectional and 

longitudinal EU-SILC samples for Poland. Table 1 shows some results at the national 

level. Averaging the HCR over two waves leads to a variance of this averaged estimator 

that is 30% less than the variance of the HCR estimated from just a single wave. 

Consider a rotational sample in which each unit stays in the sample for n consecutive 

periods, with the required estimate being the average over Q consecutive periods, such 

as Q=4 quarters for annual averages. The case n=1 corresponds simply to independent 

samples each quarter. Under the simplifying assumption of uniform variances, variance 

of the estimate of average over Q period is QVVa
22 = . 

In the general case, the total sample involved in the estimation consists of (n+Q-1) 

independent subsamples. These correspond to the rows in the figures below. Each 
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subsample is ‘observed’ over a certain number of consecutive periods within the 

interval (Q) of interest.1 In principle, for a given subsample the sample cases involved 

in these ‘observations’ are fully overlapping. The distribution of the (n+Q-1) 

subsamples according to the number of observation (m) provided is: 

 

No. of observations (m)�  provided by no. (x) of 

subsamples  

Total no. of ‘observations’ 

provided by all subsamples 

m = 1, 2, …, (m1-1) x = 2 for each value of m 
11

)1(

1

)1(2
1

mmi
m

i

⋅−=∑
−

=

 

m = m1 x = m2-(m1-1) 
1121 )1( mmmm ⋅−−⋅  

Total � no. of sublamples equal to 

11

)1()1(2

12

121

−+=−+=
=−−+−⋅

Qnmm

mmm
 

no. of observations equal to 

Qnmm .21 =⋅  

where m1=min(n, Q) and m2=max(n, Q). 

Note that the total number of ‘observations’ provided by all subsamples over interval Q 

is Qnmm ⋅=⋅ 21 . This is consistent with the fact that, obviously, there are n subsamples 

observed at each of the Q periods in the interval being considered (see diagrams below). 

 

Q=4 

n=3 (‘observations’ provided=3*4=12) n=5 (‘observations’ provided=5*4=20)

 

1 � �

2 �

3

4

5 �

6 � �

1 � � � �

2 � � �

3 � �

4 �

5 �

6 � �

7 � � �

8 � � � �   

Note: The numbers on the left side of the figures represent the number of subsamples (n+Q-1). 

 

                                                 
1 For ‘observation’ we mean surveying one subsample on one occasion. These correspond to individual 
diamonds in the figures below. 
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For illustration, consider Q=m1=4, n=m2=5. There are 2 contributing subsamples for 

each number 1, 2 and (m1-1)=3 of observations; and in addition there are m2-(m1-1)=2 

subsamples each contributing m1=4 observations. 

Similarly, for Q=m2=4, n=m1=3, we have 2 contributing subsamples for each number 1 

and (m1-1)=2 of observations, and in addition m2-(m1-1)=2 subsamples each 

contributing m1=3 observations. 

In the EU-SILC survey in most countries, n is always equal to 4 (each survey rounds is 

made of 4 subsamples), and at the present stage Q could be equal to 2 (years 2003-

2004), 3 (years 2003-2004-2005) and 4 (years 2003-2004-2005-2006). 

So the previous figure could be adapted as follow: 

Q= 2 Q= 3 Q= 4
n= 4 n= 4 n= 4

� � � � � � � � �

� � � � � �

� � � �

� � �

� � � � � �

� � � � �

� � �  

In order to provide a simplified formulation of the effect of correlation arising from 

sample overlaps, we assume the following model. If R is the average correlation 

between estimates from overlapping samples in adjacent periods (as defined above), 

then between points one period apart (e.g. between the 1st and 3rd quarters), the average 

correlations is reduced to R2, the correlation between points two periods apart (e.g. the 

1st and the 4th quarters) is reduced to R3, and so on. 

Consider a subsample contributing m observations during the interval (Q) of interest 

with full sample overlap. Considering all the pairs of observations involved and the 

correlations between them under the model assumed above, variance of the average 

over the m observations is given by: 

 ( ))(1
2

2 mf
m

V
Vm +⋅=  

Where: 
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 { }12 ...)2()1(
2

)( −++⋅−+⋅−⋅= mRRmRm
m

mf  

The term )(1
2

2 mf
m

V
Vm +=








 reflects the loss in efficiency in cumulation or 

averaging over overlapping samples, compared to cumulation over entirely independent 

samples. The following illustrates its values for various values of m: 

m f(m) 

2 R 

3 )2(
3

2 2RR+  

4 )23(
4

2 32 RRR ++  

5 )234(
5

2 32 RRRR +++  

 

Repeated observations over the same sample are less efficient in the presence of 

positive correlations (R). The loss depends on the number of repetitions (m) and is 

summarised by the factor [1+f(m)] . 

In estimating the average using the whole available sample of )( Qn ⋅  subsample 

observations2, we may simply give each observation the same weight. Taking into 

account the number of observations and the variances involved, the resulting variance of 

the average becomes: 

( )[ ] [ ] [ ] )()()(12)(11
21

1
1121

2
2

1

RF
Qn

V
Qnmfmmfmmm

Qn

V
V

m

m
a ⋅









⋅
=⋅









+⋅++⋅−−⋅⋅








⋅
= ∑

−

=

 

The first factor is the variance to be expected from )( Qn ⋅  independent observations 

(with no sample overlaps or correlation), each observation with variance V2. The other 

terms are the effect of correlation with sample overlaps. This effect, F(R) disappears 

                                                 
2 Obviously, we have n subsamples observed during each of Q periods in the rotational design assumed.  
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when f(i)=0  for all i=1 to m (which will be the case of R=0), as can be verified in the 

above expression. 

 

5. Variance and design effects 

The issues addressed concern the efficiency of (3) in section 1 – cumulating information 

over consecutive waves of a survey such as EU-SILC, involving complex statistics 

based on complex sample designs. Estimates are required for the whole population and 

also for subpopulations of different types. Both cross-sectional and longitudinal 

statistics are involved. Comparisons and cumulation over correlated cross-sections, with 

which this paper is concerned, add another layer of complexity.  

Jackknife Repeated Replication (JRR) provides a versatile and straightforward 

technique for variance estimation in these situations. It is one of the classes of variance 

estimation methods based on comparisons among replications generated through 

repeated re-sampling of the same parent sample. Once the set of replications has been 

appropriately defined for any complex design, the same variance estimation algorithm 

can be applied to a statistic of any complexity. We have extended and applied this 

method for estimating variances for subpopulations (including regions and other 

geographical domains), longitudinal measures such as persistent poverty rates, and 

measures of net changes and averages over cross-sections in the rotational panel design 

of EU-SILC (Verma and Betti, 2007). Appropriate coding of the sample structure, in the 

survey micro-data and accompanying documentation, is an essential requirement in 

order to compute sampling errors taking into account the actual sample design. Lack of 

information on the sample structure in survey data files is a long-standing and persistent 

problem in survey work, and unfortunately affects EU-SILC as well. Indeed, the major 

problem in computing sampling errors for EU-SILC is the lack of sufficient information 

for this purpose in the micro-data available to researchers. We have developed 

approximate procedures in order to overcome these limitations at least partially, and 

used them to produce useful estimates of sampling errors (Verma, Betti and Gagliardi, 

2010). Use has been made of these results in this paper, but it is not possible here to go 

into detail concerning them. 
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A most useful concept for the computation, analysis and interpretation of sampling 

errors concerns ‘design effect’ (Kish, 1995). Design effect is the ratio of the variance (v) 

under the given sample design, to the variance (v0) under a simple random sample of the 

same size: 00
2 , sesedvvd == . Proceeding from estimates of sampling error to estimates 

of design effects is essential for understanding the patterns of variation in and the 

determinants of magnitude of the error, for smoothing and extrapolating the results of 

computations, and for evaluating the performance of the sampling design.  

Analysis of design effects into components is also needed in order to understand from 

where inefficiencies of the sample arise, to identify patterns of variation, and through 

that to extend the results to other statistics, designs and situations. And most 

importantly, with JRR (and other replication methods) the total design effect can only 

be estimating by estimating (some of) its components separately (Verma, Betti, 2010). 

In applications for EU-SILC, there is in addition a most important and special reason for 

decomposing the total design effect into its components. Because of the limited 

information on sample structure included in the micro-data available to researchers, 

direct and complete computation of variances cannot be done in many cases. 

Decomposition of variances and design effects identifies more ‘portable’ components, 

which may be more easily imputed (carried over) from a situation where they can be 

computed with the given information, to another situation where such direct 

computations are not possible. On this basis valid estimates of variances can be 

produced for a wider range of statistics, thus at least partly overcoming the problem due 

to lack of information on sample structure. We may decompose total variance v (for the 

actual design) into the components or factors as ( )2
0

2
0 ..... XDHW ddddvdvv == , where dW is the 

effect of sample weights, dH of clustering of individual persons into households, dD of 

clustering of households into dwellings, and dX that of other complexities of the design, 

mainly clustering and stratification. All factors other than dx do not involve clusters or 

strata, but depend only on individual elements (households, persons etc.), and the 

sample weight associated with each such element in the sample. Parameter dW depends 

on variability of sample weights, and secondly also on the correlation between the 

weights and the variable being estimated; dH is determined by the number of and 

correlation among relevant individuals in the household, and similarly dD by the number 

of households per dwelling in a sample of the latter. By contrast, factor dX represents 
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the effect on sampling error of various complexities of the design such as multiple 

stages and stratification. Hence unlike other components, dX requires information on the 

sample structure linking elementary units to higher stage units and strata. This effect 

can be estimated as follows using the JRR procedures. We compute variance under two 

assumptions about structure of the design: variance v under the actual design, and vR 

computed by assuming the design to be (weighted) simple random sampling of the 

ultimate units (addresses, households, persons as the case may be). This can be 

estimated from a ‘randomised sample’ created from the actual sample by completely 

disregarding its structure other than the weights attached to individual elements. This 

gives ( ) ( )Rx vvd =2

, with ( )2
0 ... DHWR dddvv = . 

Table 2 gives standard error, design effect and components of design effect for the 

cross-sectional 2006 EU-SILC sample for Poland. The sample was a two stage stratified 

sample of dwellings containing 45,122 individual persons. With “%se” (3rd and last 

column) we mean: for mean statistics e.g. equivalised disposable income – standard 

error expressed as percentage of the mean value; for proportions and rates (e.g. poverty 

rates) – standard error given as absolute percent points. Terms (%se actual) and (%se 

SRS) relate, respectively, to the variances v and v0 in the text. Parameter dD cannot be 

estimated separately because of lack of information, but its effect is small and is, in any 

case, already incorporated into overall design effect d. 

 

Table 2: Estimation of variance and design effects at the national level. Cross-
sectional sample. Poland EU-SILC 2006 
  Est. %se Design effect   %se 
   actual dX dW dH d SRS 

(1) Mean equivalised disposable 
income 3,704 0.57 0.94 1.22 1.74 1.99 0.29 
(2) HCR – ‘head count’ or poverty 
rate, using national poverty line 19.1 0.51 1.02 1.09 1.74 1.94 0.26 
(3) HCR – ‘head count’ or poverty 
rate, using regional (NUTS1) 
poverty line 19.0 0.61 1.05 1.09 1.74 1.99 0.30 

 

Table 2 gives poverty rates defined with respect to two different ‘levels’ of poverty line: 

country level and NUTS1 level. By this we mean the population level to which the 

income distribution is pooled for the purpose of defining the poverty line. 

Conventionally poverty rates are defined in terms of the country poverty line (as 60% of 

the national median income). The income distribution is considered at the country level, 

in relation to which a poverty line is defined and the number (and proportion) of poor 
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computed. It is also useful to consider poverty lines at other levels. Especially useful for 

constructing regional indicators is the use of regional poverty lines, i.e. a poverty line 

defined for each region based only on the income distribution within that region. The 

numbers of poor persons identified with these lines can then be used to estimate 

regional poverty rates. They can also be aggregated upwards to give an alternative 

national poverty rate – but which still remains based on the regional poverty lines. So 

defined, the poverty measures are not affected by disparities in the mean levels of 

income among the regions. The measures are therefore more purely relative.  

6. Illustrative applications of cumulation at the regional level 

Table 3 shows results for the estimation of variance and design effect for the cross-

sectional 2006 and 2005 Poland datasets. The results at national level for the three 

measures considered have been already presented in the previous section. Here we 

present the results at NUTS1 regional level. All the values, except “%se SRS” and dX, 

are computed at regional level in the same manner as the national level. All factors other 

than dX do not involve clusters or strata, but essentially depend only on individual 

elements and the associated sample weights. Hence normally they are well estimated, 

even for quite small regions. Factor ( )GXd  for a region (G) may be estimated in relation 

to ( )CXd  estimated at the country (C) level on the following lines. For large regions, each 

with a large enough number of PSUs (say over 25 or 30), we may estimate the variance 

and hence ( )GXd  directly at the regional level. Sometimes a region involves a SRS of 

elements, even if the national sample is multi-stage in other parts; here obviously, 

( ) 1=GXd . If the sample design in the region is the same or very similar to that for the 

country as a whole – which is quite often the case – we can take ( ) ( )CXGX dd = . It is 

common that the main difference between the regional and the total samples is the 

average cluster size (b). In this case we use ( ) ( )( ) ( ) ( )CGCXGX bbdd .11 22 −+= . The last-mentioned 

model concerns the effect of clustering and hence is meaningful only if ( ) 1≥CXd , which is 

often but not always the case in actual computations. Values smaller than 1.0 may arise 

when the effect of stratification is stronger than that of clustering, when units within 

clusters are negatively correlated (which is rare, but not impossible), or simply as a 
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result of random variability in the empirical results. In any case, if ( ) 1<CXd , the above 

equation should be replaced by ( ) ( )CXGX dd = . The quantity (%se* SRS) can be directly 

computed at the regional level as was done for the national level in Table 1. However, 

very good approximation can be usually obtained very simply without involving JRR 

computations of variance. The following model has been used in Table 3. For means 

(such as equivalised income) over very similar populations, assumption of a constant 

coefficient of variation is reasonable. The region-to-country ratio of relative standard 

errors (expressed as percentage of the mean value as in Table 3) under simple random 

sampling is inversely proportional to the square-root of their respective sample sizes: 

( )( ) ( )( ) ( ) ( )( )GC
2
C

2
G nn.SRS*se%SRS*se% = . For proportions (p, with q=100-p), with standard error 

expressed in absolute percent points as in Table 3, we can take: 

( )( ) ( )( )
( ) ( )

( ) ( )
( ) ( )( )GC

CC

GG
CG nn

qp

qp
SRSseSRSse .

.

.
.*%*% 22














=

. A poverty rate may be treated as proportions for 

the purpose of applying the above. We see from Table 3 that the (%se*actual) at 

regional level is generally, for all the three measures, 2 to 3 times larger than that at the 

national level.  

Table 3: Estimation of variance and design effects at the regional (NUTS1) level. 
Full cross-sectional dataset 
 2006 n %se*   %se* 2005 n %se* 
 Est. persons SRS dX d actual Est. persons actual 

Mean equivalised disposable income     
Poland 3,704 45,122 0.29 0.94 1.99 0.57 3,040 49,044 0.62 

PL1 4,236 8,728 0.65 0.94 2.06 1.34 3,455 9,871 1.32 
PL2 3,889 9,273 0.63 0.94 1.78 1.13 3,143 10,181 1.22 

PL3 3,162 9,079 0.64 0.94 2.00 1.28 2,618 9,674 1.32 

PL4 3,530 6,912 0.73 0.94 1.90 1.39 2,977 7,195 1.84 

PL5 3,906 4,538 0.90 0.94 1.96 1.77 3,164 5,066 1.85 
PL6 3,419 6,592 0.75 0.94 1.90 1.43 2,816 7,057 1.58 

At-risk-of-poverty rate, national poverty line    

Poland 19.1 45,122 0.26 1.02 1.94 0.51 20.6 49,044 0.45 

PL1 17.1 8,728 0.57 1.02 1.85 1.06 19.1 9,871 0.92 
PL2 14.7 9,273 0.52 1.02 1.86 0.97 16.4 10,181 0.87 

PL3 25.2 9,079 0.64 1.02 2.09 1.34 25.2 9,674 1.13 

PL4 18.7 6,912 0.66 1.02 1.98 1.32 20.2 7,195 1.19 

PL5 18.6 4,538 0.82 1.02 1.91 1.56 20.2 5,066 1.43 
PL6 21.4 6,592 0.71 1.02 1.95 1.40 23.7 7,057 1.26 

At-risk-of-poverty rate, regional poverty lines    

Poland 19.0 45,122 0.30 1.05 1.99 0.61 20.5 49,044 0.51 

PL1 19.8 8,728 0.70 1.04 1.90 1.34 20.9 9,871 1.07 
PL2 18.5 9,273 0.67 1.04 1.91 1.27 19.0 10,181 1.05 

PL3 18.6 9,079 0.68 1.06 2.14 1.45 20.8 9,674 1.21 

PL4 17.5 6,912 0.76 1.05 2.04 1.54 20.1 7,195 1.35 

PL5 20.9 4,538 1.00 1.04 1.97 1.96 22.2 5,066 1.68 
PL6 19.1 6,592 0.80 1.05 2.00 1.60 21.3 7,057 1.37 
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Regional HCR estimates based on the national poverty line are quite different from 

those based on the regional ones. Also, while individual regional estimates of HCR 

using the regional poverty line are quite close to the national estimate (19.0 for 2006), 

the ones using the national poverty line are more variable (from 14.7 to 25.2 for 2006). 

From the previous table it can be seen that generally for the HCR measures, both for 

country and NUTS1 level poverty lines, cumulating the estimates over two waves leads 

to a reduction of 30% in variance compared to that for a single wave. This reduction of 

the variance is smaller for mean equivalised income due to a higher correlation between 

incomes for the two years – generally the coefficient of correlation of the equivalised 

income between waves exceeds 0.70. 

Table 4: Gain in precision from averaging over correlated samples. Poland NUTS1 
regions  
Mean equivalised income 

  Country PL1 PL2 PL3 PL4 PL5 PL6 

(1) 0.42 0.94 0.83 0.92 1.15 1.28 1.07 

(2) 1.31 1.33 1.30 1.31 1.27 1.32 1.32 

(3) 0.55 1.26 1.08 1.20 1.47 1.70 1.41 
(4) 0.60 1.33 1.17 1.30 1.62 1.81 1.51 

(5) 14% 11% 15% 14% 18% 12% 12% 
HCR national poverty line 

  Country PL1 PL2 PL3 PL4 PL5 PL6 

(1) 0.34 0.70 0.65 0.88 0.89 1.06 0.94 
(2) 1.18 1.18 1.17 1.18 1.18 1.17 1.19 

(3) 0.40 0.83 0.76 1.03 1.05 1.23 1.12 

(4) 0.48 0.99 0.92 1.24 1.26 1.50 1.33 

(5) 30% 29% 31% 30% 30% 32% 29% 
HCR regional poverty line 

  Country PL1 PL2 PL3 PL4 PL5 PL6 

(1) 0.40 0.86 0.83 0.94 1.03 1.29 1.05 

(2) 1.18 1.18 1.18 1.17 1.18 1.17 1.18 

(3) 0.47 1.02 0.98 1.10 1.21 1.51 1.24 
(4) 0.56 1.21 1.16 1.33 1.45 1.82 1.49 

(5) 30% 29% 29% 31% 30% 31% 31% 

Rows (1) – (5) have been defined in Table 1. 
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